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Abstract

Invasive species (IS) cause major environmental dam-
ages, costing approximately $1.4 Trillion globally. Early
detection and rapid response (EDRR) is key to mitigating IS
growth, but current EDRR methods are highly inadequate
at addressing IS growth. In this paper, a machine-learning-
based approach to combat IS spread is proposed, in which
identification, detection, and prediction of IS growth are au-
tomated in a novel mobile application and scalable models.
This paper details the techniques used for the novel devel-
opment of deep, multi-dimensional Convolutional Neural
Networks (CNNs) to detect the presence of IS in both 2D
and 3D spaces, as well as the creation of geospatial Long
Short-Term Memory (LSTMs) models to then accurately
quantify, simulate, and project invasive species’ future en-
vironmental spread. Results from conducting training and
in-field validation studies show that this new methodology
significantly improves current EDRR methods, by drasti-
cally decreasing the intensity of manual field labor while
providing a toolkit that increases the efficiency and efficacy
of ongoing efforts to combat IS. Furthermore, this research
presents scalable expansion into dynamic LIDAR and aerial
detection of IS growth, with the proposed toolkit already
being deployed by state parks and national environmen-
tal/wildlife services.

1. Introduction
1.1. Invasive Species Background

In the United States of America alone, invasive species
cause major environmental damages and losses adding up to
almost $120 Billion USD annually [14]. In addition, as for-
eign species continue to spread globally at an alarming rate,
42% of the species on the Threatened or Endangered species
lists are at immediate risk [14]. Globally, the cost of inva-
sive species has been estimated to be $1.4 Trillion USD [4].
In fact, scientists have labeled this unprecedented growth of
invasive species as “The New Pangaea” and as “The Sixth

Extinction.” Alien invaders are extremely successful as they
leave many of their rivals and predators behind. This “en-
emy release” allows them to completely take over certain
areas without being controlled or in check. New pathogens
such as viruses, bacteria, fungi, etc. are particularly quick
to spread and can lead to the near extinction of other life
forms in new environments.

As a result, global biodiversity has decreased, with the
dominance of these new alien invasive species and a stark
homogenization of the world’s species [12]. Invasive
species growth has had severe impacts, including degraded
value/quality of land, lower crop productivity, high cost of
controlling pests, weeds and diseases, water shortages, in-
creased frequency of wildfires and flooding, and risks to hu-
man and animal health [5]. Currently, only experienced
researchers and scientists have the ability to identify, track,
and truly recognize an invasive species’ growth, and such
efforts require intensive manual and ground labor. Accord-
ing to the United States Department of the Interior, early
detection, quick response, and public awareness are key fac-
tors in stopping invasive species growth [2]. Most impor-
tantly, learning to identify an invasive species can be the
difference between saving an ecosystem or total invasion.

Early Detection and Rapid Response (EDRR) is recog-
nized as a set of actions that increase the chances of con-
taining and eradicating invasive species before they enter
irreversible stages of the invasion curve [1]. But, cur-
rent EDRR methods are highly laborious and intensive, re-
quiring manual identification and reporting. In a recent
United States Department of the Interior paper published
in 2020, the need for technological innovation in current
EDRR methods is examined. Reference [3] states “the cur-
rent toolbox for addressing invasive species is incomplete
and inadequate.” In fact, [3] claims “machine learning can
be used to verify the accuracy of species occurrence data,”
which can result “in more cost-efficient data management
and accurate information going into decision support tools”
[3]. Additionally, [3] argues “Crowdsourcing through plat-
forms like eBird and iNaturalist. . . can also accelerate the
identification of large numbers of complex images. . . that
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may contain invasive species” [3].

1.2. Project Goals and Previous Research

Figure 1. Proposed methodology for automating invasive species
detection. Invasive species are automatically identified via CNNs,
and then cloud-based geospatial LSTMs are trained on new re-
portings, ultimately creating projection heat maps (all deployed
on mobile app or surveillance systems).

In this paper, a novel, end-to-end, machine-learning-
based mobile application to combat invasive species growth
is proposed (see Fig. 1). The three key phases of the project
are invasive species detection, prediction, and visualization.
Firstly, multilayer, deep 2-Dimensional Convolutional Neu-
ral Networks (2D-CNNs) will be created to identify a va-
riety of invasive species with high precision and accuracy
[6]. Secondly, 3-Dimensional Convolutional Neural Net-
works (3D-CNNs) will be developed to detect several in-
vasive species in the point cloud space. Using both the 2D-
CNNs and 3D-CNNs to detect invasive species, sightings of
invasive species will be reported. Long Short-Term Mem-
ory (LSTM) models will also be developed for geospatial
prediction [10]. Using reportings of invasive species, the
LSTMs will use contextual parameters to reliably predict
future outbreak of invasive species. Finally, the 2D-CNNs
and LSTMs will be ported into a cohesive mobile applica-
tion. The mobile application should allow the user to easily
identify and visualize invasive species growth, and should
be scalable. In the context of this paper, the term “inva-
sive” refers to species that are invasive in the contiguous
United States (all 50 states of the United States, excluding
Alaska and Hawaii), unless referring to invasive species in
a broader manner.

There have been previous attempts at creating mobile
applications to mitigate invasive species growth, such as
EDDMapS and iMapInvasives. However, these applica-
tions only plot reported invasive species occurrences, but do
not predict future growth or automatically identify invasive
species. Furthermore, these existing software systems al-
low no identification of invasive species in the third dimen-
sion (no 3D detection capabilities), and existing research

in 3D invasive species detection are constricted to “aerial
top views” of invasive species (allowing no expansion into
fields like LIDAR or hyperspectral-based invasive species
detection), and can only identify a few invasive species in
large clusters. The proposed novel method will allow for
multi-dimensional, automated, and early detection as well
as reportings of an invasive species through both 2D-CNNs
and 3D-CNNs, but will also predict the spread of invasive
species into suitable environments using LSTM geospatial
models.

2. Methodology
2.1. Tools

The construction and training of algorithmic networks
was done using the Python, TensorFlow, Keras, and Numpy
Computational Libraries, as well as the Spin3D and Mesh-
lab 3D Data Visualizers for handling 3D data. Google Co-
laboratory and a Google Cloud Platform Server (80vCPUs,
1.922 TBs of RAM) were also used for training. 5 Tensor
Processing Units granted by TensorFlow Research Cloud
also aided in the training process.

2.2. Dataset Creation

Figure 2. Example training images of invasive species from cus-
tom iNaturalist dataset, and 4 separate/major training categories.

The Bugwood Database, maintained by the University
of Georgia, provided a cohesive list of invasive species
throughout the US and Texas. Due to resource constraints
for model training, the top 31 high-impact invasive species
(primarily terrestrial and aquatic species, including shrubs,
grasses, birds, bark diseases, pest-mammals) were selected
from this list [8] [9]. These invasive species were then
divided into 4 distinct categories: plant, wildlife, insect, or
pathogen, with at least 4 species per category. To train the
geospatial LSTMs, the Bugwood API was used to compile
latitude and longitude occurrences for each invasive species
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on the list, with a total of over 1.9 million occurrences (be-
ginning from 1850).

After searching for publicly available images of invasive
species to train the 2D-CNNs, no complete datasets were
found. However, a web crawler was developed to scrape im-
ages from iNaturalist, a forum in which “naturalists” share
verified observations/images of species. A total of 45,090
research-grade and verified images were scraped from iNat-
uralist for the 31 invasive species (see Fig. 2), with at least
150 images per species, and a maximum of 2,500 images.
The dataset was normalized via image augmentation (see
Section 2.3). The crowd-sourced dataset was then divided
into a 70/20/10 training, validation, and test split respec-
tively. The dataset the 3-Dimensional CNNs were trained
on was the Plant3D Dataset, compiled and curated by the
Salk Institute for Biological Studies [9].

Additionally, a separate 2D-CNN model was created, ex-
plicitly combining invasive and native plants in the same
model. This model included 63 native plant species (pri-
marily native to Texas and the US), and 23 invasive plant
species, in an approximate 3:1 ratio for native to invasive
plant species. A separate dataset was scraped from iNatu-
ralist for these species, with a total of 28,841 images divided
into a 70/20/10 training, validation, and test split respec-
tively. This model was created for in-field testing of the app
on plant species at local, plant-heavy field laboratories (not
included in final app).

2.3. 2D-CNN Development

Figure 3. Schematic diagram of InceptionV3 transfer learning ar-
chitecture.

2D-CNNs were developed due to their potential in de-
ployment to hand-held devices (smartphones) to researchers
in the field. To minimize unnecessary error during image
classification, a separate 2D-CNN model was created for
each of the invasive plant, wildlife, insect, and pathogen
categories. Due to the lack of training images, with some
species having only a few hundred training samples, trans-
fer learning was utilized. Transfer learning, a method in
which a pre-trained model is repurposed for another task,
has the ability to decrease training resources while increas-
ing model performance and efficiency. The pre-trained
model chosen was the InceptionV3 Model created in [15],
a model trained on the iNaturalist (iNat) 2017 dataset (a

dataset of mainly non-invasive plants, insects, and wildlife).
Since the InceptionV3 model was trained on a iNaturalist
dataset, the 2D-CNNs, which are also classifying iNatural-
ist images, would greatly benefit from the pre-trained fea-
ture maps of the InceptionV3 model (see Fig. 3).

Furthermore, to decrease high variance of the 2D-
CNNs/overfitting, image augmentation was used. Each
species had its training images’ rotation, zoom, brightness,
and vertical/horizontal shift range modified, leading to a
more robust and adaptable 2D-CNN model. These augmen-
tations would also mimic the quality of images captured on
a mobile phone’s camera. Image augmentation continued
until each species had at least 100 additional augmented
training images added or the same number of training im-
ages as all the other classes (2,500 images). Augmented
images were only added to the training dataset, and not to
validation and testing datasets.

Furthermore, for species with 200 or less training im-
ages, a semi-supervised approach was taken. A Genera-
tive Adversarial Network (GAN) was developed to gener-
ate additional images of invasive species [7]. A generator
and discriminator were created, with the discriminator de-
termining if the generator’s images are real (from the iNat-
uralist dataset) or fake (made by the generator). The gener-
ator competed against the discriminator, trying to produce
more “realistic” images, and confuse the discriminator. The
GAN model was created by stacking the discriminator and
generator, thereby allowing for the generator’s weights to
adjust to the discriminator’s performance in this zero-sum
competition [7]. After training for 500 epochs, the gener-
ator model was used to generate realistic “fake” images for
each species with 200 or less training images. A separate
GAN model was created for each species with the afore-
mentioned criteria (label therefore already known), and 50
GAN-images were generated per species using the 200 im-
ages from the web-scraped iNaturalist 2022 dataset.

For the actual training of the 2D-CNNs, the raw, aug-
mented, and generated images were loaded as training im-
ages, and the previously split validation and testing images
were also loaded, all resized to a 299x299 pixel dimension.
To avoid manual model tuning to optimize accuracy, a grid-
search hyperparameter tuning algorithm was created, in
which various random node dropout values, learning rates,
and batch sizes were tested. After training the models on
various hyperparameters for 5 epochs, the hyperparameters
which yielded the highest accuracy on the test dataset were
selected for final training. The grid-search algorithm was
used to determine optimal hyperparameters for the plant, in-
sect, wildlife, and pathogen models. Once the optimal hy-
perparameters were selected, each transfer learning model
was trained for a total of 15 epochs, and the model with
the best weights was saved. The 2D-CNN models can also
classify invasive species offline.
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2.4. 3D-CNN Development

Figure 4. Examples of point cloud 3D training data of invasive
species. For rows 1,3: top left is the invasive species type, top
right is environmental condition, and bottom left is phenotype and
growth stage. For row 2 (point cloud visualization): bottom left is
number of cloud points to construct given point cloud image.

3D detection was created to enable aerial-based species-
sensing in remote, traditionally humanly unexplorable areas
(not doable by human-held, manual app-based 2D CNNs).
A total of 152,657,384 Point Cloud points, from over
714 scans, were used to train the PointNet model. How-
ever, to convert the 3D Scans to point cloud formats, each
species was partitioned by ambient/environmental condi-
tions. These conditions ranged from a variety, including
drought, high-light, shade, low-light, and control. Fur-
thermore, each partition was sub-partitioned by the growth
stage (each 3D scan had various temporal growth stages as-
sociated with it) and genotype (the invasive species varied
in phenotype) (see Fig. 4). Afterwards, each plant scan
was converted to the .obj format, using the Meshlab soft-
ware, and then converted to a .off format with the Spin3D
software as well. To minimize overfitting, separate train-
ing and testing datasets were created, with 90/10 split re-
spectively, to maximize training samples. Due to memory
constraints in the machine-learning environment, each .off
scan of invasive genera (plural of genus) was sampled with
a 2048 point cloud value, and converted to the appropriate
numerical array format of “3D dots.” Afterwards, to further
increase model generalization and segmentation, each 3D
point was jittered and shuffled, and was converted into ten-
sor slices. Additionally, to accurately classify the 3D point
cloud samples of invasive genera, a novel implementation
of the Stanford 3D PointNet classification architecture was
developed, through a novel of weight-optimization balance
between each layer and interconnected layer, via a reduction
of the original architecture’s weights by a factor of 50% (see
Fig. 5).

For each convolution/fully-connected layer of the net-
work, excluding the end layers, a 1D Convolution layer,

Figure 5. Schematic diagram of PointNet 3D architecture.

coupled with a Dense and Batch Normalization layer was
utilized, with a ReLU activation function. As the PointNet
model consists of a multilayer perceptron neural network,
and transformer-nets (t-nets), a t-net architecture was de-
veloped, and was implemented twice in creating the model
stack. The t-nets are used twice for “canonical represen-
tation” of the input features, and additionally as a “affine
transformation” for proper alignment/orientation in the 3D
feature space. Furthermore, as per the traditional imple-
mentation of the PointNet Voxel network, the second t-net
transformation was constrained to mimic the transforma-
tion of an orthogonal matrix. Finally, to initialize the t-net
models, the bias was initialized as a plain identity matrix
(thereby attempting original bias elimination). The Point-
Net classification architecture was initialized similar to reg-
ular 2D CNNs, but due to a smaller class size of invasive
genera, only 50% of original weights were used, along with
a Global MaxPooling 2D layer. Additionally, to further
minimize overfitting, a dense node dropout of 0.3 was used,
to achieve extremely high training and validation accura-
cies for the PointNet model on the Plant3D invasive genera
dataset.

2.5. Geospatial LSTMs Development

Figure 6. Flowchart of geospatial LSTM training, including envi-
ronmental parameters and training/output process.

For geospatial prediction of invasive species growth, a
total of 1,690,121 raw latitude and longitude occurrences
were scraped (Dimension: Floats of latitude and longitude),
for a total of 210 invasive species. To train the location-
predicting LSTMs, these occurrences, along with a variety
of parameters, consisting of the new occurrences, clusters,
weather patterns, and predation/competition distances were
utilized. Additionally, the structure of LSTMs is optimal
for creating predictions using time series data.
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1) Predicting Number of New Occurrences: Dimen-
sion: Number of new predicted cases. Each occurrence for
each species was organized in a time series format, from
earliest to present. To predict the number of new inva-
sive species occurrences at given time intervals, Seasonal
AutoRegressive Integrated Moving Averages with eXoge-
nous regressors (SARIMAX), essentially a moving average
calculator, was chosen. SARIMAX was found to perform
best at geospatial invasive species growth prediction. SARI-
MAX’s use of seasonality, the idea of growth/decline at cer-
tain periods of time, best matched invasive species’ previous
growth patterns, and was used to predict the number of new
occurrences in two weeks, three months, and one year. The
predictions at these time intervals was saved to be later used
as a parameter for the LSTMs.

Figure 7. Various clusters of invasive species created by the HDB-
SCAN clustering algorithms, demonstrated by the various groups’
colors/cluster values in the second graph.

2) Clustering: Dimension: Each latitude/longitude
point was assigned a integer cluster group (i.e. 9) to rep-
resent the cluster it belonged to. To better predict the loca-
tional movement of various types or “clusters” of invasive
species, the Hierarchical Density-Based Geospatial Clus-
tering (HDBSCAN) algorithm was used. Using core and
mutual reachability distance, the HDBSCAN algorithm cre-
ated several clusters of plotted invasive species’ coordinates
[13]. Each point for an invasive species was given a differ-
ent normalized clustering value, and these clustering values
were stored as an important input parameter for the LSTM
models (see Fig. 7).

3) Weather Patterns: Dimension: The numerical,
float measurement of each category: average humidity (1-
100%), temperature (Celsius), rainfall (centimeters), and
wind speeds (kilometers per hour). Reports such as [11]
suggest that abiotic factors, like weather, affect invasive
species growth. Therefore, another parameter included in
training the LSTMs were weather patterns. These patterns
consisted of average humidity, temperature, rainfall, and
wind speeds. Weather parameters were recorded at the lat-
itude/longitude of each occurrence of an invasive species.
All weather data was collected and scraped from the Open-
Weather API.

4) Predation/Competition: Dimension: Float differ-
ence between latitude/longitude points using Haversine dis-
tance formula. The last parameter fed into the LSTMs were

Figure 8. Haversine distance formula and visualization.

based on invasive species predation/competition. As shown
in [11], competition and predation between similar invasive
species is an important factor that impacts invasive species
population size. An algorithm was developed that focused
on invasive species of the same specific type. Types con-
sisted of invasive pathogens, insects, aquatic plants, grasses,
forbs/herbs, shrubs, trees, vines, amphibians, birds, crus-
taceans, fish, mammals, mollusks, and reptiles. Using the
Haversine distance formula, the average distance of the cur-
rent occurrence to other species of that same specific type
was recorded as the ultimate parameter (see Fig. 8).

Parameters consisted of latitude/longitude occurrences
of invasive species, weather patterns at each occurrence,
predation/competition distances, and clusters of invasive
species. These parameters were then fed into LSTM mod-
els, which were created for each invasive species. LSTM
models were trained for 200 epochs, and predicted a certain
number of new latitude/longitude occurrences of invasive
species, based on the SARIMAX model’s prediction of the
number of new occurrences at two-week, three month, and
one year time intervals (see Fig. 6). The locational predic-
tions of invasive species growth at these time intervals were
saved on the cloud via Amazon Web Services (AWS).

2.6. Mobile Application Development

After the 2D-CNNs and LSTMs had been trained, the
mobile application was created. The app was developed us-
ing the Android Studio Integrated Development Environ-
ment (see Fig. 9). The detection phase of the app involved
the integration of the camera and the machine learning mod-
els. This was done by converting Android camera images
into readable formats for .tflite models. A user simply takes
a picture of a possible invasive species, and automatically
receives the classification for that species. The user can then
click on that species and is given a page with information
regarding the species.

On this page, the user is given methods to control the
invasive species. Additionally, in each “page” for an inva-
sive species, the user can view the current, two-week, three
month, and one year projections of the invasive species’
growth and spread into suitable environments. These heat
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Figure 9. Screenshots from InvasiveAI app showing: 1) invasive species identification. 2) reporting occurrences to cloud. 3,4) viewing
future species geospatial growth (updated weekly based on new reportings)

maps were created using the latitude/longitude predictions
that were stored on AWS.

Users also have the option to report an invasive species,
in which the species name, latitude, longitude, date, and in-
vasive species type are automatically uploaded to AWS. The
reportings are also stored on the cloud, and the SARIMAX
models and LSTMs are weekly retrained on the newly re-
ported data, with the same methodology described before.
Afterwards, the new predictions, now factoring in the new
reportings, replace the previous heat maps, thereby creating
a dynamic system in predicting invasive species spread.

3. Results

3.1. 2D-CNNs

After using the grid-search algorithm to determine opti-
mal hyperparameters (dropout, batch size, learning rate) for
training 2D-CNNs, as mentioned in the methodology sec-
tion, the 2D-CNNs were then trained and validated for 15
epochs each, and the model with the best weights was saved.

Due to the pre-trained features of the Inception V3
model, only around 5 epochs were needed to train the model
to a high accuracy. Afterwards, the model began slight
overfitting, but still increased in validation accuracy and de-
creased in validation loss (see Fig. 10).

After training the 2D-CNNs, all models were tested on
the “test split” of the original dataset. Loss was measured
with the Categorical Cross-Entropy function The following
are the results for the 4 different 2D-CNN models (TL =
Test Loss, TA = Test Accuracy)

• Invasive Pathogen: TA - 92.06%, TL - 0.2677

• Invasive Insect: TA - 94.34%, TL - 0.1859

• Invasive Plant: TA - 94.19%, TL - 0.1974

• Invasive Wildlife: TA - 93.50%, TL - 0.2058

• 4-Model Combined Average: TA - 93.52%, TL -
0.2142

In [15], the study presents a several state-of-the-art models,
including Inception ResNet V2, ResNet 152, ResNet 101,
and MobileNet, in which the highest raw accuracy achieved
was 67.74% on the test dataset presented in this study (by
Inception ResNet V2 model). However, the 4 2D-CNN
models developed in this study were stacked into a singular
predictive model (not evaluated separately, just one model),
and yielded an accuracy 25.78% greater on this study’s test
iNaturalist dataset for invasive species than the SOTA In-
ceptionResNetV2’s accuracy.
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Figure 10. Graph of training and validation accuracy of invasive
plant, insect, wildlife, and pathogen CNN models.

3.2. 3D-CNNs

Furthermore, the newly made 3-Dimensional CNNs em-
ployed a PointNet architecture and used over 152 million
cloud points (exactly 152,657,384 cloud points from over
714 3D scans) of invasive genera for training. The 3D
CNNs were trained with invasive plant genera under various
heat, shading, aquatic, and ambient conditions, as well as an
average of 30-40 temporal scans of invasive genera growth.
In total, the 3D CNNs were trained on 4 invasive genera
(Sorghum, Solanum, Tobacco, Arabidopsis), which actu-
ally encompass over 75 highly invasive plant species (see
Fig. 13). Most importantly, the 3D CNNs yielded a near-
perfect 97.78% validation accuracy and a 94.47% training
accuracy. Furthermore, the training loss of the 3D CNNs
was 0.7771, with an even lower validation loss of 0.7303
(see Fig. 11).

Figure 11. Graph of training and validation accuracy of 3D inva-
sive species/plants PointNet model.

3.3. Geospatial LSTMs

After training the models for a total of 200 epochs, the
LSTMs achieved a combined average loss of 0.0143. For
each species, 3 LSTMs were trained to predict the location
of invasive species growth in 3 specific time intervals: two-
weeks, three months, and one year (see Fig. 12).

LSTM models were sequential models with three layers
consisting of 75 nodes (Layer 1), 50 nodes (Layer 2), and
a Dense layer (Layer 3). In total, 630 location-predicting
LSTMs were created for a variety of 210 invasive species.

Figure 12. Each of the three lines in the graph represents a LSTM
model, from three specific time future intervals/growth projection
(two-week, three month, and one year). The LSTMs for the highly
invasive plant Arundo donax (Giant Reed) are shown.

3.4. Field Validation

Figure 13. Shows the 3D CNN/Point Net model’s predictions on
a variety of 3D scans of invasive species. The “confidence” value
reveals the 3D model’s predictive conference that the predicted
label of the input image matches with the ground-truth label.

After the completion of training both the 2D-CNN and
LSTM models, 2 field validation studies were conducted
using the mobile application. In these studies, the mobile
application’s identification abilities on invasive and native
plants using the offline 2D-CNN model was tested. As
the 2D-CNNs were trained from a list of invasive species,
when presented with a native (non-invasive species), the
2D-CNNs must pull from the list of invasive species. How-
ever, due to the high predictive accuracy of the 2D-CNNs,
the “confidence” on a label for the 2D-CNNs is low for na-
tive species. To ensure false positives were not given, a
“confidence threshold” was created. Predictions on a given
species greater than the confidence threshold show the given
species to be invasive, whereas predictions with a confi-
dence less than the threshold show the given species to be
“Unknown/Non-invasive.” In the following field studies, the
confidence threshold was set at 70%.

The first validation study was conducted at the Univer-
sity of Texas at Austin (UT) Brackenridge Field Labora-
tory (BFL), with the results shown below in Figure 14. All
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species tested were invasive plants, and a total of 8 trials
were completed.

Figure 14. Results of field study conducted at BFL.

As shown in Figure 14, the 2D-CNN model (on a mo-
bile device) had a successful performance (7/8 predicted
correctly, or 87.5% field accuracy) when classifying a va-
riety of invasive plants, including invasive trees, grasses,
and shrubs. On average, the 2D-CNN was approximately
80% confident on each correct prediction. To test the per-
formance of the 2D-CNN on native plants, a study was con-
ducted at the Lady Bird Johnson Wildflower Center (LB-
JWC). All species tested were native (to Texas) plants, and
a total of 10 trials were completed.

Figure 15. Results of field study conducted at LBJWC.

As seen in Figure 15, the 2D-CNN model (on a mobile
device) also was highly successful in predicting native plant
species as non-invasive (9/10 predicted correctly, or 90%
field accuracy). After testing on a variety of native grasses,
shrubs, vines, aquatic plants, and trees, only 1 was reported
as invasive. The rest of the labels had a confidence only
around 30%, much below the threshold accuracy. However,
the confidence for the incorrect label was extremely close to
70%. Therefore, the final accuracy threshold was increased
to 80%, further limiting the reportings of any native species
as invasive, while also matching the average accuracy of the
2D-CNN model on invasive species at BFL.

4. Conclusion
To conclude, the project succeeded in completing its pri-

mary goal of combatting invasive species growth using ma-
chine learning.

4.1. Reliability and Value

With extremely accurate image classification, precise ge-
ographical predictions, and the ability to report invasive

species’ occurrences, the project achieved all engineering
goals, and is extremely valuable to both professionals and
those concerned with invasive species growth. The mobile
application simplifies controlling invasive species and is a
significant enhancement in the currently manual Early De-
tection and Rapid Response Methods. The project auto-
mates the key factors of early detection, quick response, and
public awareness in stopping invasive species growth, and is
no longer as manual and intensive as current EDRR Meth-
ods. Additionally, the identification models used in the ap-
plication outperform traditional state-of-the-art classifica-
tion models. The dynamic system of the application, which
constantly updates predictions based on current reportings,
provides a both novel and sustainable method of combatting
invasive species, and unlike current applications, can also
automatically identify, detect, and predict invasive species
growth. The project presents a field-validated, free (cost-
effective), and reliable application that has the power to
identify and predict invasive species’ growth at an early
stage, potentially saving ecosystems.

4.2. Scalability

Most importantly, the application is scalable, and the
unique system can be expanded to any region and to any
number of invasive species. Researchers in the field of
invasive species, as well as farmers, agricultural workers,
landowners, and an average person will be able to track and
tackle invasive species growth using this mobile application
on their smartphone.

Lastly, all elements (except 3D CNNs) were ported onto
a mobile application released globally. The 3D CNNs are
currently being utilized in LIDAR systems and drone/rover-
based systems to detect invasive species through aerial and
ground means, in areas previously deemed unreachable.
The 3D CNNs have the potential to be used on daily/weekly
“flights” to detect invasive species growth in key environ-
mental areas, using 3D radar-based surveillance systems.
Ultimately, this app and the models developed through it
have the potential to aid researchers in the field of inva-
sive species, as well as farmers, agricultural workers, and
landowners in mitigating invasive species growth.

4.3. Next Steps

Next steps in the project include a prediction/detection
API accessed by drone/rover systems, increasing the num-
ber of species detected, additional field, and expanding the
application to Environmental Services worldwide.

References
[1] Early detection and rapid response. InvasiveOrg.
[2] Invasive species: Finding solutions to stop their spread. US

Department of the Interior.

6342



[3] Technology innovation advancing capacities for the early de-
tection of and rapid response to invasive species. Biological
Invasions.

[4] Invasive species 101 national geographic, 2019.
[5] About, 2021.
[6] Saad Albawi. Understanding of a convolutional neural net-

work. In international conference on engineering and tech-
nology, 2017.

[7] Jason Brownlee. How to develop a gan to generate cifar10
small color photographs. Machine Learning Mastery.

[8] Bugwood. Bugwood list of invasives.
[9] Salk Institute for Biological Studies.

[10] Hochreiter. Long short-term memory. In Neural computa-
tion, 1997.

[11] A Hodges. Invasive species and population growth. Machine
Learning Mastery.

[12] E Kolbert. “the sixth extinction chapter 10 summary amp
analysis. LitCharts.

[13] L McInne. How hdbscan works.
[14] F. S. C. III S. Dı́az, J. Fargione and D. Tilman. Biodiversity

loss threatens human well-being. PLOS Biology.
[15] Grant Van Horn. The inaturalist species classification and

detection dataset. In IEEE conference on computer vision
and pattern recognition, 2018.

6343


