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Abstract

In this paper, we propose an algorithm to interpolate be-
tween a pair of images of a dynamic scene. While in the past
years significant progress in frame interpolation has been
made, current approaches are not able to handle images
with brightness and illumination changes, which are com-
mon even when the images are captured shortly apart. We
propose to address this problem by taking advantage of the
existing optical flow methods that are highly robust to the
variations in the illumination. Specifically, using the bidi-
rectional flows estimated using an existing pre-trained flow
network, we predict the flows from an intermediate frame to
the two input images. To do this, we propose to encode the
bidirectional flows into a coordinate-based network, pow-
ered by a hypernetwork, to obtain a continuous representa-
tion of the flow across time. Once we obtain the estimated
flows, we use them within an existing blending network to
obtain the final intermediate frame. Through extensive ex-
periments, we demonstrate that our approach is able to pro-
duce significantly better results than state-of-the-art frame
interpolation algorithms.

1. Introduction
With the widespread availability of smartphones featur-

ing increasingly powerful cameras, taking professional high
resolution photos has become a simple press of a button.
Often, people take many pictures in search for the best rep-
resentation of a moment in terms of the expression, pose,
lighting, and exposure. Interpolating these photos creates a
video with an exciting effect that provides an appealing way
of remembering key moments.

Existing video interpolation approaches [20, 42] often
struggle to handle these cases because of significant cam-
era and scene motion. Recently, Reda et al. [47] propose
to overcome this challenge by leveraging a multi-scale fea-
ture extraction and flow estimation strategy. Specifically,
they use a series of convolutional layers to construct a fea-
ture pyramid and use it to estimate a set of two flows from
the in-between frame to the two input images at multiple
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Figure 1: We propose an approach to interpolate between
two images of a dynamic scene. As shown on the top, the
two images could often have significantly different light-
ings (even if taken shortly apart). Note the shadows on the
ground in the two input images. Existing approaches, like
Reda et al. [48] (FILM), train their system on datasets with
no lighting variations. As a result, they are not able to effec-
tively estimate the required flows and consequently generate
final intermediate images with significant artifacts. We uti-
lize fixed pre-trained flow networks that are highly robust to
the illumination changes. As shown, our method is able to
generate high-quality intermediate flows and results.

scales. These flows are then used to warp the two images
along with their features at each scale to the frame of in-
terest. The warped features and images are then aggregated
and combined to produce the final frame.

While this approach produces interpolated results with
high quality, it is limited to cases where the two images
have consistent brightness and illumination. However, in
practice, the two images could have different brightness and
illumination even if taken shortly apart, as shown in Fig. 1.
Unfortunately, the approach by Reda et al. [47] is not able to
handle these cases, producing results with unnatural motion
and severe artifacts.
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Our key observation is that the source of the problem
is that their estimated flows degrade quickly in presence of
illumination changes (see Fig. 1). This is largely because
their network is trained on video datasets [60, 52] where
the frames are captured in quick succession, and thus have
consistent brightness. Therefore, the images with lighting
variations fall outside the distribution of their training data.
On the other hand, their blending, even though trained on
video datasets, is usually able to generate pleasing interme-
diate images. The key to generating high-quality images
thus lies in improving the quality of the estimated flows.

In this paper, we propose to address this problem by uti-
lizing a pre-trained optical flow network. Existing optical
flow methods [58, 61] are highly robust to even significant
lighting changes, and thus are suitable for our application.
The major challenge here is that these methods only esti-
mate the flow between two images, but we need the flows
from an intermediate frame to the two input images.

To overcome this challenge, we propose a per-scene opti-
mization method (no training on large datasets) by utilizing
implicit neural networks [35, 54]. Our key idea is that by
encoding the bidirectional flows between the two input im-
ages into a coordinate-based network, we essentially obtain
a continuous representation of flows across time. There-
fore, we can use such a network to estimate the flows at any
in-between time coordinate. To be able to properly estimate
the intermediate flows, we use a hypernetwork that takes the
time coordinate and estimates the weights of a coordinate-
based neural network. The coordinate-based network then
estimates the flow at each pixel by taking the pixel coordi-
nate as the input. We optimize the hypernetwork using the
bidirectional flows and then estimate any in-between flows
by passing the appropriate time coordinate to this optimized
hypernetwork. We then use these intermediate flows with
Reda et al.’s blending network to generate the final inter-
mediate images.

We show that our method outperforms existing ap-
proaches on a wide range of challenging scenes with large
lighting variations and motions (see Figs. 1 and 4 and the
supplementary video). Furthermore, we justify our design
choices through extensive experiments.

2. Related Work

In this section, we review the frame interpolation meth-
ods, as well as the approaches in image morphing, a rele-
vant but different problem. We also briefly discuss implicit
neural representations as we utilize them in our work.

2.1. Frame Interpolation

In recent years, deep learning methods have become
popular due to their effectiveness in handling challenging
scenarios like scenes with large complex motions. Niklaus

and Liu [37] use a pretrained flow network to warp the ex-
isting frames and then use a context aware blending net-
work to synthesize the interpolated frame. Similarly, Jiang
et al. [25] generate interpolated frames at arbitrary time by
estimating the flows to the intermediate frame. Wenbo et
al. [3] utilize a depth estimation network to handle the oc-
clusions. Niklaus and Liu [38] use forward warping with a
synthesis network to generate interpolated frames.

Moreover, Park et al. [41] propose a model based
on bilateral motion estimation to generate high quality
warped frames for blending. They further enhance this ap-
proach [42] by computing asymmetric bilateral fields to ac-
count for non-linearities in the scene. Huang et al. [20]
directly estimate the intermediate flows by using a privi-
leged distillation scheme during training. Reda et al. [47]
propose a unified network consisting feature pyramid and
flow extraction with fusion components to handle scenes
with large motions. This method along with a few other
recent approaches [29, 19] focus on improving the quality
on high resolution videos. Furthermore, a couple of ap-
proaches [32, 48] propose to improve the performance of
the supervised methods by further training the system in an
unsupervised manner.

In contrast to these methods, several approaches pro-
pose to directly estimate the final image without explic-
itly estimating the required flows. For example, Niklaus et
al. [39, 40] use adaptive convolution kernels to generate the
intermediate frame from the neighboring images. Choi et
al. [11] use PixelShuffle [51] with channel attention [59] to
directly synthesize the middle frame. Gui et al. [16] blend
deep features and Kalluri et al. [26] utilize 3D space-time
convolutions for interpolation. Unfortunately, all of these
techniques, as well as the flow-based methods, train their
system on sequences with consistent illumination, and thus
are not suitable for our application.

Related to our work, Bemana et al. [5] learn an implicit
mapping between view-time-light coordinates and input im-
ages by optimizing a convolutional network. However, they
use a loss between the input and warped images for opti-
mization, and thus their main assumption is brightness con-
stancy which is invalid in our cases. We address this prob-
lem by utilizing a pre-trained flow network that is highly
robust to illumination changes.

2.2. Morphing

Similar to our application, image morphing methods pro-
duce a series of images to smoothly transition between two
input images. Most algorithms [4, 8, 30, 49, 31] achieve this
by first computing a set of sparse correspondences between
the two images, and then using them to warp the images
to an intermediate frame. These warped images are then
combined to create a morphed image. These methods are
typically best suited for images of different scenes. Since
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they typically utilize sparse correspondences, their transi-
tions for our examples (images of the same dynamic scene)
are not sufficiently detailed to produce appealing effects.

Several approaches [50, 12] propose to handle this appli-
cation using patch-based optimization systems. Similarly,
these methods are suitable for different objects/scenes and
are not able to produce visually pleasing result for images of
the same object/scene. Recent breakthroughs in deep learn-
ing and generative adversarial networks [6, 27] have en-
abled efficient and high quality morphing by interpolating
in the latent space [1, 21, 44]. However, these approaches
mostly work for a single or few objects (e.g., faces, cats,
cars) and are not general.

2.3. Implicit Neural Representations

A large number of recent methods have used neural net-
works as a memory-efficient continuous function approx-
imator for implicit representation of images [54, 57, 36,
15, 9] and videos [7, 62, 54], 3D objects via signed dis-
tance functions [24, 46, 43, 2, 53, 34, 54] or occupancy
networks [33, 10], and radiance fields [35, 14, 22, 18, 56].
Novel input encodings [35, 57] and activation functions [54]
have been instrumental in enabling the encoding of high fre-
quency details in compact networks for these applications.
We build upon these advances, but use implicit neural rep-
resentations for optical flow interpolation.

3. Method

Given a pair of images of a dynamic scene, It0 and
It1 , captured under different conditions, e.g., different ex-
posures, the goal of our method is to reconstruct an im-
age at time t between the two images, where t ∈ [t0, t1].
Most existing frame interpolation methods, and in particular
the state-of-the-art method of Reda et al. [47], break down
this process into flow estimation and blending components.
Specifically, they first compute a set of flows from the inter-
mediate frame at time t to the two input images, Ft→t0 and
Ft→t1 . They then use these flows to backward warp the im-
ages/features to the intermediate frame and combine them
to reconstruct the final image It.

Unfortunately, these approaches are not able to properly
handle cases with illumination variation mainly because the
quality of the estimated flows degrades quickly in absence
of brightness constancy. This is expected as these methods
train their system on video datasets that contain minimal
lighting variations between the neighboring frames.

To address this problem, we propose to utilize the power-
ful optical flow estimation methods [58, 61] that are highly
robust to these illumination changes. The major challenge
is that using these optical flow methods, we can only esti-
mate the bidirectional flows between the inputs, Ft0→t1 and
Ft1→t0 , but we require estimating the intermediate flows.

We propose to address this challenge by implicitly inter-
polating the bidirectional optical flows using a coordinate-
based neural network. Once the intermediate flows are es-
timated, we incorporate them in the blending network by
Reda et al. [47] to estimate the final image. The overview
of our system is shown in Fig. 2. Next, we discuss our im-
plicit flow interpolation and blending approaches.

Discussion: One might attempt to train existing video in-
terpolation methods on datasets with lighting variations to
handle this application. However, constructing a dataset of
input images with realistic illumination changes and their
corresponding intermediate ground truth image is difficult.
Moreover, even if the dataset can be reconstructed, it might
be challenging to design a network that can outperform
state-of-the-art optical flow methods. Finally, by using ex-
isting flow estimation methods, we have the ability to re-
place them with newer and better methods to further im-
prove our results in the future. We also note that we con-
sidered forward warping, instead of backward warping, us-
ing Niklaus et al.’s method [38] to avoid the need for com-
puting the intermediate flows. However, their approach
requires computing an importance mask to properly han-
dle the overlapping regions. Unfortunately, this importance
mask is computed with the assumption of brightness con-
stancy which is invalid in our cases.

3.1. Implicit Flow Interpolation

Our goal here is to estimate the intermediate flows,
Ft→t0 and Ft→t1 , from the bidirectional flows between the
two input images, Ft0→t1 and Ft1→t0 , generated by an ex-
isting pre-trained flow network. In our system, we use the
optical flow method of Teed et al. [58] because of its abil-
ity to generate high quality flows in challenging cases. As
discussed, we propose to estimate the intermediate flows
implicitly through a coordinate-based neural network.

A coordinate-based network finds a mapping between an
input coordinate and the corresponding output at that coor-
dinate, i.e., y = fθ(x), where θ refers to the weights of the
network. This network can then be optimized on a set of
input output pairs (xi,yi) by minimizing a loss to find opti-
mal network weights θ. Through this optimization, the data
will be encoded into the weights of the neural network. The
key idea is that, once this optimization is performed, we can
evaluate the network at any in-between coordinate to obtain
the corresponding output. The network will essentially in-
terpolate the output at the observed coordinates to generate
the intermediate results.

In our application, the input coordinates are 3-
dimensional, x = (x, y, t), where x and y are the spatial and
t is the time coordinate. The output, on the other hand, is a
2D flow (in horizontal and vertical directions) at each coor-
dinate y = F (x, y, t). Note that we use flows that are nor-
malized by the difference in the time coordinates as the out-
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Figure 2: We provide an overview of our approach. On the left, we perform an optimization to encode the bidirectional flows
estimated using a pre-trained flow network into our system, consisting of a hypernetwork and a coordinate-based network
(SIREN). Once the flows are encoded, we estimate the intermediate flows through our system and use these flows within
FILM’s blending system [48] to generate the final image, as shown on the right. Here, “Pre-trained” means the components
are trained on a large dataset in an offline manner and are fixed at run-time. “Fixed-Operations” refers to untrainable and
fixed downsampling (flow pyramid) and bilinear interpolation (warping). Finally, “Optimized” indicates that the component
(hypernetwork) is trained at run-time on the example at hand.

put to our network, i.e., F (x, y, t0) = Ft0→t1(x, y)/(t1 −
t0) and F (x, y, t1) = Ft1→t0(x, y)/(t0 − t1). This is be-
cause the original flows are in opposite directions (t0 to t1
and t1 to t0) and cannot be interpolated. By normalizing the
flows with their coordinate difference the direction of the
two flows become consistent. We encode these normalized
flows into our coordinate-based network using the follow-
ing objective:

θ∗ = argmin
θ

w∑
i=1

h∑
j=1

1∑
k=0

∥fθ(xi, yj , tk)−F (xi, yj , tk)∥2,

(1)
where w and h are the width and height of the images (and
similarly the flows), respectively.

Once this optimization is performed, we can evaluate
the network at any arbitrary in-between time coordinate
t ∈ [t0, t1] to estimate the intermediate flow. Note that the
network produces a normalized flow at each coordinate. We
then convert this to the two intermediate flows as follows:

Ft→t0(x, y) = (t− t0)× fθ(x, y, t)

Ft→t1(x, y) = (t− t1)× fθ(x, y, t). (2)

For our network, we use SIREN, as proposed by Sitz-
mann et al. [55], with 5 hidden layers each containing 128
neurons. Moreover, we set the frequency of the sinosuidal
activation functions to 10. As shown in Fig. 3, this approach
(Single SIREN) is not able to properly interpolate the two
input flows. This is because a coordinate-based network,
generates the in-between results by “averaging” the data at
the observed nearby coordinates. Therefore, the network re-
constructs the intermediate flow by combining the two flows
(t0 and t1) at the same spatial coordinates. Essentially, the

F ( : , : , t0 )

Tw
o

SI
RE

N
s

H
yp

er
ne

tw
or
k

Si
ng

le
SI
RE

N

F ( : , : , t1 )F ( : , : , t0.5 )

Figure 3: We demonstrate the effectiveness of our approach
through a synthetic example. Here, a circle is moving from
left to right, and thus the flows at the two input coordi-
nates, t0 and t1, contain a circle at different positions. From
each case, we show the encoded input flows and the inter-
polated flow at time t0.5. By encoding both flows into a
single SIREN, the network simply produces an “average”
of the two flows. Encoding the flows into two independent
SIRENs, without an underlying hypernetwork, and then in-
terpolating their weights is not effective as the two flows are
encoded separately. Using a hypernetwork, we are able to
correctly produce the interpolated flow.

network generates the “average” of the two encoded flows
resulting in blurry intermediate flows. We address this prob-
lem by encoding the time coordinate using a hypernetwork,
as discussed next.

3.2. Time Encoding Through A Hypernetwork

To properly interpolate the intermediate flow, we need to
“average” the shape of the two input flows. Our main ob-

221



servation is that by encoding data into a coordinate-based
network, the shape will be essentially represented using the
weights of the network. Therefore, we can encode the nor-
malized bidirectional flows into two separate coordinate-
based networks. The networks in this case, only takes the
spatial coordinates as the input fθ(xi, yi) and the two net-
works are independently optimized to encode the flows at
t0 and t1. The optimized weights, θ0 and θ1, can then be
linearly interpolated to obtain the representation of the in-
termediate flow θt. The interpolated weights can be used to
generate the in-between flow. However, as shown in Fig. 3,
this strategy (Two SIRENs) does not produce the desired in-
terpolation as the two flows are independently encoded and
the two representations, θ0 and θ1, are not interpolatable.

To address this problem, we propose to estimate the
weights of the coordinate-based network using a hypernet-
work [17] that takes the time coordinate as the input, i.e.,
θ = fϕ(t). We encode both normalized flows into our sys-
tem through the following objective:

ϕ∗ = argmin
ϕ

w∑
i=1

h∑
j=1

1∑
k=0

∥fθ(xi, yj)− F (xi, yj , tk)∥2,

where θ = fϕ(tk). (3)

In this case, we encode the two flows simultaneously
and since the representations (weights θ0 = fϕ(t0) and
θ1 = fϕ(t1)) are estimated using a single hypernetwork,
they are closer together in the high dimensional space, and
thus are interpolatable. The main difference with respect to
Two SIRENs strategy is that, here, the estimated represen-
tations (weights) are produced by the same network (hyper-
network). While, in theory, ϕ∗ that produces the same θ0
and θ1 as in the two SIREN strategy is a valid minimizer
of Eq. 3, by using a small hypernetwork and initializing the
weights to small values, we usually converge to a solution
that produces highly correlated SIREN weights in practice.

Once the hypernetwork is optimized, we generate the fi-
nal intermediate flows by evaluating the hypernetwork at
the in-between time coordinate θt = fϕ(t) and using the
calculated weights in Eq. 2. We also experimented with
first estimating the weights at t0 and t1 using our hypernet-
work (i.e., θ0 = fϕ(t0) and θ1 = fϕ(t1)) and then linearly
interpolating them to obtain θt, but the results were similar.

Our hypernetwork is composed of a set of fully-
connected networks with one hidden layer of size 128
with ReLU activation that maps the time coordinate t to
the weights in each layer of our coordinate-based network
(SIREN). Moreover, we use t0 = 0 and t1 = 0.1 to further
force the network to produce highly correlated weights (see
the effect of coordinate distance in Fig. 7).

In summary, using the small hypernetwork along with
the close time coordinates, we confine the space of possible
weights, which is essential for high-quality interpolation.
As shown in Fig. 3, our system with a hypernetwork is able

to properly encode the two flows and reconstruct an inter-
mediate flow.

3.3. Blending

As discussed, we use our interpolated flows with the pre-
trained blending network by Reda et al. [47] (FILM) to gen-
erate the final interpolated images. While FILM’s blending
system is trained on standard datasets with mostly constant
illumination, we observe that it produces visually pleasing
interpolation between images with varying lighting. To in-
corporate our estimated intermediate flows into their sys-
tem, we first generate a flow pyramid by downsampling our
estimated intermediate flows to multiple scales. We use bi-
linear interpolation to downsample the flows and divide the
magnitude of the flows by the scale factor. Once we ob-
tain the pyramid of the two flows, we use them to warp the
feature pyramid (calculated with FILM’s feature extractor),
as well as the input images, to the intermediate frame. Fi-
nally, we pass all the warped features and images to FILM’s
fusion network to obtain the final result.

4. Results
We implement our model in PyTorch [45] and utilize

Torchmeta [13] for our hypernetwork. We leverage pre-
trained flow estimation network of Teed et al. [58] (RAFT)
and the blending network by Reda et al. [47] (FILM).
Our solution uses the sintel checkpoint for RAFT and
the style checkpoint for FILM’s blending. Specifically,
RAFT’s sintel checkpoint has been trained on pairs of im-
ages with their corresponding ground truth flow from the
Sintel dataset [23]. RAFT applies various data augmenta-
tions to ensure robustness to a variety of distortions. We
optimize our model using Adam [28], with the default pa-
rameters β1 = 0.9 and β2 = 0.999. We train for 10K itera-
tions on a single A100 GPU using a learning rate of 1e−6.

4.1. Comparisons

We compare our algorithm to state-of-the-art video
frame interpolation approaches by Park et al. [42] (ABME)
and Reda et al. [47] (FILM). We use the source code pro-
vided by the authors for both approaches.

Quantitative: Numerical evaluation of the quality of the
interpolated images is challenging as there are no datasets
containing input images with lighting variations and their
corresponding ground truth intermediate images. While we
could potentially use existing datasets and apply various
perturbations (e.g., hue) to the input images, constructing
the corresponding ground truth intermediate image remains
a challenge as these perturbations are non-linear.

Therefore, we only numerically evaluate the quality of
the intermediate flows. To do so, we use the two video
frame interpolation datasets of Xiph 2K and 4K [38], as
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Table 1: We numerically compare our interpolated flows
against the ones by Reda et al. [47] in terms of average end-
point-error (EPE). For these comparisons we use Xiph 2K
and 4K [38], as well as Sintel [23].

Xiph 2K Xiph 4K Sintel

FILM 13.97 37.34 12.9

Ours 3.4 17.46 5.16

well as the Sintel dataset [23]. For each input image pair,
we apply various photometric augmentations by randomly
perturbing brightness, contrast, saturation, and hue. We use
Pytorch’s COLORJITTER with brightness 0.4, contrast 0.4,
saturation 0.4, and hue 0.5/π. We then use the perturbed im-
ages as the input to estimate the intermediate flows which
are then compared to the reference flows. The reference in-
termediate flows for the Sintel dataset are provided, but for
Xiph 2K and 4K we simply use the RAFT flows between
the intermediate and two input clean (unperturbed) images
as the reference. For Xiph 2k and 4k, we skip six frames
when creating the image pairs (e.g. 1-7, 2-8, etc.) to in-
crease the amount of motion of the scenes, while we skip
one frame for the Sintel dataset.

Table 1 shows the comparison against the approach by
Reda et al. [47] in terms of average end-point error (EPE).
Note that we do not include the method by Park et al. [42]
since their approach does not explicitly estimate flows. As
seen, our interpolated flows are significantly better than the
estimated intermediate flows by Reda et al. We show vi-
sual comparisons on a few images from all datasets in the
supplementary material.

Qualitative: We perform qualitative comparisons on sev-
eral challenging scenes captured using a smartphone at res-
olution 2016 × 1512. To show the robustness of our ap-
proach, we capture both indoor and outdoor scenes with
image pairs taken at different times of the day or seconds
apart. We compare the estimated middle image by all the
approaches on 6 scenes in Fig. 4, but encourage the readers
to see our supplementary video.

We begin by examining the BABY scene which con-
tains non-rigid motion in an indoor setup. The baby tran-
sitions from a shaded curious pose to a partially lit smi-
ley expression. This scene illustrates how natural light-
ing can change significantly even for photos taken seconds
apart. ABME produces blurry results in the moving regions.
While FILM generates a sharper interpolation, it deforms
the baby’s head. Our method preserves the baby’s appear-
ance, producing a realistic intermediate image in terms of
expression, motion, and lighting.

The HOUSE scene demonstrates our method’s ability
of interpolating images under extremely different lighting
conditions. The two images are captured from a mostly
static scene, but at different times of the day (morning
and evening). ABME generates a blurry interpolation with

ghosting artifacts, while FILM produces an unnatural inter-
polation by introducing dark patches throughout the image.
Our method, on the other hand, is able to interpolate in-
termediate images with reasonable quality because of the
ability of our system to interpolate high quality flows.

The HUG scene contains both moving subjects and sig-
nificant camera motions. The slight lighting variations on
the trees and shadows combined with the large motions
make this scene extremely challenging for the other ap-
proaches. In contrast, RAFT is able to estimate high quality
flows and our approach properly interpolates the intermedi-
ate flows to produce results without objectionable artifacts.
Similarly, the LAMP scene, while static, contains significant
camera motion and has been captured with different expo-
sures (see the sky in the input images) making it a challeng-
ing scene for the other methods. Although our approach
produces slight ghosting artifacts around the object bound-
aries, our results are still plausible and significantly better
than the other techniques.

The TREE scene contains significant subject motions and
lighting variations (see the building roof and shadows in
the input). ABME blurs out the entire frame, while FILM
severely distorts the background. In contrast, our approach
produces a high-quality interpolation by smoothly warping
the subject while maintaining a coherent background. Fi-
nally, although the LADY is a relatively easy scene, ABME
produces a blurry background and FILM is not able to prop-
erly reconstruct the gaps in the chair. Our approach, how-
ever, produces a high quality results without any objection-
able artifacts.

4.2. Ablation Experiments

Effect of Hypernetwork: We begin by evaluating the ef-
fect of the hypernetwork on the quality of the interpolated
flows. In Fig. 3, we show its effect on a synthetic example.
The effect on a real example is shown in Fig. 5. As seen,
while all the approaches are able to encode the input flows
at times t0 and t1 with similar quality, only our method with
a hypernetwork is able to properly reconstruct the interpo-
lated flow.

Effect of ω: Next, we evaluate the effect of the frequency
ω of the sinusoidal activation functions of SIREN in Fig. 6.
The frequency is a key factor in properly encoding the data
into a coordinate-based network. Higher frequencies are
more suitable for signals containing a lot of details, while
lower frequencies are more appropriate for smooth signals.
As shown, frequencies between 8 to 12 produce reasonable
results in our cases. We use ω = 10 in our implementation.

Effect of Time Coordinates: In Fig. 7, we show the ef-
fect of changing the time coordinates (t0 and t1), which are
used as inputs to our hypernetwork. As seen, with a large
distance between the two coordinates (0.2 and 0.5), our sys-
tem is not able to produce high-quality intermediate flows.
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Figure 4: We show comparisons against the state-of-the-art methods by Park et al. [42] (ABME) and Reda et al. [48] (FILM).
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Figure 5: We evaluate the impact of the hypernetwork on
the quality of the interpolated flow on a real example. All
the approaches properly encode the flows at t0 and t1, but
only our approach with the hypernetwork can produce an
interpolated flow with high quality.

ω = 5 ω = 8 ω = 10 ω = 12 ω = 15

Figure 6: Effect of varying ω of SIREN on the interpolated
flow at t0.5.

This is because, in this case, the hypernetwork will not
provide sufficient constraints and the estimated coordinate-
based network weights for the two coordinates (θ0 and θ1)
become independent. On the other hand, when the coor-
dinates are too close to each other (distance of 0.02), the
hypernetwork becomes overly restrictive and cannot esti-
mate proper weights. Distances of 0.1 and 0.05 are ideal
and produce the best quality.

Effect of Blending: In our approach, we use Reda et al.’s
blending network [48] (FILM). However, we could poten-
tially use the blending network of any other approach that
breaks down the process into two stages of flow estimation
and blending. In Fig. 8, we compare the quality of the inter-
polated images using FILM’s blending, with that of Huang
et al. [20] (RIFE). Note that, in both cases, we use our inter-
polated flows as the input to their blending system. As seen,
while both approaches produce reasonable results, FILM’s
blending is generally of higher quality thanks to the percep-
tual Gram matrix loss, used during their training.

t1 = 0.5 t1 = 0.2 t1 = 0.1 t1 = 0.05 t1 = 0.02

Figure 7: Effect of changing the distance between the input
time coordinates t0 and t1 on the quality of the interpolated
flows. In all the cases, t0 is equal to 0.

RIFE Blending FILM Blending (Ours)

Figure 8: Comparison between the blending approaches by
Huang et al. [20] (RIFE) and Reda et al. [48] (FILM) when
used with our estimated flows.

4.3. Limitations and Future Work

Our method uses the flows estimated by RAFT [58], and
thus the quality of our results depends on the accuracy of
these predicted flows. While RAFT produces high qual-
ity flows in a large number of cases, it could potentially
fail on challenging scenarios. In these cases, the flow ar-
tifacts may appear in our final results. However, since our
approach allows us to use any optical flow method, as better
flow estimation approaches are developed in the future, we
can simply use them to further improve our results.

We also explored the idea of directly interpolating the
images, instead of the flows, but were not successful based
on our initial experiments. We believe this is because im-
ages are significantly more detailed than the optical flows.
We leave a thorough investigation of this idea to the future.

5. Conclusion
We presented an approach to interpolate between a pair

of images of a dynamic scene with lighting variations. We
propose to do so by utilizing existing optical flow methods.
To calculate the flows between an intermediate frame and
the two input images, we interpolate the bidirectional flows
estimated using a pre-trained flow network in an implicit
manner. Specifically, we encode the bidirectional flows into
a coordinate-based network and estimate the flows at any
time, by passing the appropriate coordinate as the input. We
use the estimated flows within an existing blending network
to produce the final interpolated image. We show that our
method is able to produce significantly better results than
the state of the art on a wide range of challenging scenes.
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Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019.

[46] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In European Conference on Computer Vision,
pages 523–540. Springer, 2020.

[47] Fitsum Reda, Janne Kontkanen, Eric Tabellion, Deqing Sun,
Caroline Pantofaru, and Brian Curless. Film: Frame inter-
polation for large motion. arXiv preprint arXiv:2202.04901,
2022.

[48] F. Reda, D. Sun, A. Dundar, M. Shoeybi, G. Liu, K. Shih,
A. Tao, J. Kautz, and B. Catanzaro. Unsupervised video in-
terpolation using cycle consistency. In 2019 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
892–900, Los Alamitos, CA, USA, nov 2019. IEEE Com-
puter Society.

[49] Steven M. Seitz and Charles R. Dyer. View morphing. In
Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, page 21–30, 1996.

[50] Eli Shechtman, Alex Rav-Acha, Michal Irani, and Steven M.
Seitz. Regenerative morphing. In CVPR, pages 615–622,
2010.

[51] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz,
Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016.

[52] Hyeonjun Sim, Jihyong Oh, and Munchurl Kim. Xvfi: ex-
treme video frame interpolation. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2021.

[53] Vincent Sitzmann, Eric R. Chan, Richard Tucker, Noah
Snavely, and Gordon Wetzstein. Metasdf: Meta-learning
signed distance functions. In arXiv, 2020.

[54] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-

227



tions with periodic activation functions. Advances in Neural
Information Processing Systems, 33:7462–7473, 2020.

[55] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
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