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Abstract

This paper presents a general framework to build fast
and accurate algorithms for video enhancement tasks such
as super-resolution, deblurring, and denoising. Essential to
our framework is the realization that the accuracy, rather
than the density, of pixel flows is what is required for high-
quality video enhancement. Most of prior works take the
opposite approach: they estimate dense (per-pixel)—but
generally less robust—flows, mostly using computationally
costly algorithms. Instead, we propose a lightweight flow
estimation algorithm; it fuses the sparse point cloud data
and (even sparser and less reliable) IMU data available in
modern autonomous agents to estimate the flow informa-
tion. Building on top of the flow estimation, we demonstrate
a general framework that integrates the flows in a plug-and-
play fashion with different task-specific layers. Algorithms
built in our framework achieve 1.78× — 187.41× speedup
while providing a 0.42 dB – 6.70 dB quality improvement
over competing methods.

1. Introduction
Video enhancement tasks ranging from super resolu-

tion [32, 3, 29, 16], deblurring [26, 38, 21], and denois-
ing [28, 9] are becoming increasingly important for intelli-
gent systems such as smartphones and Augmented Reality
(AR) glasses. High-quality videos are also critical to vari-
ous robotics tasks, such as SLAM [25, 7], visual odometry
[15], object detection [22], and surveillance [24].

Video enhancement systems today face a fundamental
dilemma. High quality enhancement benefits from accu-
rately extracting temporal flows across adjacent frames,
which, however, is difficult to obtain from low-quality
videos (e.g., low-resolution, noisy). As a result, video
enhancement usually requires expensive optical flow al-
gorithms, usually in the form of Deep Neural Networks

(DNNs), to extract dense flows, leading to a low execution
speed. As video enhancement tasks execute on resource-
limited mobile devices and potentially in real time, there is
a need for high-speed and high-quality video enhancement.

We propose a method to simultaneously increase the
quality and the execution speed of video enhancement tasks.
Our work is based on the realization that the accuracy,
rather than the density, of the flow estimation is what
high-quality enhancement requires. We propose an algo-
rithm to estimate accurate, but sparse, flows using LiDAR-
generated point clouds. Coupled with the flow estimation
algorithm, we demonstrate a generic framework that incor-
porates the flows to build video enhancement DNNs, which
are lightweight by design assisted by the accurate flows.

Our flow estimation is accurate because it does not rely
on the image content, which is necessarily of low-quality
in video enhancement tasks. Instead, we generate flows us-
ing the accurate depth information from LiDAR point cloud
assisted with the less reliable IMU information. By ex-
ploiting the spatial geometry of scene depth and the agent’s
rough ego-motion (through IMU), our algorithm estimates
the flows in videos using a purely analytical approach with-
out complex feature extraction, matching, optimization, and
learning used in conventional flow estimation algorithms.

Building on top of the lightweight flow estimation, we
demonstrate a general framework that integrates the flows
for video enhancement. The framework consists of a com-
mon temporal alignment front-end and a task-specific back-
end. The front-end temporally aligns a sequence of frames
by warping and concatenating frames using the estimated
flows; the back-end extracts task-specific features to syn-
thesize high-quality videos. Different from prior works
that specialize the temporal alignment module for a specific
task, our unified temporal alignment module applies to dif-
ferent tasks and, thus, empowers algorithm developers to
focus energy on the task-specific back-end.

We demonstrate our framework on a range of video en-
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hancement tasks including super resolution, deblurring, and
denoising on the widely-used KITTI dataset [14]. Across all
tasks, our system has better enhancement quality than state-
of-the-art algorithms measured in common metrics such as
Peak Signal-to-Noise Ratio (PSNR) and Structure Similar-
ity Index Measure (SSIM) [33]. Meanwhile, we improve
the execution speed on all tasks by a factor of 8.4 on aver-
age (up to 187.4 times). The code will be open-sourced.

2. Related Work
Video Enhancement The general theme in today’s

video enhancement algorithms is to first align neighboring
frames from time t − n to time t + m and then fuse the
aligned frames to enhance the target frame t. Much of the
prior innovations lie in how to better align frames.

Alignment could be done explicitly or implicitly. Ex-
plicit approaches perform an explicit flow estimation be-
tween frames [3, 28, 16]. The flows are then used to align
frames either in the image space [3, 16] or in the feature
space [28]. Obtaining accurate flows typically requires
expensive flow estimation algorithms (e.g., dense optical
flow [16] or complicated DNNs [28, 3]), which lead to low
execution speed. Implicit approaches, instead, align frames
in latent space using algorithms such as deformable con-
volution [29, 32] or recurrent neural networks [38]. Clas-
sic examples include EDVR [32], TDAN [29] and ES-
TRNN [38]. These algorithms tend to be more accurate
than explicit approaches when the temporal correlation is
not obvious in pixels pace.

Our work differs from prior works in two main
ways. First, both implicit and explicit approaches are
computationally-heavy, as they extract flows from purely
the vision modality. We demonstrate a very fast algorithm
to extra flows by fusing LiDAR and IMU data. We show
that accurate flows enable a simple downstream DNN de-
sign, achieving state-of-the-art task quality while being an
order of magnitude faster. Second, the alignment modules
in prior works usually are specialized for specific enhance-
ment tasks. We instead show a common alignment module
based on our estimated flows broadly applies to a range of
video enhancement tasks. This greatly eases development
and deployment effort in practice.

LiDAR-Guided Vision Fusing point clouds and images
is known to improve the quality of vision tasks such as ob-
ject detection [4, 35, 36], segmentation [10, 19], and stereo
matching [6, 31], but literature is scarce in LiDAR-camera
fusion for video enhancement.

Fusion networks usually extract features from (LiDAR-
generated) point clouds and images, and align/fuse the two
sets of features before feeding them to the task-specific
block. Unlike prior fusion algorithms that extract features
from point clouds, we propose a different way of using point
cloud data, i.e., estimating explicit pixel flow from point

Scene
P = Tlidar2cam x P*

Tego 

Pt+1 = Tcam x Tego x P

Frame t

Frame t+1

Tlidar2cam

Tlidar2cam
Pt = Tcam x P

Fig. 1. LiDAR-guided flow estimation. P ∗ is the 3D coordinates
of a point in the LiDAR coordinate system at time t. Tlidar2cam

is the transformation matrix from the LiDAR coordinate system to
the camera coordinate system, which is fixed over time assuming
the configuration of the LiDAR and camera is rigid. Tcam is the
camera matrix. Tego is the camera egomotion from Frame t to
Frame t+ 1.

clouds. The estimated flows are accurate and, thus, provide
targeted guidance to video enhancement tasks.

Flow Estimation Estimating flows between frames is
a fundamental building block. Video-based flow estimation
has made great strides through DNNs [12, 23, 27]. These
methods, however, are computationally intensive. When in-
corporated into a high-level vision task such as deblurring
and denoising, the flow estimation quickly becomes a speed
bottleneck. Many flow estimations algorithms use only
video frames, which, while is less restrictive, also means
the flow accuracy degrades when operating on low-quality
videos. Our method is image content-independent and thus
better estimates flows from low-quality videos. It is also
fast, because it relies on simple geometric transformations.

Existing video enhancement tasks usually use dense and
per-pixel flow estimation [16, 3, 28]. In contrast, our
method generates sparse flows from point clouds. A key
contribution of our work is to demonstrate that even a sparse
flow can greatly boost the quality of video enhancement.

3. Main Idea and Optimizations
We first describe the lightweight flow estimation algo-

rithm (Sec. 3.1), followed by a generic DNN architecture
that integrates the flows for video enhancement (Sec. 3.2).

3.1. Lightweight and Accurate Flow Estimation

Overall Algorithm The key idea is to use the depth
data from LiDAR to generate flows in a lightweight fash-
ion. Fig. 1 illustrates the idea. For any point P ∗ in a point
cloud, it is captured by two consecutive camera frames. At
time t, P ∗’s coordinates in the camera coordinate system
are P = Tlidar2cam × P ∗, where Tlidar2cam is the Li-
DAR to camera transformation matrix, which is usually pre-
calibrated. Thus, the corresponding pixel coordinates in the
image at time t are Pt = Tcam × P , where Tcam is the
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Fig. 2. Overview of our two-stage video enhancement DNN architecture. The front-end performs lightweight flow estimation to align
(previous and later) frames with the current frame at time t in order to extract temporal features. The extracted features carry temporal
correlations across frames and are then processed by task-specific layers to produce an enhanced frame. We merge point clouds (using the
estimated ego-motion) before flow estimation and warp pixels in patches after flow estimation, both to mitigate the sparsity of LiDAR-
generated point clouds.

camera matrix.
At time t + 1, the coordinates of the same point in the

scene in the camera coordinate system are Tego ×P , where
Tego is the transformation matrix of the camera egomotion.
Thus, the pixel coordinates of the point at t+ 1 are Pt+1 =
Tcam×Tego×P . Accordingly, the pixel’s motion vector can
be calculated in a computationally very lightweight manner:

δt =Pt+1 − Pt

=Tcam × Tego × Tlidar2cam × P ∗

−Tcam × Tlidar2cam × P ∗. (1)

Egomotion The camera egomotion Tego could be de-
rived in a range of different methods. In our system, we es-
timate Tego using the measurements from the IMU, which is
widely available in virtually all intelligent devices. We note
that the IMU data, while being a readily available sensor
modality, is known to be a rough and imprecise estimation
of the true egomotion [8]. One of our contributions is to
show how the rough egomotion estimation can provide de-
cent flow estimation for high-quality video enhancement.

The IMU provides the translational acceleration (â) and
the angular velocity (ω̂). Given â, the translation compo-
nent T3×1 in Tego is calculated by:

T3×1 =
[
∆x ∆y ∆z

]
(2)

where ∆x, ∆y, and ∆z are the three translational displace-
ments integrated from â using Euler’s method. Similarly,
the rotational component R3×3 in Tego is estimated from ω̂:

R3×3 = Ry
3×3 ×Rp

3×3 ×Rr
3×3 (3)

where Ry
3×3, Rp

3×3, and Rr
3×3 denote the three rotational

matrices, which are integrated from the three rotational dis-
placements in ω̂ using Euler’s method.

Alternatively, Tego could be estimated through point
cloud registration [2, 37], which is generally more costly but
more accurate. As we will demonstrate later (Sec. 5.3), even
with relatively less accurate estimations from the IMU, our
method can still reliably deliver higher task accuracy while
greatly reducing the execution time. When given more ac-
curate egomotions (e.g., from point cloud registration), our
framework would have a higher video enhancement quality.

A key reason why video enhancement benefits from our
flow estimation is that our algorithm is purely based on 3D
geometry and geometric transformation without relying on
the image content. No pixel content participates in the flow
estimation Eqn. 1. Therefore, it estimates flows accurately
even when the image content is of low-quality, e.g., low
resolution or noisy, which is exactly the kind of scenario
video enhancement tasks target at.

3.2. A Generic DNN Architecture

Our flow estimation is a building block for simultane-
ously improving the quality and execution speed of video
enhancement. We propose a generic DNN architecture that
incorporates the estimated flows for a range of video en-
hancement tasks. Fig. 2 shows an overview of the architec-
ture, which consists of two main modules: a common frame
fusion front-end and a task-specific back-end.

Temporal Feature Extraction Our network uses a
common front-end shared across different enhancement
tasks. The goal of the front-end is to extract temporal cor-
relations across frames in preparation for task-specific pro-
cessing. Fig. 2 shows an example that extracts temporal
features across three frames: the current frame Ft and the
frame before (Ft−1) and after (Ft+1) the current frame,
which we call the temporal frames. More temporal frames
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(a) Single point 
cloud projection

(d) Block-warped 
frame using merged 

point clouds 

(c) Warped frame 
using merged point 
clouds w/o blocking

(b) Merged point 
clouds projection

Fig. 3. Effectiveness of techniques to increase point cloud density.
(a): frame overlaid with a projected single point cloud (red pix-
els are projected points). (b): frame overlaid with the projection
of five merged point clouds. (c): warped frame using flows esti-
mated from five merged point clouds without blocking. (d): frame
warped using flows from five merged point clouds and warped in
5× 5 blocks.

are possible in principle.
The front-end first calculates the flows between each

temporal frame and the current frame using the algorithm
described in Sec. 3.1. A critical challenge we face is that
the estimated flows are necessarily sparser than the corre-
sponding image, because LiDARs generally have lower res-
olutions than that of cameras. For instance, the Velodyne
HDL64E LiDAR, a high-end, high-density LiDAR, gener-
ates about 130,000 points per frame, whereas an image with
a 720p resolution contains about 1 million points. Fig. 3(a)
shows the effect of using sparse point clouds, where only
a small amount of pixels have points associated with them
when projecting a single point cloud to the image.

To mitigate the sparsity of LiDAR-generated point
clouds, we propose to register multiple point clouds to-
gether to form a dense point cloud. We register point clouds
by simply transforming adjacent point clouds using the
ego-motion Tego calculated from the IMU measurements
(Eqn. 2 and Eqn. 3). Fig. 3(b) shows that when projecting
multiple registered point clouds, many more pixels are asso-
ciated with points. Alternatively, one could leverage com-
putationally intensive, but potentially more accurate, regis-
tration algorithms (e.g., using Iterative Closest Point [2, 5]).

Even with multiple point clouds, not every image pixel in
Ft−1 (or Ft+1) has a corresponding flow. As a result, when
warping images using flows the warped images will have
many “holes”, as illustrated in Fig. 3(c). While one could
merge more point clouds to increase the point density, do-
ing so is susceptible to mis-registration, which is especially
significant when merging a long sequence of point clouds
where errors can accumulate.

To address this issue, we propose blocked warping,
which duplicates a pixel’s flow to its neighboring pixels
(e.g., a 5 × 5 block) during warping. This is analogous to
blocked-based motion compensation in conventional video
compression. The assumption is that points corresponding

to the neighboring pixels have similar motion in the 3D
space, and thus their pixel flows are similar. We warp a
temporal frame (Ft−1 or Ft+1) to the current frame using
the blocked flows. The result is shown in Fig. 3(d), which
has much dense pixels (fewer “holes”) than in Fig. 3(c).

Finally, each warped temporal frame (e.g., WFt−1),
along with its unwarped counterpart (e.g., Ft−1) and the
current frame (Ft), are concatenated and go through a con-
volutional layer to extract the temporal correlations between
the temporal frame and the current frame. The features of
the current frame are extracted independently.

Task-Specific Layers The back-end of our architec-
ture takes the extracted temporal features to perform video
enhancement. The exact design of the back-end layers is
task-specific. Our goal of this paper is not to demonstrate
new task-specific layers; rather, we show that our tempo-
ral feature extraction front-end is compatible with different
task layers in a plug-and-play manner.

To that end, we implement three back-end designs for
three video enhancement tasks, including super-resolution,
denoising, and deblurring, by directly using designs from
other algorithms (with slight modifications so that the inter-
face matches our front-end). The layers for super-resolution
and deblurring connect the temporal features from the front-
end in a recurrent fashion, similar to designs of RBPN [16]
and ESTRNN [38], respectively. The denoising layers con-
catenate the temporal features, which then enter a set of con-
volutional layers, similar to DVDnet [28].

4. Evaluation Methodology
Applications and Baselines We evaluate three video

enhancement tasks, namely super-resolution, deblurring
and denoising.

• Super-resolution: we compare with two baselines:
RBPN [16] and VESPCN [3]. RBPN uses a recur-
rent encoder-decoder to learn temporal correlations;
VESPCN warps images in the pixel space and fuses
multiple warped frames through a CNN to upsample.

• Deblurring: we compare with ESTRNN [38], which
uses RNN to learn the temporal features; we also com-
pare with DEEPGYRO [20], which fuses IMU with im-
age data for single-image deblur.

• Denoising: we compare with DVDNET [28], which
uses CNN to extract explicit motion and warp frames.

In addition, we also designed a simple LiDAR-camera
fusion baseline for each task. This baseline, which we
call VEFUSION, resembles many LiDAR/camera fusion
DNNs [13]: it first concatenates the projected point cloud
and the image; the concatenated data then enters the task-
specific layers. Our proposed method also leverages point
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clouds for video enhancement, but uses point clouds in a
different way: instead of fusing points with pixels, we use
point clouds to generate flows. This baseline allows us to
assess the effectiveness of this way of using point cloud for
video enhancement. We make sure VEFUSION has roughly
the same amount of parameters as our proposed method
such that the performance difference is due to the algorithm.

Variants We evaluate two variants of our methods:
OURS-S uses a single point cloud for flow estimation, and
OURS-M uses five point clouds for flow estimation.

Dataset We use the KITTI dataset [14], which pro-
vides sequences of synchronized LiDAR, camera, and IMU
data. Following the common practices, we preprocess the
dataset for different tasks. For super-resolution we down-
size the videos by 4× in both dimensions using bicubic in-
terpolation, similar to VESPCN [3]; for deblurring we add
Gaussian blur to the videos, similar to EDVR [32]; for de-
noising we apply random noises to the videos, similar to
DVDnet [28].

Evaluation Metrics To evaluate the efficacy of our
method, we use two metrics, PSNR and SSIM, to qual-
itatively evaluate the results. We also show the runtime
performance of different methods by measuring the execu-
tion time of different methods on two platforms, one is the
Nvidia RTX 2080 GPU; the other is the mobile Volta GPU
on Nvidia’s recent Jetson Xavier platform [1]. Each execu-
tion time is averaged over 1000 runs.

Design Parameters Unless otherwise noted, we use a
block size of 3×3 in super resolution, and a block size of 7×
7 in deblurring and denoising tasks. Five point clouds are
registered for flow estimation. We will study the sensitivity
to these two design parameters (Sec. 5.4).

5. Evaluation
We show that the execution speed of our method is on

average an order of magnitude faster than existing methods
while at the same time delivering higher task quality, both
objectively and subjectively (Sec. 5.1). We study the accu-
racy of our flow estimation (Sec. 5.2) and the sensitivity of
our method on key design parameters (Sec. 5.4).

5.1. Overall Evaluation

Results Overview OURS-M and OURS-S consis-
tently outperform the baselines in both quality and speed.
OURS-M is slightly better than OURS-S by using multiple
point clouds for flow estimation. A naive fusion of point
cloud and images, as done by VEFUSION, has significantly
lower quality than our methods, albeit with a similar speed.

Super-resolution Tbl. 1 compares different super-
resolution algorithms. We also show the execution time of
different methods normalized to that of OURS-M.

Overall, OURS-M achieves the highest visual quality
both in terms of PSNR and SSIM among all methods.

Table 1. Super-resolution comparison. Execution times are nor-
malized to that on OURS-M; H and M denote the high-end 2080
Ti GPU and the mobile Volta GPU, respectively.

RBPN VESPCN VEFUSION OURS-S OURS-M

PSNR (dB) 27.08 24.78 26.95 27.43 27.50
SSIM 0.860 0.787 0.854 0.873 0.872

Time (H) 36.10 0.55 1.00 1.00 1.00
Time (M) 7.24 0.13 1.00 1.00 1.00

OURS-S has similar SSIM but lower PSNR. OURS-M
achieves a 36.10× speedup against RBPN on 2080 Ti
and 7.24× speedup on the mobile GPU, showing the ef-
fectiveness of our lightweight flow estimation algorithm,
which executes in about 10µs on GPUs. OURS-M and
OURS-S have virtually the same speed, because transform-
ing point clouds into one frame has negligible overhead.
VEFUSION has the same speed as our methods with lower
quality. VESPCN is the fastest, but has a much lower
super-resolution quality due to a simpler CNN.

Table 2. Deblurring comparison.
ESTRNN DEEPGYRO VEFUSION OURS-S OURS-M

PSNR (dB) 34.78 31.20 35.22 35.50 36.61
SSIM 0.945 0.806 0.949 0.950 0.957

Time (H) 1.78 6.20 1.00 1.00 1.00
Time (M) 1.08 11.96 1.00 1.00 1.00

Deblurring Tbl. 2 compares different methods on video
deblurring. Our method, OURS-M, achieves the highest
quality both in terms of PSNR and SSIM. Compared to
ESTRNN, OURS-M achieves 1.83 higher in PSNR and
0.012 higher in SSIM. Our methods are also faster than
the baselines on both GPUs. The speedup on ESTRNN is
not significant, because the flow estimation in ESTRNN is
small to begin with (7.7% on the mobile GPU). DEEPGYRO
has the lowest task quality and the slowest speed. Its low
quality is attributed to the fact that it deblurs using a single
image, while other methods use temporal information.

Table 3. Denoising comparison.
DVDNET VEFUSION OURS-S OURS-M

PSNR (dB) 27.19 31.60 33.34 33.89
SSIM 0.838 0.951 0.953 0.961

Time (H) 187.41 1.00 0.99 1.00
Time (M) 68.97 1.00 0.99 1.00

Denoising For video denoising, OURS-M achieves the
highest quality both in PSNR and SSIM, as shown in Tbl. 3.
OURS-M improves upon VEFUSION and DVDNET by a
large margin — 2.29 dB and 6.70 dB in PSNR, respectively.
Meanwhile, OURS-M has a 187.4× speedup compared to
DVDNET on 2080 Ti and 69.0× speedup on the mobile
GPU. The speedup comes from avoiding the expensive flow
estimation algorithm DeepFlow [34] used in DVDNET.
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Fig. 4. Visual comparison of different methods on various visual enhancement tasks.

Subjective Comparison Our approach is also visu-
ally better than the baselines upon subjective comparisons.
Fig. 4 shows the visual comparisons on different tasks. The
improvements from the baselines to OURS-M are the most
significant. OURS-M is best at revealing details, such as
the roads and bushes, because of its dense motion obtained
from merging point clouds.

5.2. Flow Estimation Accuracy and Speed

Our lightweight flow estimation algorithm provides ac-
curate flow information. To demonstrate the effectiveness
of the estimated flows, we warp frames in the dataset using

the estimated flows and calculate the PSNR. Tbl. 4 shows
the results across different flow estimation algorithms used
in different networks. We also show the speed of different
flow estimation algorithms normalized to that of ours.

Table 4. Flow estimation comparison. Execution time is normal-
ized to that of ours.

DVDNET VESPCN RBPN OURS

PSNR (dB) 14.71 16.64 22.68 18.74

Time (H) 4147.5 1420.0 98694.0 1.0

Judged by the quality of warped images, our flow esti-
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mation method is better than the estimation methods used
in DVDNET and VESPCN, as shown in Tbl. 4. This also
explains the task quality difference. Interestingly, while
the frames warped using our flow estimation have a lower
PSNR compared to those in RBPN, we are able to achieve
a better super-resolution quality than RBPN. The reason is
that our method uses the warped frames to extract temporal
features (Fig. 2) while RBPN uses the actual flow values.

Our flow estimation is at least three orders of magnitude
faster than other methods used in baselines. This explains
the overall speed difference shown earlier, since our task-
specific layers are similar to those used in the baselines.

5.3. Egomotion from Point Cloud Registration

In this section, we show that more accurate egomotion
from point cloud registration can further improve task ac-
curacy. Here, we compare two variants that both use single
point cloud for flow estimation:

• OURS-S (I): obtains the egomotion from IMU.

• OURS-S (R): obtains the egomotion from point cloud
registration.

Table 5. Comparison of different sources of egomotion. I and R
denote obtaining egomotion from IMU and point cloud registra-
tion, respectively.

PSNR (dB) Super-resolution Deblurring Denoising

OURS-S (I) 27.43 35.69 33.34
OURS-S (R) 27.32 35.91 33.45

Tbl. 5 shows the acccuracy comparison between
OURS-S (I) and OURS-S (R) on three vision tasks.
OURS-S (R) generally has higher quality than OURS-S (I),
because the former uses registration to generate a more ac-
curate camera egomotion (compared to using the IMU).
Meanwhile, limited accuracy improvements also show that
a rough egomotion from IMU is sufficient for DNN model
to learn the correlation between input pixel values and esti-
mated flows.

5.4. Sensitivity Study

We use super-resolution as an example to study how
the block size used in blocked warping and the number of
merged point clouds used in flow estimation influence the
task quality. Other tasks have a similar trend.

Block Size Larger blocks initially improve the task
quality. Tbl. 6 shows how the super-resolution quality
varies with the block size. When the block size initially
increases from 1× 1 to 3× 3, the PSNR improves because
the flow density increases. Increasing the block size further
degrades the quality. This is because with large blocks more

Table 6. Sensitivity of the block size and the number of merged
point clouds on super-resolution on OURS-S.

Patch size 1× 1 3× 3 5× 5 7× 7

PSNR (dB) 27.02 27.43 27.29 27.26

# of point clouds 1 3 5 7

PSNR (dB) 27.43 27.47 27.50 27.52

flows are duplicated from neighbor pixels rather than calcu-
lated using depth information, reducing the flow accuracy.

Number of Merged Point Clouds Merging more point
clouds leads to denser and more accurate flow estimation
and thus a higher the task quality. This is evident in Tbl. 6,
which shows that the PSNR of increases as the number of
merged point clouds increases.

6. Conclusion
We demonstrate a general framework to build fast and

accurate video enhancement algorithms. The key is to assist
video enhancement with an accurate depth-driven flow esti-
mation algorithm. Our flow estimation is accurate because
it leverages the accurate depth information generated from
LiDARs based on a physically-plausible scene model. We
show strategies to overcome the sparsity of LiDAR point
clouds. Our flow estimation is lightweight because it relies
on only simple geometric transformations, enabling lean
end-to-end algorithms. We propose a generic framework
that integrates the flow estimation with task-specific layers
in a plug-and-play manner. We achieve over an order of
magnitude speedup while improving task quality over com-
peting methods. While fusing point clouds with images has
been extensively studied lately in vision tasks, we show that
using point clouds for flow estimation, rather than simply
fusing them with images, achieves better performance.

An implication of our framework is that the point cloud
data must be attached to the video content, which could
potentially increase the storage and transmission overhead.
However, the overhead is likely small, because the size of
point cloud data is smaller than that of images. For instance,
one point cloud frame obtained from a high-end Velodyne
HDL-64E LiDAR [30] is about 1.5 MB, whereas one 1080p
image is about 6.0 MB in size. The overhead will become
even smaller in the future as point cloud compression tech-
niques become more mature [11, 17, 18].
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