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4Université Paris-Saclay, CentraleSupélec, MICS, France
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Abstract

Recent class-incremental learning methods combine
deep neural architectures and learning algorithms to han-
dle streaming data under memory and computational con-
straints. The performance of existing methods varies de-
pending on the characteristics of the incremental process.
To date, there is no other approach than to test all pairs of
learning algorithms and neural architectures on the train-
ing data available at the start of the learning process to se-
lect a suited algorithm-architecture combination. To tackle
this problem, in this article, we introduce AdvisIL, a method
which takes as input the main characteristics of the incre-
mental process (memory budget for the deep model, initial
number of classes, size of incremental steps) and recom-
mends an adapted pair of learning algorithm and neural
architecture. The recommendation is based on a similarity
between the user-provided settings and a large set of pre-
computed experiments. AdvisIL makes class-incremental
learning easier, since users do not need to run cumber-
some experiments to design their system. We evaluate our
method on four datasets under six incremental settings and
three deep model sizes. We compare six algorithms and
three deep neural architectures. Results show that Ad-
visIL has better overall performance than any of the in-
dividual combinations of a learning algorithm and a neu-
ral architecture. AdvisIL’s code is available at https:
//github.com/EvaJF/AdvisIL.

1. Introduction
Practical applications of artificial intelligence often re-

quire handling data streams under computing power and
memory constraints. This situation is typically encoun-
tered in embedded systems and real-time applications of
computer vision [10, 16, 24, 38], which must handle new
data over time with limited resources. Continual learning
addresses this challenge as it aims to build models that

can integrate new knowledge over time while preserving
previously acquired knowledge. In the context of class-
incremental learning (CIL), training a classification model
is a sequential process where each step consists in integrat-
ing a set of new classes to the model. This process is par-
ticularly challenging in the exemplar-free setting (EFCIL),
in which the model is updated without having access to ex-
amples of past classes. Among the works addressing CIL,
many [19, 42, 45, 52, 55, 56, 57] adapt knowledge distilla-
tion [18] to this task, while others are based either on vanilla
fine-tuning[4] or on a transfer learning scheme [2, 15].

A major challenge of CIL is that it is subject to catas-
trophic forgetting [23, 29], namely the tendency of learning
algorithms to abruptly forget previously acquired informa-
tion when confronted with new information. In order to
learn reliable neural representations both for past and new
classes, CIL algorithms must balance between information
retention, i.e. stability, and information acquisition, i.e.
plasticity. However, existing comparative studies [5, 28, 40]
showed that when CIL algorithms are tested in different in-
cremental scenarios, no method outperforms all others. In
addition to the CIL algorithm itself, the main factors influ-
encing the classification performance are the architecture of
the backbone neural network and the characteristics of the
CIL scenario i.e., the memory budget, the number of incre-
mental steps, the number of classes in the initial step and
the size of the subsequent incremental steps.

The performance variability for two scenarios is illus-
trated in Figure 1. It shows that the same combination of
CIL algorithm and backbone network is not ranked the same
from one EFCIL scenario to another. This variability is fur-
ther highlighted in our experiments (Section 4). Thus, un-
like other learning processes (i.e. classical, few-shot...) for
which the study of the state of the art on evaluation bench-
marks gives good indications for the selection of the model,
EFCIL requires a more acute consideration of the learning
scenario. These observations raise the following questions:
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Figure 1: Classification performance in percent for various combinations of CIL algorithm and backbone network, averaged
over five reference datasets containing 100 classes each in total, see Subsection 4.1. Scenario (a) has a memory budget of
1.5M parameters and consists of 20 steps with 5 classes each. Scenario (b) has a memory budget of 3.0M parameters, and
consists of 4 steps with 25 classes each. Here, as highlighted in purple, scenario (a) is best handled by the combination
of DSLDA and ResNet, while the combination of FeTrIL and ShuffleNet is a better match for scenario (b). As the same
combinations of CIL algorithm and backbone network are not ranked the same from one scenario to another, it highlights the
need for a recommendation method to select the best combination of CIL algorithm and backbone network depending on the
scenario. Note that the scaling heuristic presented in Subsection 3.2 is used to fit neural networks to each memory budget.

1. Since choosing the best CIL algorithm first requires
characterizing the CIL scenario, what knowledge of this
scenario may be realistically provided by the user?

2. Given a user’s CIL scenario, how to select a suitable
combination of learning algorithm and backbone network,
without benchmarking each possible configuration?

We argue that, regarding (1), the users have little knowl-
edge about their data and can only approximately pro-
vide their CIL scenario’s characteristics. Based on this
assumption, we propose to tackle the selection issue (2)
as a recommendation problem. We develop a user-centric
method, called AdvisIL, that recommends a combination of
an exemplar-free CIL algorithm and a backbone network
scaled to the user’s needs (Figure 2). Based on a set of
pre-computed EFCIL experiments, AdvisIL provides a rec-
ommendation as follows:

1. The users specify their incremental learning settings
(memory budget, number of steps, number of initial classes
and size of the incremental update),

2. The pre-computed experiments with settings closest
to the user’s settings are selected,

3. The result is the combination of EFCIL algorithm and
backbone network that ranks highest in terms of classifica-
tion performance with respect to the selected experiments.
As a result, our recommendation method facilitates the use
of CIL approaches since the user only provides the essen-
tial information about the incremental process. It prevents
the users from benchmarking each CIL algorithm and back-
bone network, hence saving them time and computation ef-
forts. AdvisIL is assessed by an evaluation protocol which
uses four test datasets and eighteen scenarios, allowing us to
highlight the relevance of our recommendations in a variety
of experimental settings. To allow the use and the enrich-
ment of AdvisIL by the community, and thus the quality of
its recommendations, we will share the code and the pre-
computed experiments on which the method is based.

2. Related work
2.1. CIL algorithms

Various approaches have been proposed to learn a classi-
fication problem incrementally while avoiding catastrophic
forgetting (see the recent surveys of [5, 9, 28]).

The different approaches can be divided into two fami-
lies, depending on whether they use knowledge distillation
or rely on other strategies to reduce forgetting. In our study,
algorithms of both types are used, always without keeping
past examples in memory.

Approaches based on knowledge distillation. Knowl-
edge distillation, as introduced in the seminal paper of
Hinton [18], is a principle that consists in transferring the
knowledge from a large “teacher” model into a smaller “stu-
dent” model. In the case of incremental learning, it has been
first used in the approach named “Learning without Forget-
ting (LwF)” [25] in which, at each learning step, the outputs
of the neural network are constrained through regulariza-
tion to remain close to the outputs obtained in the previ-
ous step. Inspired by LwF, iCaRL [42] relies on a strategy
called rehearsal or replay, that consists in keeping in mem-
ory a limited number of training examples from past classes.
In iCaRL, the neural network is used as a feature extractor
and the authors substitute the classical fully-connected out-
put layer by a nearest class mean classifier [31]. Most of the
approaches that emerged after iCaRL improve classification
performance by modifying the loss function associated to
the neural network. The LwM approach [12] introduces an
attention mechanism. The BiC approach [54] tries to rebal-
ance the classification in favour of past classes by adding
a new layer to correct the bias which favours more recent
classes. Knowledge distillation was applied to the feature
space in LUCIR [19], or to neural model weights in Pod-
Net [13]. LUCIR combines a cosine classifier framework
[41] and an inter-class separability component [44]. It in-
spired the authors of SPB [52], who combine an Euclidean-
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based component to the loss function and reciprocal adap-
tive weights to ensure a good balance between the stability
and plasticity of the incremental process.

Other approaches. The authors of [3, 4, 15, 39] are
inspired by transfer learning [46] and freeze the feature ex-
tractor after the initial step. DSLDA [15] adapts linear dis-
criminant analysis [36] for training incrementally the out-
put layer of a deep neural network. DeeSIL [3] trains SVM
classifiers for each new class against the other classes ob-
served in the same learning step. SIW [4] discards the dis-
tillation component, and uses vanilla fine-tuning to simplify
the CIL process. It stores the initial classifiers learned for
each new class and reuses a normalized version of them in
subsequent incremental steps. Recent method FeTrIL [39]
combines a fixed feature extractor and a pseudo-feature gen-
erator based on a geometric translation for past classes to
improve inter-class separation.

2.2. Relevance of architecture choice in CIL

The authors of [28] perform experiments with different
backbone networks to test CIL algorithms. They observe
that, for a given algorithm, the choice of the backbone net-
work has an influence on classification accuracy. This high-
lights the need to take both aspects into consideration when
training CIL models.

In this line of research, recent experiments of [32, 33]
explore the influence of network architecture on the per-
formance of incremental learning models. The authors of
[32] showed that increasing the width of neural networks
mitigates forgetting and increases model accuracy. Further-
more, they observed that increasing depth has no or neg-
ative effect on the performance of the model. These ob-
servations were confirmed by [33] where the influence of
classical architectural components such as batch normaliza-
tion is studied. Note that the results reported in these two
papers are mostly obtained with overparameterized models
and without the use of a CIL algorithm.

For classic supervised learning, methods for finding an
architecture ensuring good performances and respecting a
memory budget have been developed e.g. Neural Archi-
tecture Search (NAS) [14, 47], pruning [34], or compound
scaling as proposed for EfficientNets [48]. However, these
three approaches are not adapted to CIL. NAS for CIL
methods [21, 20] are generally time-consuming and com-
putationally expensive, as they explore a large space of pos-
sible network architectures and require training of candidate
models to evaluate an architecture. They are not suitable for
the practical case of a model adapting quickly to a dynamic
environment, which is encountered in CIL. As in the case
of NAS, the problem of data availability arises for pruning.
Finally, compound scaling requires the calibration of hy-
perparameters, a costly and approximate process in the case
where the user has access to only a subset of the classes.

This motivates us to propose a recommendation method that
requires only few pieces of information and no hyperparam-
eter calibration by the user.

3. Proposed method
In this section, we first describe a CIL process and de-

fine the settings of a CIL experiment as a reference config-
uration. Then, we introduce a heuristic to scale an exist-
ing neural architecture so that it fits a given memory bud-
get. In this article, any CIL experiment involves a backbone
network scaled with this heuristic. Finally, we introduce
our recommendation method AdvisIL, which takes as in-
put the incremental learning settings provided by users and
provides them with a combination of EFCIL algorithm and
backbone adapted to their needs. This recommendation is
based on pre-computed experiments corresponding to a set
of reference configurations.

3.1. Defining a CIL process

The objective of CIL is to train a model that integrates all
classes of a dataset that arrives in a stream. Without loss of
generality, we assume that examples of past classes cannot
be stored (exemplar-free setting), and that the model relies
on a convolutional backbone network b.

We consider a sequential learning process composed of
k non-overlapping steps s1, s2, . . . , sk. A step si con-
sists in learning from the examples contained in a dataset
Di. To each dataset Di is associated a set Pi of classes,
such that each learning example in Di uses a class belong-
ing to Pi. The datasets composing the complete dataset
D = D1 ∪D2 ∪ · · · ∪Dk satisfy the following constraint:
for i, j ∈ {1, 2, . . . , k} with i ̸= j, Pi ∩ Pj = ∅. The
number of classes of P1, which corresponds to the initial
step, is denoted α. Following a common assumption in
CIL [5, 8], the sets P2, P3, . . . , Pk, which correspond to the
incremental steps s2, s3, . . . , sk, have the same number of
classes, which we denote β. For our experiments, we ex-
press a memory budget m as the maximum number of pa-
rameters allowed for the backbone network at the final step
sk. Thus, this memory constraint is considered at inference
time rather than at training time.

Definition 1 A CIL scenario is a quadruplet (m, k, α, β)
composed of a memory budget m, a number of steps k, a
number of initial classes α, and an incremental update size
β. It describes the main settings that users may be able to
provide to design their incremental learning system.

In this article, the training of an incremental classification
model on D, follows a scenario (m, k, α, β), uses an EFCIL
algorithm a and relies on a backbone network b, such that
the number of parameters of b is less or equal than m. All
these parameters form a configuration.
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Definition 2 A configuration is defined as an 7-uplet
(a, b,D,m, k, α, β) containing: the name of an algorithm
a, the name of a backbone network b, a complete dataset D,
the values corresponding to a memory budget m, a number
of steps k, a number of initial classes α and an incremental
update size β.

The training of this model is performed as follows. At the
first step s1, the model M1 is trained on the dataset D1

that involves α classes. For each of the next steps, the same
procedure is applied. For i = 2, 3, . . . , k, at the step si, the
model Mi first recovers the weights from the model Mi−1

that we obtained in the previous step. It is then trained using
the examples of the dataset Di involving β new classes.

The overall classification performance r on D of the final
model Mk is called the average incremental accuracy and
is computed by:

r =
1

k − 1

k∑
i=2

qi, (1)

where qi is the accuracy of the model Mi on
D1 ∪ D2 ∪ · · · ∪ Di, after performing the learning
step si. Let us remark that each dataset used in this article
is subdivided in a training subset and a test subset, and that
reported results are always computed on its test subset.

3.2. Scaling backbone networks for CIL

In any experiment involving a memory budget m, we
want to obtain a configuration (Definition 2), where the
number of parameters of the backbone network used is less
or equal than m. To address this requirement, we introduce
a scaling heuristic to fit existing convolutional architectures
to a given memory budget m.

We adopt the point of view of users who has a memory
budgetm and aims at learning incrementally a classification
model. They want to avoid any preliminary calculation, so
they select an existing backbone network, which however
does not necessarily fit their memory budget. Our proposed
scaling heuristic is inspired by the works of [32, 48], whose
authors raised the following questions:

1. Is it better for the deep architecture to be deeper or
wider?

2. Is it better to scale only by width (resp. depth) or by
both at once?

We ran preliminary experiments, described in the supple-
mentary material, with neural networks smaller than those
presented in [32, 33], and obtain similar results. For a given
memory budget, scaling with the unique objective of max-
imizing the total number of parameters is not optimal in
terms of accuracy. We observed that when we reduce uni-
dimensionally the network, the accuracy is better preserved
when decreasing the depth rather than the width. Thus, our

scaling heuristic consists in reducing the network depth to
maximize the network width. Let L be the architecture of a
convolutional backbone network b where its memory foot-
printmL corresponds here to its number of parameters. The
scaling heuristic method is:

ψ : (L,mL) → (L′, w, d) (2)

where d ∈]0, 1] (resp. w ∈ R∗+) is a depth (resp. width) co-
efficient applied to L that allows to obtain the backbone ar-
chitecture L′ respecting the memory constraint. The back-
bone network L′ with mL′ parameters is obtained by uni-
formly multiplying the number of layers of L by d, and the
number of convolution filters by w.

The depth coefficient d is chosen first in order to make
the network as shallow as possible while preserving the
structure of the original network. The width coefficient
w is then chosen to maximize the number of convolution
filters while respecting the memory budget constraint, i.e.,
mL′ ≤ m.
In our experiments, we use this heuristic to fit existing archi-
tectures to various memory budgets, regardless of whether
the initial architecture is already within budget or over bud-
get. We performed numerous experiments with respect to a
large set of reference configurations and using the heuristic
to scale existing convolutional architectures (Section 4.1).

3.3. Recommending algorithms-backbone combi-
nations

Figure 2: AdvisIL takes as inputs a set of pre-computed
reference configurations and a user’s scenario and returns a
suited CIL algorithm - backbone network combination.

The working process of AdvisIL is illustrated in Figure 2
and explained below. Let A be a set of EFCIL algorithms,
B a set of backbone networks, S a set that contains CIL
scenarios, where each one is represented as a quadruplet
(m, k, α, β) (Definition 1), and J = {D1,D2, . . . ,Dl} a
set that contains l complete datasets. We generate a set of
reference configurations (Definition 2) as follows:

C = {(a, b,Di,m, k, α, β) | a∈A, b∈B, Di∈J , (m, k, α, β)∈S}.

The user provides a scenario u = (m∗, k∗, α∗, β∗). We aim
at recommending to the user a pair (a, b) ∈ A × B com-
posed by an algorithm a and a backbone network b, using
our set of reference configurations. The process consists of
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two steps. First, a reference scenario which is closest to the
user-defined one is selected. Second, the best algorithm-
backbone pair which has the best performance on the se-
lected reference scenario is recommended.

Step 1. To compare the user’s scenario u to the sce-
narios in S, which were used for generating the set C, we
normalize on [0, 1] any value of memory budget, number of
steps, number of initial classes and incremental step size.
The procedure is the same for all the parameters. We give it
in the case of a memory budgetm. We obtain its normalized
value by the application m → mmax−m

mmax−mmin
, where mmax =

max( max
1≤i≤n

mi,m
∗) and mmin = min( min

1≤i≤n
mi,m

∗).

The normalized value of m is denoted by m̃. Similarly, we
obtain k̃, α̃ and β̃, which are the normalized values corre-
sponding to a number of step k, a number of initial classes
α and an incremental step size β, respectively.
For any scenario v = (m, k, α, β) ∈ S, we measure the
distance between it and the user’s scenario u by:

d(u,v) =

√
(m̃− m̃∗)

2
+ (k̃ − k̃∗)

2
+ (α̃− α̃∗)

2
+ (β̃ − β̃∗)

2
(3)

We denote by v̂ = (m̂, k̂, α̂, β̂) the scenario in J whose
distance is the smallest to the user’s scenario u. This sce-
nario v̂ will be used in the next step to obtain a suited pair
of algorithm and backbone network.

Step 2. In this step, we rely on the reference configura-
tions in C whose scenario is v̂. For each dataset Di ∈ J ,
we construct the ranking of all pairs (a, b) ∈ A×B accord-
ing to their classification performance on that dataset with
the scenario v̂. For i = 1, 2, . . . , l, the ranking is defined
by a partially-ordered set Ranki = (A × B,⪯) with the
following order relation. For a, a′ ∈ A and b, b′ ∈ B, we
have:

(a, b) ⪯ (a′, b′) iff r ≥ r′, (4)

where r and r′ are the classification performances of
the experiments which use the reference configurations
(a, b,Di, m̂, k̂, α̂, β̂) and (a′, b′,Di, m̂, k̂, α̂, β̂) of C, re-
spectively, and are computed using Equation 1. To the rank-
ing Ranki of the dataset Di, we associate a function that
gives the position of a pair (a, b) in it. For i = 1, 2, . . . , l,
this function is:

gi : A× B 7→ {1, 2, . . . , card(A× B)}.

Finally, for a pair (a, b), we can aggregate all its positions
in the rankings associated to the l datasets by:

Agg :A× B 7→{l, l + 1, . . . , l · card(A× B)}

: (a, b) →
l∑

i=1

gi(a, b). (5)

The recommendation provided to the user is the pair(s) of
algorithm and backbone network with the lowest overall po-
sition computed by the function Agg.

4. Experiments
4.1. Generating the reference configurations

We describe the CIL algorithms, backbone networks,
datasets and scenarios used to generate the set of reference
configurations.

EFCIL algorithms. In our experiments, we use a rep-
resentative panel of the algorithms presented in Section 2:
LUCIR [19], SPB [52], SIW [4], DeeSIL [2], DSLDA [15]
and FeTrIL. We remind that LUCIR, SPB and SIW update
the backbone network at each incremental step, and thus fo-
cus on the plasticity of representations. In contrast, DeeSIL,
DSLDA and FeTrIL use a representation which is fixed af-
ter the initial step, and thus favour stability. We implement
all algorithms using PyTorch [37] (see the supplementary
material for implementation details).

Backbone networks. In our experiments, we use:
ResNet18 [17], MobileNetv2 [43] and ShuffleNetv2 [27].
ResNet18 is widely used in the CIL literature. MobileNetv2
and ShuffleNetv2 are designed for high accuracy while con-
sidering computational efficiency for embedded applica-
tions. These backbone networks are scaled to fit various
memory budgets using Equation 2.

Datasets for reference configurations. We consider
five datasets which are sampled from ImageNet [11] and
denoted by INFood, INFauna, INFlora, INRand0 and
INRand1. The first three datasets are thematic, and were
obtained by sampling leaf ImageNet classes which belong
to the “food”, “fauna”, and “flora” sub-hierarchies, respec-
tively. The two other datasets were obtained by randomly
sampling classes from ImageNet. Each dataset contains 100
classes, with 340 images per class for training, and 60 im-
ages for testing. Each sampled class is only used in one
dataset. Since we have performed many experiments to test
the method, the datasets are designed in such a way that the
total execution time remains tractable.

CIL scenarios. The memory budget m is defined as the
number of parameters of the final model (that contains 100
classes here) and is taken in {1.5M, 3M, 6M}. The chosen
budgets reflect the computational constraints of embedded
devices, for which CIL is particularly useful [16]. The other
parameters of the scenarios are summarized in the first row
of Table 1. Following [42], half of the scenarios have an
even split of classes among all states. The other half starts
with a higher number of classes in the initial step and evenly
splits the remaining classes among subsequent steps, as pro-
posed in [19]. In this way, we cover the two types of sce-
narios most frequently used in literature.

These settings allow us to form a set 1620 reference con-
figurations, where each one is a combination of an algo-
rithm, a backbone network, a dataset and a scenario pre-
sented here. For each reference configuration, we build the
corresponding neural network and train it. Finally, we mea-
sure the classification performance of the resulting model.
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Settings (k, α, β) Even splits (α = β) Larger initial step (α > β)
Reference (4, 25, 25) (10, 10, 10) (20, 5, 5) (5, 40, 15) (7, 40, 10) (11, 40, 6)

Test (5, 20, 20) (25, 4, 4) (50, 2, 2) (6, 50, 10) (11, 50, 5) (13, 40, 5)

Table 1: Settings for evaluating AdvisIL (k: number of steps, α: number of initial classes, β: incremental update size).

4.2. Evaluation settings
To evaluate our recommendation method, we apply Ad-

visIL to four test datasets and eighteen scenarios.
Test datasets We ran experiments on four test datasets

denoted by INRand2, FOOD100, INAT100 and LAND100.
INRand2 is obtained by randomly sampling 100-classes of
ImageNet [11]. The three other test datasets FOOD100,
INAT100 and LAND100 contain 100 classes sampled
from FOOD101 [6], iNaturalist [49] and Google Land-
marks v1 [35], respectively. These three datasets are the-
matic and fine-grained since they were designed for the
classification of images of food, natural concepts and tourist
points of interest, respectively.

Test scenarios. The memory budgets are the same three
as those used for generating reference configurations. We
consider six new distributions of classes across steps, whose
settings are presented in the “Test” row of Table 1.

The same algorithms and backbone networks as in Sub-
section 4.1 are used. We run experiments for each combi-
nation of algorithm, backbone network, test dataset and test
scenario. This corresponds to 1296 test configurations.

4.3. Evaluation protocol
As in the case of reference configurations, in our evalu-

ation, model performance is measured in terms of average
incremental accuracy (Equation 1). We assess the recom-
mendations provided by AdvisIL as follows. Given a test
dataset and a test scenario, we compare the average incre-
mental accuracy of the models trained according to:

i) AdvisIL’s recommended pair (a,b). The model built with
this pair is called the recommended model.

ii) Oracle pair: an upper-bound for AdvisIL which selects
by brute force the best-performing pair of algorithm and
backbone network for each test configuration. It is not
usable in practice since it assumes the access to whole
stream of data from the beginning. In addition, the exten-
sive computations it requires are costly in terms of time
and computational power.

iii) Baseline pairs, which are three fixed combinations:
b1: (FeTrIL, ResNet), b2: (DSLDA, ShuffleNet) and
b3: (SPB, MobileNet) whose corresponding models are
called baseline models. These pairs were selected accord-
ing to their aggregated rank on reference datasets (Equa-
tion 5), i.e. that they have the highest rank according to
their accuracy on all reference experiments. In practice,
we present in Table 2 the performance gap between these
baseline models and the recommended model. These
gaps are denoted ∆b1 , ∆b2 , and ∆b3 .

4.4. Main results

Settings Incr. acc. Incr. acc. difference

AdvisIL ∆O ∆b1 ∆b2 ∆b3

C
IL

se
tti

ng
(k
,α

,β
)

(50, 2, 2) 24.42 -1.49 1.01 0.81 9.72
(25, 4, 4) 35.07 -0.63 0.30 4.35 13.44
(5, 20, 20) 55.74 -0.65 0.97 3.16 7.46
(13, 40, 5) 62.56 -0.73 2.33 0.06 12.17
(11, 50, 5) 64.40 -1.26 2.02 0.22 9.98
(6, 50, 10) 64.12 -1.56 1.12 0.55 6.64

B
ud

ge
t

m

1.5M 45.94 -1.46 0.37 2.76 6.96
3.0M 51.85 -0.79 2.32 0.52 10.27
6.0M 54.86 -0.92 1.18 1.30 12.47

Te
st

da
ta

se
t INRand2 52.02 -0.73 1.20 1.71 12.51

INAT100 50.18 -1.22 1.57 1.66 10.03
FOOD100 28.03 -1.39 1.99 0.34 5.22
LAND100 74.52 -0.89 0.40 2.89 11.85

Avg 50.88 -1.04 1.29 1.52 9.90

Table 2: Classification performance of models built with
AdvisIL’s recommendations on four test datasets and six
test scenarios. Results are grouped either by user-defined
(k, α, β), a memory budget m, or by test dataset. The last
row corresponds to the average on all test configurations.
The difference between the classification performance of
the oracle pair and AdvisIL’s recommendation is showed
(∆Oracle). Similarly, the performance gaps between the
three baseline recommendations (∆b1,∆b2,∆b3) and Ad-
visIL’s recommendation are showed.

AdvisIL performances on test scenarios. Our results
are presented in Table 2 and Table 3. In Table 2, we com-
pare the performance of models built according to AdvisIL’s
recommendation to the performance of models built accord-
ing to the oracle pair and to the three baseline pairs. In Ta-
ble 3 the performance of the models built according to Ad-
visIL and according to the baseline recommendations are
compared for all test scenarios.

On average, across all four test datasets and eighteen test
scenarios, the recommended model outperforms the best
fixed model by 1.29% (Table 2). The accuracy of the recom-
mended models is below the oracle, with an average gap of
1.04%. The gap between the average classification perfor-
mance of the recommended model and of that of the oracle
is stable across scenarios, regardless of the number of steps
and class distribution among the steps, and regardless of the
memory budget. It is also stable across test datasets. There-
fore, the recommendations are relevant whatever the sce-
nario and dataset. Results per scenario are presented in Ta-
ble 3, where AdvisIL recommends the best available (a, b)
combination for 15 out of the 18 test scenarios. The perfor-
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Combination
(a, b)

Mem. budget
m

CIL setting (k, α, β) avg(50, 2, 2) (25, 4, 4) (5, 20, 20) (13, 40, 5) (11, 50, 5) (6, 50, 10)
(SPB, MobileNet)

1.5M

12.46 19.87 44.60 48.80 52.46 55.71 38.98
(DSLDA, ShuffleNet) 12.77 18.12 45.43 59.72 61.84 61.24 43.19

(FeTrIL, ResNet ) 10.62 27.75 53.00 58.20 61.60 62.30 45.58
AdvisIL’s pair (a, b) 11.34 28.52 53.00 59.72 61.84 61.24 45.94

(DS, Res) (DS, Res) (FT, Res) (DS, Shu) (DS, Shu) (DS, Shu)
(SPB, MobileNet)

3.0M

13.78 22.09 48.57 51.47 55.10 58.45 41.58
(DSLDA, ShuffleNet) 22.81 35.18 55.93 63.71 65.47 64.88 51.33

(FeTrIL, ResNet ) 22.08 34.58 55.42 60.70 61.85 62.50 49.52
AdvisIL’s pair (a, b) 24.37 34.69 57.05 63.71 65.47 65.81 51.85

(DS, Res) (DS, Res) (DS,Shu) (DS, Shu) (DS, Shu) (DS, Mob)
(SPB, MobileNet)

6.0M

14.86 22.94 51.7 50.89 55.68 58.25 42.39
(DSLDA, ShuffleNet) 32.24 38.86 56.38 64.07 65.21 64.59 53.56

(FeTrIL, ResNet ) 34.55 42.00 55.88 61.80 63.68 64.18 53.68
AdvisIL’s pair (a, b) 34.55 42.00 57.18 64.25 65.89 65.29 54.86

(FT, Res) (FT, Res) (FT, Mob) (DS, Mob) (DS, Mob) (DS, Mob)

Table 3: Classification performance for the three baseline models and for the recommended model. Performance is averaged
over the four test datasets. For each scenario (m, k, α, β), the best result is in bold and the combination of algorithm (either
DSLDA (DS) or FeTrIL (FT)) and backbone ( MobileNet (Mob) , ResNet (Res) or Shufflenet (Shu) ) recommended by
AdvisIL is provided.

mance improvement obtained by AdvisIL is explained by
the fact that its recommendations follow the trends observed
in the experiments corresponding to the reference config-
urations, whereas no fixed combination of algorithm and
backbone network outperforms all others in all scenarios.
This was pointed out in Figure 1 where it can be seen that
the same combinations of CIL algorithm and backbone net-
work is not ranked the same from one scenario to another.

In practice, the recommended model is either built with
FeTrIL or DSLDA (Table 3), two algorithms that do not
use distillation. These algorithms are recommended be-
cause they are often the best-performing algorithms in the
experiments corresponding to our set of reference config-
urations (see appendix for more details). Our results, ob-
tained in the case of several neural architectures and for
small memory budgets, confirm previous findings regarding
the competitiveness of transfer-learning-based algorithms
in EFCIL, which are reported in the comparative studies
of [5, 28]. Regarding the recommended backbone networks,
Table 3 shows that it is relevant to use a different backbone
network depending on the memory budget. ResNet and
ShuffleNet appear as the best choices for 1.5M parameters,
ShuffleNet and MobileNet for 3.0M parameters, and Mo-
bileNet for 6.0M parameters. This highlights the relevance
of considering different backbone networks in AdvisIL.

4.5. Ablation study

AdvisIL recommends an algorithm-backbone combina-
tion based on pre-computed experiments on several refer-
ence datasets. In what follows, we study the individual
contribution of the different components of the method:
choice of the backbone network, choice of the algorithm
and choice of the number of available reference datasets.

Incr. acc. (i) Fixed backbone net (ii) Fixed algorithm

AdvisIL ∆Mob ∆Shu ∆Res ∆FT ∆DS ∆SPB

50.88 -3.93 -1.19 -0.97 -0.45 -0.42 -9.74

Table 4: Classification performance of AdvisIL and of its
variants which use (i) a single possible backbone network
taken among ResNet18 (Res), MobileNetv2 (Mob), and
ShuffleNetv2 (Shu), and (ii) a single possible algorithm, ei-
ther FeTrIL (FT), DSDLA (DS) or SPB. Results are aver-
aged over all test scenarios and test datasets.

Using a single backbone network. We present results
with a fixed backbone network and different algorithms in
the left part of Table 4. Each column corresponds to the av-
erage classification performance of models trained accord-
ing to AdvisIL recommendations when the set of reference
configurations is reduced to consider a single type of back-
bone network. The results indicate that AdvisIL’s recom-
mendations are better when we use multiple backbone net-
works rather than just one.

Using a single CIL algorithm. Similarly, we present in
the right part of Table 4 results obtained when only a single
algorithm is available. Each column corresponds to the av-
erage classification performance obtained with AdvisIL rec-
ommendations when the set of reference configurations is
reduced to consider a single algorithm and multiple back-
bone networks. When we reduce the set of configurations to
DSLDA or FeTrIL, the performance drop is rather low, be-
cause these two algorithms have similar performance, and
tend to perform much better than the others tested, so that
they are often recommended by AdvisIL. On the contrary,
when using only SPB, the third best-performing algorithm,
performance drops significantly.

Using fewer reference datasets. AdvisIL’s recommen-
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dation are computed by ranking the classification perfor-
mance of candidate algorithm-backbone pairs on the refer-
ence datasets. Here, we measure how using less reference
datasets impacts the relevance of the recommendations. Re-
sults obtained by using only one (∆#1), two (∆#2), three
(∆#3) and four (∆#4) out of five reference datasets are
presented in Table 5. They are averaged over all possi-
ble combinations of reference datasets. Using less refer-
ence datasets is damageable to recommendation relevance,
with up to 1.88% loss in the averaged classification perfor-
mance when using only one reference dataset. Interestingly,
when using only two reference datasets, AdvisIL already
surpasses the baselines presented in Table 2. The impact
of the ablation fades when the number of reference datasets
grows, and becomes negligible when four of them are used.

Incr. acc. Number of reference datasets

AdvisIL ∆#1 ∆#2 ∆#3 ∆#4

50.88 -1.88 -0.71 -0.39 -0.09

Table 5: Classification performance of AdvisIL and of its
variants which use a smaller number of reference datasets.
Results are averaged over all possible combinations of ref-
erence datasets, and over all tested scenarios.

Overall, the results of Table 4 show that both the choice
of an algorithm and the choice of a backbone network con-
tribute to the relevance of AdvisIL’s recommendations. The
results from Table 5 show that AdvisIL needs few reference
datasets to provide relevant recommendations. More abla-
tion results are provided in the supplementary material.

5. Discussion and Conclusion
In this article, we introduced a recommendation method

named AdvisIL, which facilitates the choice of a suited pair
of CIL algorithm and backbone network for a user-defined
incremental learning scenario. AdvisIL requires little infor-
mation from the user and provides a recommendation by
leveraging trends observed on pre-computed experiments
from a set of reference configurations. Our evaluation indi-
cates that AdvisIL is effective, as it often provides a relevant
recommendation. Recommendations are relevant because
they are made by selecting reference experiments whose
scenarios are close to the user’s scenario. On average, the
resulting models outperform by at least 1.29% the models
that do not tailor the recommendation to the user’s scenario.
Beyond performance gain, AdvisIL avoids the users to per-
form cumbersome preliminary computations to design their
incremental learning application.

In what follows, we discuss how AdvisIL may be im-
proved and give some perspectives. The set of refer-
ence configurations could be enriched with recent algo-
rithms [50, 55, 56, 55], other backbone networks, such as

SqueezeNet [22], MobileVit [30] or EfficientNet [48], and
more scenarios could further increase the relevance of Ad-
visIL in real-life applications [16]. We designed AdvisIL in
order to facilitate the integration of new components and
contributions. The full code, the raw data used, and the
set of reference configurations will be published to facili-
tate take-up in the community. A binding to Avalanche [26]
will also be developed to easily integrate contributions of
other researchers to its improvement.

In this article, we have done many experiments corre-
sponding to a set of reference configurations in order to ex-
haustively test all possible combinations of CIL algorithm
and backbone network. This entailed a consequent com-
putation effort. We may generate the reference configura-
tions more efficiently, taking inspiration from hyperparam-
eter search approaches, e.g. [53]. Regarding the recommen-
dation process, we could take into account the similarity
between the user’s dataset and the datasets used to build the
set of reference configurations [1]. From a practical point
of view, we note that this similarity can only be computed
using the first batch of the user’s dataset as it is the only one
we may have access to.

We focused on memory constraints and expressed them
as the number of parameters of the neural networks. It may
be possible to take other constraints into account, such as
the training complexity (the maximum number of compu-
tations for each incremental step) and inference time. Re-
garding the training with CIL algorithms, we note that fine-
tuning-based methods [4, 19, 52] have significantly higher
computational requirements compared to some transfer-
based methods [2, 15]. Fine-tuning-based methods retrain
the full model in each incremental state, while the transfer-
based methods retrain only the classification layer. Among
the fine-tuning-based methods, some of them [19, 52] rely
on knowledge distillation, which requires keeping in mem-
ory two models, namely the current version of the model
which is being trained, and the previous version of the
model which is used for constraining the training at this
step. Regarding the inference time constraint, given a model
size, the inference time varies depending on the structure of
the deep architecture [7]. If we extend our recommenda-
tion method by taking into account training and inference
times, the recommended pair of CIL algorithm and back-
bone network may be selected according to the modified
variant of the NetScore [51] introduced in [16]. This score
mixes accuracy, total number of parameters and the number
of seconds required to run the experiment.

Acknowledgements. This work was supported by the Eu-
ropean Commission under European Horizon 2020 Pro-
gramme, grant number 951911 - AI4Media. It was made
possible by the use of the FactoryIA supercomputer, finan-
cially supported by the Ile-de-France Regional Council.

2407



References
[1] Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichan-

dran, Subhransu Maji, Charless C Fowlkes, Stefano Soatto, and
Pietro Perona. Task2vec: Task embedding for meta-learning. In
Proceedings of the IEEE/CVF international conference on computer
vision, pages 6430–6439, 2019.

[2] Eden Belouadah and Adrian Popescu. Deesil: Deep-shallow incre-
mental learning. TaskCV Workshop @ ECCV 2018., 2018.

[3] Eden Belouadah and Adrian Popescu. Deesil: Deep-shallow incre-
mental learning. In Proceedings of the European Conference on
Computer Vision (ECCV) Workshops, pages 0–0, 2018.

[4] Eden Belouadah, Adrian Popescu, and Ioannis Kanellos. Initial clas-
sifier weights replay for memoryless class incremental learning. In
British Machine Vision Conference (BMVC), 2020.

[5] Eden Belouadah, Adrian Popescu, and Ioannis Kanellos. A com-
prehensive study of class incremental learning algorithms for visual
tasks. Neural Networks, 135:38–54, 2021.

[6] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 –
mining discriminative components with random forests. In European
Conference on Computer Vision, 2014.

[7] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An anal-
ysis of deep neural network models for practical applications. arXiv
preprint arXiv:1605.07678, 2016.

[8] Francisco M. Castro, Manuel J. Marı́n-Jiménez, Nicolás Guil,
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