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Abstract

The research area of domain adaptation investigates
methods that enable the transfer of existing models across
different domains, e.g., addressing environmental changes
or the transfer from synthetic to real data. Especially unsu-
pervised domain adaptation is beneficial because it does not
require any labeled target domain data. Usually, existing
methods are targeted at specific tasks and require access or
even modifications to the source model and its parameters
which is a major drawback when only a black-box model is
available. Therefore, we propose a CycleGAN-based ap-
proach suitable for black-box source models to translate
target domain data into the source domain on which the
source model can operate. Inspired by multi-task learning,
we extend CycleGAN with an additional auxiliary task that
can be arbitrarily chosen to support the transfer of task-
related information across domains without the need for
having access to a differentiable source model or its param-
eters. In this work, we focus on the regression task of 2D
human pose estimation and compare our results in four dif-
ferent domain adaptation settings to CycleGAN and RegDA,
a state-of-the-art method for unsupervised domain adapta-
tion for keypoint detection.

1. Introduction
Deep learning has shown to be tremendously successful

in complex tasks such as natural language processing [3],
computer vision [37, 7], or content generation [28] and is a
key technology for autonomous driving [10, 30]. However,
if the training data on which such algorithms are trained
diverges from the data they are supposed to operate on,
which is commonly referred to as domain shift, perfor-
mance degradation is to be expected. Thinking about the
dynamic, diverse, and open world we are living in, it is
clearly not possible to cover every possible scenario in a
training dataset, showing the necessity to explicitly account
for domain shifts. The active research area of domain adap-
tation (DA) works on methods to compensate for domain
shifts and to improve model performance across domains.

DA can be attributed to transfer learning (TL), more spe-
cific to transductive TL [26], where only labeled data from
the source domain is available and existing knowledge is
intended to be transferred between the source and target
domain under the assumption that the tasks do not differ.
We can further distinguish between semi-supervised DA,
when some labeled data is available in the target domain,
and unsupervised domain adaptation (UDA), when there
is no labeled data available in the target domain [8]. In
this work, we follow a UDA approach, since UDA requires
no time-consuming and expensive data labeling and there-
fore promises the greatest benefit. Moreover, while ear-
lier shallow DA methods account for the domain shift by,
e.g., instance re-weighting [31] or simple feature augmen-
tation [9], deep DA methods are considered more promising
due to better DA performance [8, 29]. For this reason, we
follow an unsupervised deep DA approach for cross-sensor
adaptation based on CycleGAN [43], a generative adversar-
ial network (GAN) [14] for unpaired image-to-image trans-
lation.

Existing DA methods are usually targeted and optimized
for specific tasks or network architectures, e.g., image seg-
mentation [15, 42] or keypoint detection [41, 20, 11], and
as a major downside require modifications and thus access
to the model and its parameters for which domain adapta-
tion is to be performed. There is only little work on DA
of black-box models, i.e., only having access to the non-
differentiable predictions and having no access to the model
parameters, and those methods are mainly targeted at image
classification [40, 23]. We also assume a black-box model
and, in contrast to existing work, keep our UDA approach
more general and do not rely on a specific task or architec-
ture. Moreover, we focus on black-box UDA for regression
instead of classification and thus train and evaluate our ap-
proach on the challenging task of 2D human pose estima-
tion. For this purpose, we created a motion capture-based
dataset consisting of paired real and synthetic images, cf.
Fig. 1. While our approach does not rely on or make use of
paired data, it allows us to evaluate the model’s performance
with and without DA on scenes with the same content. We
have the same human pose configurations across domains,
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but the domain shift is either caused by different sensors,
i.e., synthetic and real RGB images or synthetic RGB and
synthetic depth images, or by variations in the person’s ap-
pearance, i.e., clothing.

A

B C

Figure 1: A sample frame of our paired dataset showing
three different domains A) real RGB sensor data with mo-
tion capture suit, B) synthetic RGB sensor data with mo-
tion capture suit, C) synthetic RGB sensor data with casual
clothing

We use the Transfer-Learning-Library developed by
Jiang et al. [19], an open-source library that includes var-
ious TL methods and reference models for various tasks,
and extend it with our proposed method to conduct our ex-
periments.

Our contributions can be summarized as follows:

• We analyze the performance of CycleGAN [43] for un-
supervised cross-sensor adaptation of a keypoint de-
tection model, i.e., human pose estimation, across four
different settings with varying domain shift.

• We show that unsupervised cross-sensor adaptation
can be greatly improved by two simple modifications
to CycleGAN, namely switching to a cyclical learn-
ing rate [32] and adding a task-related auxiliary loss
inspired by multi-task learning [6, 27, 35, 22] and self-
supervision [18], even under the assumption that we
only have access to a black-box model but not to its
parameters.

• We compare our method to a recent approach for un-
supervised domain adaptation for keypoint detection
(RegDA [20]) and conclude by emphasizing the ne-
cessity for explicitly addressing sensor domain shift.

2. Related Work
Human pose estimation is crucial for the safety of au-

tonomous systems, e.g., in the area of autonomous driv-
ing or collaborative robots. While early deep learning-
based methods such as DeepPose [34] directly regressed the

2D coordinates of human body joints in an image, recent
fully convolutional approaches usually generate heatmaps,
where joint positions are retrieved with a non-differentiable
argmax operation [25, 39]. By replacing argmax with an
integral operation, training can be performed in an end-to-
end manner [33]. Latest 3D pose estimation methods are
able to jointly predict 2D and 3D poses as well as head
and body orientation from images [4]. Furthermore, we
can distinguish between bottom-up and top-down human
pose estimation. In the more commonly used top-down ap-
proaches, an additional object detection step is required to
obtain bounding boxes of persons in an image. Pose es-
timation is performed afterward on every detected bound-
ing box, as done in [25, 39]. In contrast to top-down ap-
proaches, bottom-up approaches simultaneously predict the
poses of multiple persons in a single step. In the case of
OpenPose [5], part affinity fields are predicted to associate
joints with body parts and individuals.

There are already many different methods and architec-
tures just for the task of human pose estimation that would
need to be addressed in terms of domain adaptation. There-
fore, the applicability of our UDA method is not targeted
at a specific task or architecture, although in this work we
focus on 2D human pose estimation and show the feasibil-
ity of our approach at the example of the pose estimation
method proposed by Xiao et al. [39].

Unsupervised domain adaptation is the setting where
labeled source but only unlabeled target domain data is
available and the goal is to transfer a model trained on
the source domain to the target domain. We focus on
deep domain adaptation (DDA) which is commonly cate-
gorized into discrepancy-, adversarial- and reconstruction-
based methods [8, 38].

Discrepancy-based methods aim to learn domain invari-
ant features by reducing the discrepancy of intermediate
network layers on the source and target domain, e.g. deep
adaptation networks [24] use a multi-kernel variant of max-
imum mean discrepancy.

Adversarial-based methods use a discriminator, i.e., a
domain classifier, that learns to classify data into source
and target domain. The model is encouraged to learn do-
main invariant features through an adversarial goal, i.e.,
to fool the discriminator to misclassify the domains (do-
main confusion). It can further be distinguished between
non-generative and generative methods [8, 38]. Ganin and
Lempitsky [12] propose a non-generative adversarial-based
method and introduce a gradient reversal layer combined
with a domain classifier to learn domain-invariant features,
which is also referred to as domain adversarial neural net-
work (DANN) [13]. The loss for the main task, i.e., classi-
fication, is minimized using labeled source data, while the
features are forced to be discriminative for the source and
unlabeled target domain by maximizing the domain classi-
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fication loss through a gradient reversal layer prepended to
the domain classifier. In the generative case, an additional
generator is added leading to a GAN [14] architecture. Such
models can be used to, e.g., generate domain-specific im-
ages from ground-truth semantic segmentation masks [17].

Reconstruction-based methods assume that reconstruct-
ing the source or target data is beneficial to encode domain-
specific features. CycleGAN [43] for unpaired image-to-
image translation introduces a cycle consistency loss that
forces the network to transfer the image style while preserv-
ing the image content. The cycle consistency loss is the L1
loss between the original image and the reconstructed im-
age, i.e., after translation to the opposite domain and back
again. CyCADA [15] extends CycleGAN with additional
semantic consistency, task, and feature losses for DA of a
semantic segmentation model.

These DA methods usually require access to the model
and its parameters because they rely on (intermediate) acti-
vations or model weights. Although generative adversarial-
and reconstruction-based approaches, in particular, can be
used without having access to the (differentiable) model
and its parameters, additional task-specific losses are often
based on the model’s output [42, 15]. In contrast, Zhang et
al. [40] focus their work on UDA of black-box source mod-
els for image classification. They use the source model to
predict noisy labels for the target domain, estimate the noise
rate, select good samples and train a new model for the tar-
get domain. This procedure is repeated with the updated
model for the target domain. While [40] requires predicted
soft labels from the source model, DINE [23] can perform
UDA of black-box models with hard labels.

We follow the idea of DA of black-box models but fo-
cus on a regression task, more specifically the 2D human
pose estimation model proposed by Xiao et al. [39], in con-
trast to classification as done in [40, 23]. Our approach is
close to [11], where DA for human pose estimation is per-
formed by domain translation between synthetic and real
depth data. However, we keep our method as general as pos-
sible and hence use a reconstruction-based method without
making task-specific assumptions such that it can be eas-
ily adapted to other tasks. We compare our approach to
RegDA [20], a UDA method for 2D keypoint detection re-
cently proposed by Jiang et al. RegDA is an adversarial-
based method that trains an adversarial regressor to maxi-
mize and a feature regressor to minimize disparity on the
target domain. Thus, the feature regressor learns domain
invariant features. Ground false poses, which are required
for the adversarial training procedure of RegDA, are gener-
ated under the assumption that wrong keypoint predictions
are most likely located at the position of other keypoints. In
contrast to RegDA, our method does not require access to
the source model and its parameters but only to its predic-
tions and is, therefore, suitable for black-box DA.

3. Method
In this work, we follow the notations and definitions

of Pan and Yang [26] and Csurka [8], i.e., a domain
is denoted by D = {X , P (X)}, where X is a feature
space and X = {x1, ..., xn} ∈ X . A task is denoted
by T = {Y, P (Y |X)}, where Y is a label space and
Y = {y1, ..., yn} ∈ Y .

Given unlabeled data Xs from source (s) domain Ds and
unlabeled data Xt from target (t) domain Dt as well as the
black-box model fs trained on source domain data, our goal
is to find a model Gt→s that maps Xt to Xs so that fs can be
successfully applied on translated data from domain Dt, i.e.,
fs(Gt→s(xt)) = ŷ. Our method extends CycleGAN [43]
with additional task specific auxiliary losses to further sup-
port domain translation and uses a cyclical learning rate.
Details of our method are described in Subsection 3.1. Fur-
thermore, we introduce a dataset specifically targeted to
study sim-to-real DA in Subsection 3.2. Our simulation is,
therefore, temporally synchronized to real RGB sensor and
motion capture data. In addition, we calibrate the RGB sen-
sor into our motion capture space which enables the gener-
ation of synchronized as well as paired real and synthetic
sensor data based on motion-captured, 3D scanned, and an-
imated actors.

3.1. Auxiliary Task-Guided CycleGAN

We follow [43] and define a least square GAN loss as
well as a cycle and identity loss to learn a mapping between
Ds and Dt, cf. Eq. 1-3.

LGAN (Gs→t,D
GAN
t , Xt, Xs) = (1)

Ext∼Xt
[(DGAN

t (xt)− 1)2]

+ Exs∼Xs
[DGAN

t (Gs→t(xs))
2]

LGAN (Gt→s, D
GAN
s , Xs, Xt) is similarly applied for

the opposite domain mapping.

Lcyc(Gs→t,Gt→s, Xs, Xt) = (2)
Exs∼Xs [||Gt→s(Gs→t(xs))− xs||1]
+ Ext∼Xt [||Gs→t(Gt→s(xt))− xt||1]

Lid(Gs→t,Gt→s, Xt, Xs) = (3)
Ext∼Xt

[||Gs→t(xt)− xt||1]
+ Exs∼Xs

[||Gt→s(xs))− xs||1]

While this mapping enables, e.g., image-to-image trans-
lation and style-transfer, it is not designed for DA because
it does not make use of any task-related information. To
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support the transfer of task-related information under the
assumption of only having access to a black-box model fs,
we define additional auxiliary losses inspired by multi-task
learning [6, 27, 35, 22] and self-supervision [18], i.e., by
forcing our discriminators Ds and Dt to predict auxiliary
tasks besides distinguishing between real and translated im-
ages as shown in Fig. 2. We refer to the discriminators’ aux-
iliary task prediction heads as Daux

s and Daux
t and to the

discrimination heads as DGAN
s and DGAN

t , respectively.
Our auxiliary task is an image generation task and thus can
be arbitrarily chosen, although it has to be task-related to
support the transfer of relevant information. Except for the
number of channels, the height and width of the output of
Daux

s and Daux
t correspond to the input image, i.e., we use

a resolution of 256 × 256 pixels.
For the task of human pose estimation, we have chosen

to transform the 2D joint positions predicted by the pose es-
timation model with faux(fs(Xs)) into an auxiliary task by
placing a filled circle at the position of each joint. All joints
and an additional skeleton are stacked across the channel
dimension, and Gaussian blur is applied, cf. Fig. 2. The
auxiliary task encourages the backbones of the discrimina-
tors Daux

s and DGAN
s as well as Daux

t and DGAN
t to encode

features that allow to distinguish real and generated images
while being descriptive enough to generate the human pose
related auxiliary task. The generators are forced to fool the
discriminators; thus, they need to learn how the auxiliary
task (human pose) relates to the images, i.e., the persons
in images, and how to generate them. The transfer of the
auxiliary task across domains is further supported by Daux

through the task of distinguishing auxiliary tasks predicted
from real images and ones predicted from generated images.
Due to DA of a black-box model, we assume that the fea-
tures learned by Daux

s and Daux
t are in line with the features

the prediction of the human pose estimation model is based
on. We refer to Section 4 for the results of our method. For
performance reasons, we compute faux(fs(Xs)) once for
the whole dataset and cache the resulting auxiliary task data
for reuse.

Laux ensures that Daux
s and Daux

t jointly learn to predict
the auxiliary task on source and target domain data, respec-
tively, and is defined as follows:

Laux(fs, faux, Gs→t, Gt→s, D
aux
s , Daux

t , Xs, Xt) = (4)

Exs∼Xs
[(Daux

s (xs)− faux(fs(xs)))
2]

+ Exs∼Xs [(D
aux
t (Gs→t(xs))− faux(fs(xs)))

2]

+ Ext∼Xt
[(Daux

s (Gt→s(xt))−Daux
t (xt))

2]

+ Ext∼Xt [(D
aux
t (Gs→t(xs))−Daux

s (xs))
2]

While the auxiliary task for the source domain is given
by faux(fs(Xs)), we assume that Daux

t can be learned

Gt→s

Source
Domain

Target
Domain

Gs→t

Ds Dt

auxs auxt

GAN Loss

Cycle-Consistency
Loss

Daux

Auxiliary GAN
Loss

Figure 2: Our method extends CycleGAN with additional
auxiliary GAN and cycle consistency losses (highlighted
red box). The identity loss and the loss for training the aux-
iliary task based on a source model’s output are not rendered
here for simplicity.

leveraging the continuously improving Gs→t(Xs). To fur-
ther support the transfer of the auxiliary task from source
to target domain, we introduce the discriminator Daux and
define LauxGAN :

LauxGAN (Gs→t,D
aux
t , Daux, Xt, Xs) = (5)

Ext∼Xt
[(Daux(D

aux
t (xt))− 1)2]

+ Exs∼Xs [Daux(D
aux
t (Gs→t(xs)))

2]

LauxGAN (Gt→s, D
aux
s , Daux, Xs, Xt) is similarly ap-

plied. Finally, we enforce cycle consistency on the auxiliary
task:

LauxCyc(Gs→t, Gt→s, D
aux
s , Daux

t , Xs, Xt) = (6)

Exs∼Xs
[(Daux

s (Gt→s(Gs→t(xs)))−Daux
s (xs))

2]

+ Ext∼Xt [(D
aux
t (Gs→t(Gt→s(xt)))−Dt

aux(xt))
2]

Our combined loss function is as follows:
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Ltotal(Gs→t, Gt→s, D
GAN
s , DGAN

t , (7)
Daux

s , Daux
t , Xs, Xt, faux, fs) =

+ LGAN (Gs→t, D
GAN
t , Xt, Xs)

+ LGAN (Gt→s, D
GAN
s , Xs, Xt)

+ λ · Lcyc(Gs→t, Gt→s, Xs, Xt)

+ 0.5λ · Lid(Gs→t, Gt→s, Xt, Xs)

+ 10λ · Laux(faux, fs, Gs→t, Gt→s,

Daux
s , Daux

t , Xt, Xs)

+ LauxGAN (Gs→t, D
aux
t , Daux, Xt, Xs)

+ LauxGAN (Gt→s, D
aux
s , Daux, Xs, Xt)

+ 10λ · LauxCyc(Gs→t, Gt→s, D
aux
s , Daux

t ,

Xs, Xt)

In Eq. 7 we follow [43] and set λ = 10. For Laux and
LauxCyc a weighting factor of 10λ resulted in the best DA
results in our experiments. Thus, our goal is to solve:

G∗
s→t, G

∗
t→s = arg min

Gs→t
Gt→s

min
Daux

s
Daux

t

max
DGAN

s

DGAN
t

Daux

Ltotal (8)

In contrast to CycleGAN, we do not use an image buffer
and we switched to a cyclical learning rate and found that
oscillating between a learning rate of 2 · 10−6 and 10−4

leads to a higher DA performance and faster convergence
compared to a linear decaying learning rate. We refer to
Section 4 for our results.

3.2. Synchronized Sim-to-Real Dataset

Although we do not need paired cross-domain data for
training, it is important for the evaluation of our DA method,
especially in the setting of black-box model DA. Our human
pose estimation model learns to predict the poses present in
the source domain data and is thus biased towards the source
domain’s feature space. For the general case where we do
not have paired cross-domain data for evaluation, we cannot
compare source and target domain performance because we
cannot attribute performance gains or drops to the domain
adaptation method or to poses that are simply not known to
the pose estimation model.

To overcome this, we created a dataset consisting of syn-
chronized and paired synthetic and real samples recorded
with an RGB sensor as shown in Fig. 1. Human3.6M [16]
is close to our dataset, but we focus even more on producing
paired data and therefore also created a 3D scanned virtual
representation of the motion capture laboratory in addition
to 3D scanned actors with the possibility of human-object
interaction. To further vary the image content, we recorded

our actor interacting with micromobility vehicles, i.e., two
different e-scooters. Our overall goal is having control over
the domain shift.

For accurate human pose ground truth, we recorded the
actor with a Vicon motion capture system. In addition, we
calibrated an RGB camera into the motion capture space
and used the acquired intrinsic and extrinsic camera param-
eters to project the human poses from motion capture into
camera space. Our Unity-based simulation recreates the
real recorded scene as accurately as possible. This includes
the 3D scanned environment, the motion-captured actor and
objects as well as the recorded camera based on its intrin-
sic and extrinsic parameters. Timecodes provided by the
motion capture system are used in simulation to synchro-
nize the synthetic data generation to the real data, result-
ing in paired synthetic and real data including ground truth,
i.e., human pose, bounding boxes, and additional synthetic
depth data.

In total, our dataset contains 43,098 synthetic and real
samples each. Despite the synthetic data with an actor wear-
ing a motion capture suit (same as in the real data), we gen-
erated synthetic data with another 3D scanned actor wearing
casual clothing to introduce an additional domain shift for
our experiments.

4. Experiments
For comparison, all of our experiments are conducted

with the Transfer-Learning-Library [19] that we have mod-
ified for our purposes and extended with our method.

We consider the following four DA settings, cf. Tab 1
and Fig. 3 for a visualized overview, with varying domain
shift:

1. From synthetic RGB sensor data with casual clothing
to synthetic RGB sensor data with motion capture suit
(our dataset).

2. From synthetic RGB sensor data with casual clothing
to synthetic DEPTH sensor data with casual clothing
(our dataset).

3. From synthetic RGB sensor data with motion capture
suit to real RGB sensor data with motion capture suit
(our dataset).

4. From SURREAL [36] to LSP dataset [21].

The human pose estimation model is first trained on each
of the source domains. We follow the training procedure
of RegDA as implemented in the Transfer-Learning-Library
which assumes that an epoch consists of 500 batches. We
use a batch size of 8 for training the pose estimation model
for 70 epochs on our dataset and for 500 epochs on the
SURREAL dataset due to a larger dataset size and more
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Table 1: Initial pose estimation accuracy. The models were trained on the source domain and the PCKh metric is reported
for the source domain as well as the target domain before performing DA.

Setting
No.

Source domain Target domain
Dataset PCKh@0.5 PCKh@0.1 Dataset PCKh@0.5 PCKh@0.1

1 Our dataset
synthetic RGB sensor

casual clothing
99.50 62.60

Our dataset
synthetic RGB sensor

motion capture suit
30.95 1.81

2
Our dataset

synthetic DEPTH sensor
casual clothing

1.38 0.19

3
Our dataset

synthetic RGB sensor
motion capture suit

99.62 62.46
Our dataset

real RGB sensor
motion capture suit

9.26 0.60

4 SURREAL 60.22 0.12 LSP 37.12 5.64

(a) Setting 1 (b) Setting 2 (c) Setting 3 (d) Setting 4

Figure 3: Overview of the four DA settings considered in this work with visualized pose ground truth. Top row: source
domains; bottom row: corresponding target domains

variations in the case of the latter. The model of the final
training epoch is selected to conduct our DA experiments.
We use 60% of our dataset for training (25,858 samples) and
10% for validation (4,309 samples). In the case of the SUR-
REAL dataset (source domain), we use 451,439 samples for
training and 3,200 samples for validation. Due to the small
size of only 2,000 samples of the LSP dataset (target do-
main), the whole dataset is used for training and validation.

We report the PCKh [2] metric of each pose estima-
tion model on its corresponding source domain as well as
the raw target domain performance before DA in Tab. 1.
As expected, the performance on target domain data de-
creases with increasing domain shift. A larger performance
degradation can be noticed when we switch synthetic sen-
sor modalities (from 99.5% to 1.38%) or from a synthetic

to a real sensor (from 99.62% to 9.62%) than when we only
vary the actor’s appearance in the synthetic domain (from
99.5% to 30.95%).

The overall source domain performances of the pose esti-
mation models are higher on our dataset compared to SUR-
REAL while the relative performance degradation on the
target domain is smaller in the case of the SURREAL source
model applied on the LSP dataset (from 60.22% to 37.12%).
In-domain variations are kept low in our dataset, e.g., the ac-
tor’s appearance does not change inside the same domain,
but there are inter-domain variations, e.g., a change in the
actor’s appearance or in the sensors between source and tar-
get domain. This makes it easier for the human pose es-
timation model to learn the poses, leading to a high source
domain performance, with the drawback of overfitting to the
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Figure 4: Setting 1: PCKh accuracy when performing domain adaptation on our dataset from synthetic RGB sensor data with
casual clothing to synthetic RGB sensor data with motion capture suit.
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Figure 5: Setting 2: PCKh accuracy when performing domain adaptation on our dataset from synthetic RGB sensor data with
casual clothing to synthetic DEPTH sensor data with casual clothing.

source domain and thus resulting in low performance on the
target domain and low generalization capability. In contrast,
the SURREAL dataset contains a lot more data and varia-
tions, e.g. different persons and scenes, making it harder to
learn but also leading to higher generalization capabilities.

In the following experiments, we investigate how DA
with CycleGAN, RegDA, and our method behaves in these
four different DA settings. For reasons of limited GPU
memory, we train CycleGAN and our method with a batch
size of 8, while we keep RegDA’s default batch size of
32. This is important to mention because the training pro-
cedure of the Transfer-Learning-Library assumes that an
epoch consists of 500 batches leading to four times more
samples per epoch in the case of RegDA compared to the
training runs of CycleGAN and our method. To show the
benefit of using an auxiliary task, we perform an ablation
study in the first and second DA settings where we remove
the auxiliary task losses, which is basically CycleGAN with
a cyclical learning rate and without an image buffer.

Our method is able to compensate for the sensor domain
shift and is very close to source domain performance in the

first three DA settings, as shown in Fig. 4-6, outperforming
CycleGAN and RegDA. The training process of CycleGAN
shows larger oscillations in PCKh accuracy across epochs
and unstable performance. Our method also suffers from
occasionally appearing performance drops, but the overall
performance is more stable as it usually recovers within a
few epochs and maintains high accuracy. As our ablation
study suggests, a cyclical learning rate already increases
DA performance with CycleGAN, yet using our auxiliary
task results in about 10% higher PCKh@0.5 accuracy in
settings 1 and 2 and a more stable training process. While
RegDA struggles with large sensor domain shifts in settings
2 (RGB/depth) and 3 (synthetic/real), it achieves the best
DA performance in setting 4 (SURREAL/LSP). Because
RegDA depends on the pose estimation’s predictions on the
target domain to generate a ground false, it is very sensi-
tive to those predictions, which is supported by our results.
The higher the target domain performance (settings 1 and
4), the better RegDA’s DA performance and vice versa (set-
tings 2 and 3). Therefore, we conclude that it is necessary
to explicitly address sensor domain shift as settings 1 to 3
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Figure 6: Setting 3: PCKh accuracy when performing domain adaptation on our dataset from synthetic RGB sensor data with
motion capture suit to real RGB sensor data with motion capture suit.
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Figure 7: Setting 4: PCKh accuracy when performing domain adaptation from SURREAL to LSP dataset.

can be successfully handled with image or in general sen-
sor translation. Still, sensor translation has its limitations
as can be seen in setting 4 where CycleGAN and our ap-
proach both stay below the target domain performance of
the reference model without DA. This behavior might be
attributed to the fact that CycleGAN and thus our method
can not handle one-to-many mappings, which occur due to
the mismatch in the number of training samples of the SUR-
REAL (451,439) and LSP (2,000) dataset. Although there
are methods [1] that can handle one-to-many mappings, this
is beyond the scope of this work, i.e., investigating black-
box DA for cross-sensor adaptation in settings with con-
trollable domain shift.

5. Conclusion

In this work, we investigated the influence of the domain
shift in four different settings on CycleGAN and RegDA
for the task of UDA of a model for human pose estimation.
For benchmarking, we created a motion capture-based, syn-
chronized, and paired dataset especially targeted at the sim-
to-real domain shift for the task of human pose estimation.

Furthermore, we proposed to extend CycleGAN with auxil-
iary tasks, which can be arbitrarily but task-related chosen,
inspired by multi-task learning and to use a cyclical learn-
ing rate for training that improves performance compared
to CycleGAN and RegDA in three out of four DA settings
while making our method suitable for black-box DA.
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