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Abstract

Neural video compression algorithms are nearly com-
petitive with hand-crafted codecs in terms of rate-distortion
performance and subjective quality. However, many neu-
ral codecs are inflexible black boxes, and give users little
to no control over the reconstruction quality and bitrate.
In this work, we present a flexible neural video codec that
combines ideas from variable-bitrate codecs and region-
of-interest-based coding. By conditioning our model on a
global rate-distortion tradeoff parameter and a region-of-
interest (ROI) mask, we obtain dynamic control over the
per-frame bitrate and the reconstruction quality in the ROI
at test time. The resulting codec enables practical use cases
such as coding under bitrate constraints with fixed ROI
quality, while taking a negligible hit in performance com-
pared to a fixed-rate model. We find that our codec performs
best on sequences with complex motion, where we substan-
tially outperform non-ROI codecs in the region of interest
with Bjøntegaard-Delta rate savings exceeding 60%.

1. Introduction

Lossy compression algorithms aim to compress given
data in two ways: identifying redundancies, and selectively
omitting parts of the data. These algorithms aim to find a
tradeoff between the bitrate, i.e., the number of bits spent to
transmit the compressed representation, and distortion, the
difference between the original data and its reconstruction.

Neural network-based video codecs, which learn to iden-
tify redundancies from example data, have seen great ad-
vances in rate-distortion (R-D) performance [23, 15, 1, 34,
42, 33]. Nevertheless, only few neural codecs can actually
be deployed in a realistic video compression setting, as they
are inflexible: typically, one model only supports coding
at a particular bitrate on average, and the bitrate varies de-
pending on the complexity of the data. Furthermore, most
neural approaches do not distinguish semantically impor-
tant regions of the video and background regions, which can

‡Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

0.05 0.10 0.15 0.20 0.25 0.30
BPP

12.75

13.00

13.25

13.50

13.75

14.00

14.25

NI
QE

NIQE on DAVIS val
Ours =29.91
Ours =17.56
Ours =3.02
Ours =1.7
Multirate (baseline)

0.05 0.10 0.15 0.20 0.25 0.30
BPP

82

84

86

88

90

92

94

VM
AF

VMAF on DAVIS val

Figure 1: VMAF (↑) and NIQE (↓) on DAVIS val.

be used to save bits with no perceptual quality degradation.
To overcome these issues, recent work aims to improve

their flexibility. On one hand, variable-bitrate codecs en-
able coding under fixed-bitrate constraints [13, 25, 34] by
controlling the per-frame bitrate using a control parameter.
On the other hand, region-of-interest (ROI) based codecs
[20, 8, 47, 31, 38] enable coding of semantically important
regions with high precision by reallocating bits within the
frame. In this work, we introduce a multi-rate ROI-based
video codec that unifies these two concepts. The main chal-
lenges here are the lack of available ROI masks for video
compression datasets, and the effect of temporal inconsis-
tencies in ROI masks affecting reconstruction quality.

We address both issues by building on the artificial ROI
mask generation procedure of Perugachi-Diaz et al. [31].
However, unlike [31], who train one model per tradeoff
point, we train one model to cover multiple bitrate and ROI
quality tradeoff points. The end result is a multi-rate ROI-
based codec, with one parameter that controls the global
rate, and another parameter that controls the relative distor-
tion and bit allocation between ROI and non-ROI. Both can
be adjusted dynamically at test time, leading to increased
flexibility. We believe ours is the first video codec to offer
this degree of test-time flexibility.

We evaluate our codec on DAVIS, a video dataset [32]
with publicly available semantic annotations, and show that
quality in the ROI is substantially improved compared to
single-rate and multi-rate baselines with more than 60%
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Bjøntegaard-Delta rate (BD-rate) [5] savings in the ROI.
Additionally, we extract ROI masks for standard video com-
pression datasets to enable comparison to existing neural
codecs, using HRNet [43] trained on MS-COCO, an off-
the-shelf segmentation network. We observe the greatest
success on videos with high motion content, such as videos
of sports scenes and panning cameras, and see improve-
ments in perceptual metrics such as VMAF [21] and NIQE
[29], as shown in Fig. 1. However, applying our approach
with a naive controller for ROI fidelity works less well for
videos where the background is static, such as video con-
ferencing. We provide evidence that this can be addressed
using smarter rate-fidelity control algorithms, for example
by improving the non-ROI quality of the first frame in the
sequence.

In summary, the contributions of this work are:

(a) The first ROI-based multi-rate neural video codec that
can dynamically control and adjust both local (within-
frame) and global (per-frame) bitrate allocation.

(b) Qualitative and quantitative evaluation on common
video datasets, demonstrating large gains in R-D per-
formance for the region of interest, with BD-rate sav-
ings of up to 60%.

(c) Evidence that use cases like teleconferencing do not
benefit from naive ROI coding, and that larger gains
can be achieved in videos with high motion content,
and by using smarter rate-fidelity control algorithms.

2. Background and related work
2.1. Neural data compression

Neural network-based data compression has been ap-
plied in many domains, including the image [41, 40, 3, 35,
28] and video [23, 36, 15, 14, 1, 34, 18] setting. In con-
trast to hand-engineered codecs such as HEVC [39], neural
codecs learn to trade off bitrate and distortion from exam-
ple data. The tradeoff is controlled by a hyperparameter β
in the loss function:

L = E [βLrate(z) + Ldist(x, x̂)] . (1)

Here, z is a quantized latent variable obtained from an
encoder, and x̂ is the reconstruction obtained by passing
z through a decoder network. Latent variables are further
compressed using entropy coding by learning their distribu-
tion p(z) using a context model or prior pθ. Quantization
of z is typically performed using quantization noise, differ-
entiable relaxations, or a combination of both [3, 40].

At a given bitrate, the distortion loss Ldist with which
the codec was trained determines what the resulting re-
constructions look like. Mean squared error (MSE) is the

common choice as it is directly related to the Peak Signal-
to-Noise Ratio (PSNR) evaluation metric. Other well-
established handcrafted metrics include Structural Similar-
ity Index Measure (SSIM) [44] and its Multi-Scale variant
(MS-SSIM) [45]. The rate loss Lrate = − log pθ(z) is
the negative log likelihood of the quantized latent under the
prior, and is typically measured in bits per pixel.

2.2. Variable bitrate compression

Neural codecs are often trained for a single R-D trade-
off, i.e., one model is trained with a pre-defined tradeoff
parameter β. Using the loss from Eq. 1, the codec will
reach the tradeoff point on average. However, video con-
tent with little redundancy or unpredictable movement will
typically require more bits than the average. This poses a
problem for practical settings where the maximum permis-
sible bitrate is determined by a bandwidth, which cannot be
exceeded for the more challenging frames. To support this
use case, multiple single-rate models would have to be de-
ployed, leading to memory overhead. Although solutions
exist that allow training codecs to meet target bitrates ex-
actly [37], a more common solution is to deploy a multi-
rate codec, which supports a range of bitrates in a single
model [9, 11, 13, 25, 31, 38, 25].

Some variable bitrate approaches change the quantiza-
tion strategy through latent scaling. This method changes
the quantization binwidth by scaling pre-quantization la-
tents with a factor s before transmission [9, 13, 25, 31]. The
main advantage of this approach is that, in theory, a single-
rate codec can be turned into a variable-rate codec by only
training a latent-scaling auxiliary network. A limitation is
that the scaling factor s must be transmitted along with the
latent z, but this cost typically amortizes over the size of the
transmitted data.

Another common approach to training such models is
to provide the R-D tradeoff parameter β as model input.
During training, different β parameters are sampled from
a pre-specified range, and the loss from Eq. 1 is changed
accordingly. Examples of this approach can be found in the
image [11, 38] and video [34, 49] settings. In this work, we
utilize β-conditioning.

2.3. ROI-based compression

ROI-based compression, sometimes referred to as
object-based coding or semantic compression, describes al-
gorithms that are able to encode specified regions of inter-
est with high fidelity. Unlike variable bitrate approaches
that trade off rate and distortion at the “global” level, say
on a per-frame basis, ROI-based methods allow controlling
bitrate at a “local” level, for example within a frame. Neu-
ral ROI-based codecs typically achieve this by providing a
spatial map as input to the model that indicates the region
of interest [2, 8, 22, 38], although latent scaling has been
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used for this purpose as well [25]. The loss is changed to
incentivize the model to emphasize fidelity in the ROI, for
instance by emphasizing the rate term for the non-ROI [47]
or by de-emphasizing the distortion term the non-ROI [31].

Some neural image codecs extract the ROI as part of the
compression algorithm. Cai et al. [8] and Li et al. [20] learn
the ROI implicitly, masking latent variables with a spatial
map generated by the encoder. Additionally, work for video
exists that simultaneously extracts ROIs and compresses the
data, by performing foreground-background separation in-
side the codec [46, 17]. Although this is an intuitive choice
as foreground is likely to be important for perceptual qual-
ity, we opt to separate ROI extraction and compression in
this work to maintain flexibility. This also enables optimiz-
ing the ROI mask for downstream tasks, as in [38].

Closest to our work is Perugachi-Diaz et al. [31], who
introduce two ROI-based architectures based on the Scale-
Space Flow (SSF) model [1]. We believe that details in (1)
architecture and training scheme and (2) our evaluation set
our work apart. For (1), while our base model is similar
to the implicit ROI SSF of [31], we condition dynamically
on α and β, whereas [31] train one model per α and β.
Our changes lead to a much more practical codec, and en-
able a thorough investigation of global and local rate trade-
offs, in particular through the ROI vs non-ROI BD-rate plots
in Fig. 3. Additionally, conditioning on these parameters
enables rate control capabilities similar to standard codecs
like H.265 [39] with a single model. For (2), we provide a
more extensive evaluation than [31], including qualitative
and quantitative analysis on standard video compression
datasets UVG and HEVC-E2. The latter allows us to test
the hypothesis of applicability of ROI-based coding to tele-
conferencing, one of the main motivations many works in
the field [10, 16, 26]. We believe that our results show that
naive ROI-coding may not be well-suited for static scenes
like teleconferencing.

3. Method

3.1. Loss function

Similar to Perugachi-Diaz et al. [31], we use a loss that
explicitly controls the global bitrate through a factor β, and
controls fidelity in ROI versus non-ROI through a factor α
and a given ROI mask m. This is equivalent to setting the
following distortion loss (we omit parameters for the loss
terms for brevity):

L = E
[
βLrate + LROI

dist +
1

α
LBG

dist

]
(2)

LROI
dist (x, x̂,m) = m⊙ (x− x̂)2 (3)

LBG
dist (x, x̂,m) = (1−m)⊙ (x− x̂)2 (4)

Here, ⊙ denotes the elementwise product and m contains
binary values {0, 1}. High α corresponds to the setting
where the background fidelity is less important, while α =
1 corresponds to the case where foreground and background
are equally important in expectation.

3.2. Architecture

The starting point for our model is the SSF model from
Agustsson et al. [1], which we briefly explain here. SSF
consists of an I-frame and a P-frame codec. The first frame
in a sequence, x0, is transmitted using the I-frame codec,
and the remainder is transmitted by the P-frame codec. For
each timestep t > 1, the motion between reconstruction
x̂t−1 and the ground truth frame xt is transmitted using
the P-frame flow model, and an initial prediction x̂warp

t is
obtained using motion compensation. Then, a residual be-
tween this predicted frame and the target frame xt is com-
puted and transmitted using the P-frame residual model.

We modify SSF to enable global and local bitrate con-
trol. A visualization of our codec is shown in Fig. 2. For
each frame, one global tradeoff parameter βt, a local trade-
off parameter αt, and a ROI mask mt are input to the model.
The ROI mask and α are combined to form a weighted ROI
mask mα

t . While αt is not explicitly sent to the receiver, βt

is transmitted, as it is used to condition the decoders on the
receiver-end. We dub the resulting architecture Multi-Rate
Multi-Distortion SSF (MR-MD-SSF). We emphasize that
SSF no longer offers state-of-the-art performance, but it is a
well-tested baseline that allows us to demonstrate the ben-
efits of our multi-distortion approach. Importantly, there is
an established open-source implementation [4], while more
recent architectures like ELF-VC do not offer one. We ini-
tially tried to reproduce ELF-VC to use it as a base model,
but did not manage to train it in a stable manner. Never-
theless, we believe our findings should translate to other ar-
chitectures, as the conditioning blocks (see Fig. 2) can be
added to any convolutional layer.

Global bitrate control: The model is conditioned on the
rate tradeoff parameter βt using conditional convolutions
[11] that modulate feature maps using scaling and shifting
parameters, as shown in Fig. 2 on the right. Specifically, for
each activation in the network, a condition block outputs a
per-channel scale and shift. We adopt the commonly used
one-hot embedding representation for conditioning [11, 34],
denoted here as β∗

t , where the range is discretized to a fixed
number of bins. Instead of rounding βt to the nearest match-
ing bin, interpolation is used to obtain a soft embedding
vector. Although there is no fundamental reason that a one-
hot embedding should outperform simply providing βt as
a scalar input, we find that this results in easier training in
practice. For all experiments, we use a one-hot embedding
vector with 4 bins, and βt is transmitted as a 16 bit integer.
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Figure 2: The MR-MD-SSF architecture. Activations in each encoder and decoder are scaled-and-shifted based on βt, using
the condition block shown on the right. βt is transmitted to the receiver as a 16 bit integer.

Local bitrate control: The distortion tradeoff parameter
α is provided to all frames in a video sequence. As α is
used in Eq. 2 to trade off distortion in the ROI and non-ROI
regions, it influences which information is sent in the com-
pressed representation. Thereby, α indirectly influences bi-
trate allocation for the ROI and non-ROI regions. We com-
bine α and the ROI mask mt to create a weighted ROI mask
for each timestep, mα

t . This mask is provided as an input to
each encoder in the I-frame and P-frame codecs. Early ex-
periments showed that conditioning on α in a similar man-
ner to β using conditional convolutional layers did not result
in benefits over the current approach.

3.3. Training method

Sampling α and β factors: During training, the
rate tradeoff parameter β is sampled from the range
[0.0001, 0.0128] for each video sequence in the batch. We
sample β from a distribution skewed such that low β are
sampled more often than high ones. The procedure is to first
sample uβ from the skewed uniform distribution U(0, 1)γ ,
and use the mapping uβ → β as follows:

log2 β = (log2(βmax)− log2(βmin))× uβ + log2(βmin)
(5)

We use γ = 3 for all experiments. After sampling β, it is
embedded using the aforementioned embedding scheme to
create the model conditioning β∗. This conditioning is used
on both the encoder and receiver side.

The ROI tradeoff parameter α is sampled similarly to β:
uα is drawn from U(0, 1), and the conversion to α follows
Eq. 5, but using 1 − uα as input so that the largest uα cor-
responds to the lowest α. The latter is in the range [1, 60],

and one α is sampled for each video sequence. We com-
bine the ROI mask m and the sampled uα value to create
the weighted ROI mask mα = (1−m)⊙uα+m , which is
provided as input to the encoders. Note that we provide val-
ues uα to the model, which are in the range [0, 1], while the
loss (Eq. 2) is weighted with α from the range [1, 60]. By
providing the mask only as input to the encoder instead of
using a separate model, the codec can learn when to trans-
mit α and the ROI mask or when to omit them. The loss
function ensures that the ROI mask will not be ignored.

For α = 1, i.e. uα = 1, the conditioning mask m is 1 ev-
erywhere, which aligns exactly with setting where ROIs are
not used. This design choice allows for easy comparison to
non-ROI codecs, as we can compare evaluations with α = 1
directly to baselines that do not take the ROI into account.

4. Experiments
4.1. Datasets

Unless specified otherwise, we use the Vimeo90K
dataset [48] to train our model and SSF baselines. It con-
tains 89,800 diverse sequences of scenes and actions. Fol-
lowing [31], we generate temporally consistent ROI masks
use Perlin noise [30]. Note that these masks have no seman-
tic connection to the underlying data.

For evaluation we use DAVIS [32] (val subset), a com-
mon benchmark for video segmentation, because of its
high-quality annotations. As annotations are not avail-
able for compression benchmark datasets, we use an open-
source implementation of HRNet [43] to predict masks for
UVG [27] and HEVC class E2. More details on mask gen-
eration can be found in App. B.2.
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Figure 3: Left and center: R-D for α = 1 and α = 26.5. Right: ROI and non-ROI BD-rate with respect to SSF.

4.2. Training and evaluation details

Our model is warm-started from a SSF [1] model trained
for single rate and distortion tradeoff (β = 0.0001, α =
1.0) for 1M iterations, then finetuned for an additional 300k
iterations using our architecture augmentations and ROI-
aware loss LROI. We crop video segments of 3 timesteps
and size 256×256. We use the Adam optimizer [19] with a
learning rate of 10−4 for the first 150k iterations, and reduce
it to 10−5 for remaining iterations. For a fair comparison,
all baseline SSF models are finetuned in the same way.

We compute per-frame scores in the RGB color space,
then average over the frames of each video, and finally aver-
age over all videos to obtain a score for a given dataset. The
results we report are based on group-of-picture (GOP) size
of 12 for consistency with other neural compression works
[24, 31, 33], i.e., one I-frame is followed by 11 P-frames.

5. Results
5.1. Quantitative results

We summarize performance of our codec in Fig. 3. In
the left and middle column, we show R-D performance for

α = 1 and α = 26.5. Low α corresponds to the case where
ROI and non-ROI are equally important, and we see that our
model behaves similarly to the base SSF model that was
trained using a single-rate and single-distortion objective.
This is an important sanity check: it means that our train-
ing method and architecture augmentation enabled ROI-
coding without important degradation to the regular coding
performance. High α corresponds to the case where ROI
PSNR is deemed more important than non-ROI PSNR. For
the DAVIS and UVG datasets, ROI PSNR is substantially
improved, at the cost of non-ROI PSNR. As the ROI typ-
ically only covers a small fraction of the frame for these
datasets, the total PSNR depends mostly on non-ROI PSNR
and drops as well.

To facilitate comparison across α-values, we plot the
Bjøntegaard-Delta rate (BD-rate) [5] with respect to the
SSF baseline in the rightmost column of Fig. 3. The BD-
rate is a measure of distance between two R-D curves, sum-
marized in a single scalar. In this visualization, ROI BD-
rate and non-ROI BD-rate are plotted against each other to
show how α influences performance across both axes. In
these figures, each point on the curve corresponds to a uα
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Figure 4: Vimeo (artificial masks) vs. DAVIS (real semantic masks) models. BD-rate x-axes are not shared.

value from the linear range {1.0, . . . , 0.1} (corresponding
to α ∈ {1.0, ..., 39.8}), and larger marker size indicates
larger α (smaller uα). To obtain one point, we compute
BD-rate for the ROI and non ROI curve separately, with
respect to the SSF baseline. The result is a curve that char-
acterizes the tradeoff between ROI and non-ROI quality. To
provide further intuition, ⟨x = 0, y = 0⟩ means that per-
formance is exactly equal to SSF in both ROI and non-ROI,
⟨x = +50, y = −50⟩ means that BD-rate is increased by
50% in the non-ROI in order to save -50% BD-rate in the
ROI. Positive BD-rate corresponds to worse performance.

We make the following observations. First, α controls
the tradeoff between ROI and non-ROI for all datasets.
Compared to an ROI-based model trained for a single α,
shown as an orange cross, our model performs similarly, in-
dicating that one model can navigate the tradeoff without a
substantial hit in performance. Second, for low α, perfor-
mance with respect to SSF is considerably better, up to 50%
in the ROI and non-ROI. Third, performance improves fur-
ther for higher α, until an inflection point is reached. Then,
performance drops considerably. In summary, although α
controls the tradeoff as expected, selecting it may require
empirical evaluation.

Our ROI approach is more successful for natural videos
in the DAVIS and UVG datasets than for the HEVC E2
dataset, which features content similar to video conferenc-
ing. The intuition for the limited gain in ROI quality for
HEVC E2 is that even SSF automatically acts as a ROI
codec when the background is static, as most of the bits
will be spent on the dynamic foreground region, and cod-
ing of the background region is cheap. The main cause for

poor non-ROI fidelity for the our ROI codec is the I-frame
fidelity: the non-ROI is blurry when α = 26.5, and sub-
sequent P-frames inherit this low quality background. We
analyze this further in Sec. 5.6, where we show that perfor-
mance can be improved using better I-frame α-control.

Finally, we show perceptual distortion score VMAF [21]
(↑) and no-reference quality metric NIQE [29] (↓) on the
DAVIS-val dataset in Fig. 1. While the multirate base-
line matches or outperforms our α = 1 model, our mod-
els with higher α values obtain better scores over the entire
range of bitrates. In other words, spending more bits on the
ROI does increase overall perceptual quality, as captured by
these metrics.

5.2. Comparison to literature

We first compare to the ROI video coding literature in
Fig. 4. We show an SSF-based variant of the LearntOBIC
ROI image codec [47], and “Implicit ROI SSF” video codec
of Perugachi-Diaz et al. [31]. We take these numbers from
[31], which means both baselines are trained on DAVIS-
train. While we outperform OBIC, the Implicit ROI SSF
beats our codec. As our architecture design is similar to
the Implicit ROI SSF, we suspect the difference could be
caused by dataset overfitting. This is further supported by
our generalization study in Sec. 5.3, which shows that train-
ing on DAVIS-train leads to better overall performance on
DAVIS-val.

Additionally, in Fig. 5, we compare the ROI-coding ca-
pability of our models with Song et al. [38], a ROI variable
rate image codec. We evaluate our MR-MD-SSF in all-intra
setting where every frame in a video sequence is encoded as
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an I-Frame. We measure the R-D performance on DAVIS
Val and HEVC-E2. Since the task-agnostic evaluation in
[38] is done using a uniform quality mask with no distinc-
tion between ROI and non-ROI regions, we treat frames in
a similar way by setting α = 1. We observe better PSNR
for our model at lower bitrates.

Extended comparisons to non-ROI codec literature can
be found in App. D.1.

5.3. Training on synthetic ROI masks

Perugachi-Diaz et al. [31] report that training with artifi-
cial ROI masks works as well as training with real semantic
annotations. We were not fully able to reproduce this find-
ing, and refer the reader to App. B.1 for more details. Nev-
ertheless, synthetic masks enable the use of larger unanno-
tated datasets (such as Vimeo) for training, which should
lead to better generalization.

In order to assess generalization performance, in Fig. 4,
we show the performance for two versions of our model:
the first is trained on the Vimeo dataset with artificial mask
(blue), the second is trained on DAVIS with real masks (or-
ange). We find that when evaluating on DAVIS-val, both
models have similar performance, the DAVIS-trained one
being slightly better than Vimeo trained model. However
when evaluating the two models on UVG-ROI and HEVC-
E2, the DAVIS-trained model exhibits a significant drop in
performance, meaning the Vimeo-trained one generalizes
far better. We hypothesize that the improved performance
and generalization of the Vimeo-trained model is likely due
to the larger dataset size, as training on DAVIS with arti-
ficial masks leads to a decrease in performance, which we
discuss in App. B.1.

5.4. Effect of mask quality at test time

We use the official open-source pre-trained HRNet-OCR
[43] trained on COCO-Stuff [7] to extract masks for the
UVG [27] and HEVC-E2 [6] sequences (see App. B.2 for
details). To get a sense of the quality of ROI masks gen-
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Figure 6: BD-rate curve on DAVIS-val. Solid line indicates
ground-truth masks, dashed indicates predicted masks.

erated with HRNet-OCR, we use it to extract masks for 10
DAVIS val sequences, and evaluate our model on these se-
quences using the predicted masks instead of the ground-
truth annotations. We train one model on DAVIS with
ground-truth annotations, and one model on Vimeo90k with
synthetic masks. We evaluate both models on DAVIS-val,
using either ground-truth masks, or the masks predicted us-
ing HRNet-OCR. We show BD-rate (with respect to SSF)
in Fig. 6. For both models, we observe that for small α
values, performance is similar for ground-truth masks and
predicted masks. However, at high α, non-ROI BD-rate de-
grades quicker when using predicted masks. In conclusion,
our model is moderately sensitive to “noisy” masks, espe-
cially for small α values, which is a likely operating point
for most realistic use cases. Still, this result confirms that
extracting high quality ROI masks at test time is crucial to
produce reconstructions with high fidelity.

5.5. Qualitative results

In Fig. 7 we compare the SSF baseline to our model on
the “Soapbox” sequence of DAVIS val. Each column pair
compares SSF (left) to our model (right). The rightmost
pair of columns is at half the rate of the one on the left. We
show that although the bitrate is halved, our model (right-
most column) maintains PSNR in the ROI at around 33dB,
while it drops significantly for SSF (second to last column),
from 33 to 30dB. The difference is particularly salient if one
focuses on the letters “S O” in the middle row close-up. Our
model blurs the non-ROI region (bottom row), which is not
as noticeable as it was already suffering from motion blur.
We show additional qualitative examples in the App. C.

5.6. Error propagation in the non-ROI

We observe that teleconferencing videos rarely contain
extreme scene changes, while background (i.e. note the hu-
man/face) occupies a significant part of the frame. Thus,
in case of our MR+MD SSF model, always transmitting
a low-quality background hurts performance, as errors in
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SSF
(single-rate,  = 0.0016)

BPP = 0.240
PSNR = 35.05dB

PSNR(ROI) = 33.34dB
PSNR(non-ROI) = 35.45dB

Ours
(multi-rate,  = 1.0,  = 0.0017)

BPP = 0.243
PSNR = 34.71dB

PSNR(ROI) = 33.22dB
PSNR(non-ROI) = 35.04dB

SSF
(single-rate,  = 0.0064)

BPP = 0.106
PSNR = 31.67dB

PSNR(ROI) = 30.06dB
PSNR(non-ROI) = 32.04dB

Ours
(multi-rate,  = 26.5,  = 0.0017)

BPP = 0.103
PSNR = 28.18dB

PSNR(ROI) = 33.05dB
PSNR(non-ROI) = 27.68dB

Figure 7: Close-up of reconstructions for frame 50 of the “Soapbox” sequence of DAVIS val, for single-rate, single-distortion
SSF and our codec. The ROI mask is outlined in red.
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Figure 8: Left: R-D on HEVC E2. HQ I-frame codes I-
frames with α = 1, LQ I-frame uses α = 26.5, all P-frames
use α = 26.5. Right: ROI vs. non-ROI BD-rate of HQ
I-frame with respect to LQ I-frame.

I-frames propagate to P-frames. We propose a simple yet
effective solution to alleviate this issue. We transmit a high-
quality I-frame (at α = 1) followed by P-frame at suitable
α. This ensures that the background for the first frame is
transmitted with the best possible quality, which improves
non-ROI PSNR in subsequent P-frames. In Fig. 8 we show
how effective the strategy is on HEVC-E2, where this sim-
ple change allows a boost of up to 80% BD-rate savings in
the non-ROI, for a slight 5% BD-rate increase in the ROI.
Similar analysis is provided for other datasets in App. D.4.

6. Conclusion
In this work, we introduce a variable-bitrate, region-of-

interest based neural video codec. To the best of our knowl-
edge, this is the first neural video codec that can dynam-
ically adjust both the global (per frame) and local (within
frame) allocation of bits. This is achieved by the intro-
duction of two control parameters, one controlling the rate
penalty as used in existing multi-rate models, and one con-
trolling the tradeoff between distortion penalties in ROI and
non-ROI regions. The resulting codec enables rate and qual-
ity control at a fine resolution, which has the potential to
enable practical use cases such as coding at fixed rate with
minimum ROI quality.

We demonstrate large BD-rate savings in the region of
interest, achieving savings of above 60% in some cases. We
also find that in the teleconferencing setting, the benefit of
naive ROI-based coding is limited, and we provide intuition
on how this issue can be mitigated.

Impact statement Learned codecs may be sensitive to
bias in the data, which could lead to low quality reconstruc-
tion for data with little support. Additionally, semantic-
aware codecs could be mis-used in surveillance settings. On
the other hand, ROI-based neural codecs have the potential
to improve fidelity in salient regions of videos important to
the scene.
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Pushparaja. CompressAI: a PyTorch library and evalua-
tion platform for end-to-end compression research. arXiv
preprint arXiv:2011.03029, 2020.

[5] Gisle Bjontegaard. Calculation of average psnr differences
between rd-curves. VCEG-M33, 2001.

[6] Frank Bossen et al. Common test conditions and software
reference configurations. JCTVC-L1100, 12(7), 2013.

[7] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-
stuff: Thing and stuff classes in context. In Computer vision
and pattern recognition (CVPR), 2018 IEEE conference on.
IEEE, 2018.

[8] Chunlei Cai, Li Chen, Xiaoyun Zhang, and Zhiyong Gao.
End-to-end optimized roi image compression. IEEE Trans-
actions on Image Processing, 2020.

[9] Tong Chen and Zhan Ma. Variable bitrate image compres-
sion with quality scaling factors. In ICASSP 2020 - 2020
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 2163–2167, May 2020.

[10] Zhenzhong Chen, Junwei Han, and King Ngi Ngan. Dy-
namic bit allocation for multiple video object coding. IEEE
Transactions on Multimedia, 2006.

[11] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Variable
rate deep image compression with a conditional autoencoder.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 3146–3154, 2019.

[12] Alex Clark. Pillow (pil fork) documentation, 2015.
[13] Ze Cui, Jing Wang, Bo Bai, Tiansheng Guo, and Yihui Feng.

G-vae: A continuously variable rate deep image compression
framework. arXiv preprint arXiv:2003.02012, 2020.
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