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1Computer Vision Lab, ETH Zürich, Switzerland 2CAIDAS, University of Würzburg, Germany 3KU Leuven, Belgium

{dario.fuoli, martin.danelljan, vangool}@vision.ee.ethz.ch, radu.timofte@uni-wuerzburg.de

Abstract

Video super-resolution (VSR) has many applications that
pose strict causal, real-time, and latency constraints, in-
cluding video streaming and TV. We address the VSR prob-
lem under these settings, which poses additional important
challenges since information from future frames is unavail-
able. Importantly, designing efficient, yet effective frame
alignment and fusion modules remain central problems. In
this work, we propose a recurrent VSR architecture based
on a deformable attention pyramid (DAP). Our DAP aligns
and integrates information from the recurrent state into the
current frame prediction. To circumvent the computational
cost of traditional attention-based methods, we only attend
to a limited number of spatial locations, which are dynami-
cally predicted by the DAP. Comprehensive experiments and
analysis of the proposed key innovations show the effective-
ness of our approach. We significantly reduce processing
time and computational complexity in comparison to state-
of-the-art methods, while maintaining a high performance.
We surpass state-of-the-art method EDVR-M on two stan-
dard benchmarks with a speed-up of over 3×.

1. Introduction
Video super-resolution (VSR) is the problem of restor-

ing spatial high-frequency components from low-resolution
video frames. In contrast to single image super-resolution,
where methods are bound to rely on image priors, VSR of-
fers the opportunity to utilize additional observations from
adjacent frames and long-range temporal correlations to re-
construct a single frame. For this reason, effective frame
alignment and fusion of salient features along the temporal
axis constitute the main challenges in VSR.

Many practical applications, including TV and video
streaming, depend on the ability to run algorithms on-
line and in real-time, where minimal latency and high-
speed processing are essential. However, hard time con-
straints in online video processing pose major challenges
for learned VSR, as high performance strongly correlates
with computational complexity in deep neural networks
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Figure 1: Runtime vs. performance on UDM10 [33] (run-
time in log-scale). Disk areas correspond to number of pa-
rameters for each method. Our method DAP-128 achieves
highly competitive performance with high speed (38ms per
frame) and minimal complexity. Light gray highlights the
Pareto dominant region of DAP-128.

(DNN). Contrary to many other computer vision problems,
it is thus important to carefully optimize the network’s per-
formance while minimizing architectural complexity. In ad-
dition to fast inference, a tailored solution to the problem
of online VSR is required. Contrary to many prior works
[9, 2, 3, 14, 28, 18, 12], we therefore address the problem
of designing a strictly causal VSR approach. This imposes
an additional challenge, since causality prohibits the access
to information from future frames.

Designing effective yet efficient alignment and fusion
methods for VSR brings considerable challenges. Existing
methods use inefficient alignment strategies, e.g. expensive
alignment in feature space [28], exhaustive attention com-
putation [33, 18] or ineffective implicit convolution-based
alignment [15], without specific care about runtime. Most
rely on information from neighboring frames only and ne-
glect the potential of computation reuse between consec-
utive frames. As a consequence of missing efficient align-
ment/fusion mechanisms, fast methods generally avoid such
modules entirely [6, 13, 11]. In this work, we employ a re-
current VSR architecture due to its online nature and effi-
ciency, and address the aforementioned open issues of effi-
cient alignment and fusion.

We propose a VSR approach by taking inspiration from
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recent advances in attention [29] and transformers [27, 5].
As a case in point, attention- and transformer-based solu-
tions have been successfully employed to computer vision
tasks. Attention provides an advantage over convolutions
as it allows effective matching and fusion of global infor-
mation in early layers. Additionally, the operation implic-
itly serves for alignment to handle the displacements be-
tween frames in VSR. While the mechanism facilitates high
performance, its quadratic complexity along with exhaus-
tive correlation computations often render it unsuitable to
time critical applications, especially in high-dimensional
domains like video. In order to leverage its potential, the
attention mechanism requires major adaptations to fulfil the
requirements for fast video processing.

We tackle the aforementioned challenges by dynamically
predicting pairs to be utilized for attention, thereby averting
the high computational complexity in classic attention al-
gorithms. In particular, we employ a deformable attention
pyramid (DAP) for efficient information fusion at dynami-
cally computed locations in the hidden state of our recurrent
unit. DAP simultaneously addresses the misalignment and
fusion through flexible offset prediction and discriminative
aggregation with attention. The deformable attention mech-
anism allows robust fusion of spatially shifted features and
counteracts error accumulation in the hidden state by means
of dynamic selection of informative features.

For fast offset prediction we utilize a light-weight con-
volutional network. However, shallow convolutional net-
works suffer from small receptive fields due to their locality
bias. This drawback limits the ability to handle large spatial
displacements caused by movement between frames. We
efficiently expand the receptive field by using a pyramid
type network comprising a multi-level encoder followed by
iterative attention-based offset refinement. According to
the computed offsets, our fusion module effectively aggre-
gates information from the hidden state. After the align-
ment/fusion stage, the combined processing of hidden state
features and upsampling is performed by residual convolu-
tional blocks, which ultimately output the high-resolution
frame and the next hidden state.

Our experiments show great benefits of our proposed
modules to the problem of VSR. An extensive ablation
study clearly highlights the effectiveness of our contribu-
tions. We significantly reduce processing time and compu-
tational complexity in comparison to state-of-the-art meth-
ods, while achieving high performance. We attain higher
PSNR than state-of-the-art method EDVR-M +0.06dB with
a speed-up of over 3× on the standard benchmark REDS.

2. Related Work
The ability to leverage complementary information in

the temporal dimension for improved interpolation qual-
ity, represents a major difference between VSR and single-

image super-resolution, where restoration algorithms are
constrained to rely on priors only. An overview of recent
state-of-the-art VSR methods is provided by [20, 19, 7, 25].
Two distinct mechanisms have been proposed in the liter-
ature to leverage this extra information in VSR; (1) slid-
ing windows [28, 33, 18, 12, 30] and (2) recurrent process-
ing [31, 22, 8, 6, 11, 13, 2, 3]. Sliding windows extract
information from a fixed set of adjacent frames, while re-
current approaches accumulate information over time in a
hidden state for exploitation at the current time step.

Window-based Earlier methods [16, 26, 1, 24] compute
optical flow (OF) to warp adjacent frames for motion com-
pensation with respect to the center frame. DUF [15] inves-
tigates VSR without explicit motion compensation by ap-
plying 3D-convolutions on a set of adjacent frames in com-
bination with dynamic upscaling filters. Recent window-
based designs often achieve higher performance in trade-
off with runtime. Such a strategy has the benefit to use
extensive parallel processing during training, which facil-
itates exploration of larger models. PFNL [33] adopts non-
local residual blocks [29] as an alternative to motion es-
timation in order to progressively fuse information of ad-
jacent frames. Contrary to other window-based methods,
which fuse frames individually, RBPN [8] introduces a
module to iteratively aggregate information from neighbor-
ing frames inside a fixed temporal window with recurrent
back-projection. EDVR [28] proposes separate modules for
alignment and fusion. Frames are aligned in feature space
with cascaded deformable convolutions and fused by appli-
cation of temporal and spatial attention maps. MuCAN [18]
utilizes a hierarchical correspondence aggregation strategy
to detect inter-frame correspondences by selecting a fixed
set of the most similar patches after an exhaustive search
on a local neighborhood. Aggregation from these selected
patches is performed by a convolutional block. To adress
the issue of misalignment, TGA [12] splits neighboring
frames within a window into groups, according to their tem-
poral distances from the center frame. Fusion is accom-
plished by application of attention maps.

Recurrent The temporal receptive field of approach (1)
is limited in consequence of its fixed window size and usu-
ally depends on the availability of future frames, which
introduces latency at inference. Approach (2) has a po-
tentially unlimited temporal receptive field and generally
accumulates information more efficiently with reuse of
computation through a hidden state. Recurrent networks
for super-resolution can be further divided into unidirec-
tional [22, 6, 11, 13] and bidirectional methods [9, 2, 3].

Unidirectional: As one of the first, FRVSR [22] accounts
for motion between consecutive frames in a recurrent fash-
ion. The previous high-resolution estimate is warped to-
wards the current frame with OF. Later, RLSP [6] intro-
duced efficient propagation of implicit information in a hid-
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Figure 2: Schematic overview of our proposed method
showing the interactions of our main modules in the recur-
rent cell.

den state with a fully convolutional recurrent network to
VSR. The information in the hidden state is accumulated
without explicit motion compensation. RSDN [11] further
improves that concept by dividing the content into struc-
ture and detail components. Additionally, it accounts for
error accumulation in the hidden state by detecting large
displacements between frames.

Bidirectional: In order to leverage long-distance tem-
poral correlations, an aggregation strategy considering in-
formation from all frames in a video is favorable and can
be efficiently leveraged with forward and backward passes.
While this approach is best suited for high performance,
it violates causality – a necessary property for online in-
ference. BasicVSR [2] achieves high performance with
light recurrent cells by employing two passes over an entire
video. Its successor BasicVSR++ [3] further improves per-
formance with extensive bidirectional propagation strate-
gies. Unfortunately, these approaches can not be evaluated
online as they violate causality. Therefore, we design a uni-
directional recurrent network for fast online inference and
instead maximize information accumulation from the hid-
den state with our proposed efficient dynamic module.

Dynamic attention/transformer mechanisms are also ex-
plored in unrelated domains like object detection in im-
ages [34], video object segmentation [23] and to increase
network capacity [4]. [34] proposes a transformer network
that attends to dynamically predicted locations in order to
detect relevant object features within a single image. Con-
trary, our proposed DAP leverages attention to efficiently
match locations between consecutive frames. Additionally,
our DAP leverages the discriminative feature of attention
for more robust aggregation/fusion from the hidden state,
where information is dynamically merged from multiple lo-
cations according to their relevance. [23] employs a top-
k memory matching scheme to reduce computational over-
head of its attention-based module for video object segmen-
tation. DCN [4] uses dynamic ensemble learning over con-
volution kernels to increase network capacity. Our DAP is
fundamentally different, instead predicting and attending to
multiple spatial offset locations to explicitly match and fuse
information across large spatial distances.

3. Method
3.1. Overview

According to Nyquist-Shannon’s sampling theorem,
the frequency band of a discrete signal is band-limited
at a specific frequency fN in the spectrum, called the
Nyquist frequency. A VSR algorithm’s task, is to re-
cover the high-frequency content above said frequency
from a low-resolution video x ∈ RT×H×W×C , which is
lost after subsampling its high-resolution counterpart y ∈
RT×rH×rW×C with scaling factor r. To fulfil the require-
ments for online VSR, an effective and efficient algorithm
is necessary.

We propose a recurrent algorithm to address the two
most important aspects of online VSR with strong empha-
sis on fast runtimes. Namely, the handling of misalignment
between frames in combination with the update/extraction
of information in the hidden state ht. Such a setup allows
efficient temporal aggregation of salient features from past
frames x0:t−1.

Recent advances in attention- and transformer architec-
tures led to large performance gains in a wide range of
computer vision tasks. However, due to pixel-dense pro-
cessing requirements in VSR, a naive implementation of
attention- or transformer type components is highly inef-
ficient and prohibits the application of such operations due
to their quadratic computational complexity. To alleviate
this issue, we design an attention mechanism to dynami-
cally predict a subset of relevant key/value pairs in the hid-
den state, omitting an exhaustive and expensive search over
all possible pairs.

In particular, a recurrent cell propagates a pixel-dense
hidden state ht. Hidden state fusion and misalignment are
simultaneously handled by our proposed deformable atten-
tion mechanism DAP. DAP uses a pyramid type network for
dynamic offset prediction. First, our encoder network E , in-
dividually divides frames xt, xt−1 into multi-level feature
maps ft, ft−1 representing fine-to-coarse views on the in-
put, effectively enlarging the receptive field and enriching
representational power.

ft, ft−1 = Et(xt), Et−1(xt−1) (1)

Our deformable attention module O iteratively refines
the calculated offsets st from coarse to fine.

s0t = O(ft, ft−1) (2)

Our fusion module F then aggregates the hidden state fea-
tures according to the final offsets.

vht = F(ht−1, s
0
t ) (3)

After the fusion/alignment stage, our main processing
unit N , consisting of repeated residual information multi-
distillation blocks [10], estimates the high-resolution frame
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yt and the next hidden state ht.

[yt, ht] = N (xt, v
h
t ), t = 0, ..., T (4)

A high-level overview of our method is shown in Fig. 2,
which depicts the recurrent cell and the interactions of its
main modules. Next, we will explain our proposed modules
in more detail.

3.2. Deformable Attention Pyramid (DAP)

In order to fuse the accumulated past information from
the hidden state ht−1 in relation to the current time step
t, we employ a deformable attention pyramid. Our mod-
ule operates on pixel-dense representations to adhere to the
low-level processing requirements for VSR. We design our
DAP to aggregate spatially displaced information in a ro-
bust and highly efficient manner. To achieve these proper-
ties we employ a pyramid type processing module work-
ing on encoded multi-level features computed from input
frames xt−1 and xt to efficiently enlarge the receptive field.
Further, to avoid exhaustive correlation computations we re-
strict our attention module to a small set of key/value pairs
at dynamically predicted offset locations in xt−1 for cross-
attention with the current frame xt.

First, offsets from xt−1 to xt are computed. The off-
sets serve two purposes; (1) the handling of misalignment
between frames and (2) a drastic minimization of attention
weight computations. According to these offsets, the infor-
mation is fused by cross-attention for exploitation at time
step t. The final full-resolution offsets allow robust pixel-
dense fusion through cross-attention between current frame
xt and hidden state ht−1.

Multi-level Encoder It is essential in VSR to capture
offsets across large distances since there can be fast mo-
tion in the camera or objects. As a solution to this problem,
we use a multi-level encoder to obtain features in multi-
ple resolutions. The coarser level features serve to capture
larger motion due to a larger spatial view on the frames. We
encode features for the last and current input frames xt−1

and xt at levels l = 0, ..., L. To further enrich a frame’s
representation at each level, we encode it into higher d-
dimensional features f l

t . The smaller resolution representa-
tions at higher levels are obtained by repeated convolutional
blocks Cl, consisting of 4 convolutions, with intermediate
bilinear downsampling steps between blocks (×2) which
we denote with the operator D↓ (·), see Eq. 5. Even with
small 3 × 3 kernels, such a strategy increases the receptive
field exponentially through the repeated downsampling op-
erations. We employ individual processing chains for both
input frames xt−1 and xt, we set L = 3.

f l
t = D↓

(
Cl
(
f l−1
t

))
, f0

t = C0 (xt) , l =0, ..., L

f l
t−1 = D↓

(
Cl(f l−1

t−1)
)
, f0

t−1 = C0 (xt−1) , l =0, ..., L
(5)

Deformable Attention In order to significantly reduce
the complexity of our attention module, we confine the
search for salient features to dynamically selected loca-
tions in the feature maps, instead of an exhaustive corre-
lation computation over a large neighborhood or even the
whole frame. The quadratic component prevalent in at-
tention mechanisms is overcome by applying pure cross-
attention towards the current frame xt, resulting in a linear
dependency in the number of key/value pairs. In particu-
lar, we process the encoded features f l

t , f l
t−1 with our opti-

mized, light-weight, deformable attention operation mech-
anism at each pyramid level l. We largely reduce the com-
putational effort by merely computing pixel-dense correla-
tions between embedded features representing the queries
Ql

t of current frame xt, and key/value pairs Kl
t−1/V l

t−1

sampled at k dynamically predicted spatial locations sl ∈
RH/2l×W/2l×2k in ft−1. Queries and key/value pairs are
linearly embedded with parameters W l

Q, W l
K and W l

V . We
apply scaled dot-product attention with softmax to aggre-
gate the values from V lT

t−1. We account for resolution mis-
match between feature maps at level l and sampling loca-
tions sl+1 from the previous level l+1 with bilinear upsam-
pling (×2), denoted by U↑(·). The corresponding equations
are presented in Eq. 6, an illustration is provided in Fig. 3.
Please note the reverse order for pyramid level index l, since
the processing is performed from coarse to fine.

l = L, ..., 0

Ql
t = W l

Qf
l
t

Kl
t−1 = W l

KS(f l
t−1, U↑(s

l+1
t ))

V l
t−1 = W l

V S(f l
t−1, U↑(s

l+1
t ))

vlt
(
Ql

t,K
l
t−1, V

l
t−1

)
= softmax

(
Ql

tK
lT

t−1√
d

)
V l
t−1

(6)

Iterative Refinement We propose an efficient iterative
coarse-to-fine scheme to address blending of multi-level
offset representations in different resolutions, attention-
aggregated values vlt, and features f l

t from the current
frame xt. In each pyramid level, the dense offsets slt ∈
RH/2l×W/2l×2k are iteratively refined by adding residual
offsets to the previous level’s offsets sl+1

t with a light-
weight convolutional block ClS . Our offset prediction net-
work ClS uses large 7× 7 kernels to ensure dense computa-
tion with a large receptive field, in contrast to smaller 3× 3
kernels employed in all our other modules.

l = L, ..., 0

slt = ClS
(
f l
t , v

l
t, U↑(s

l+1
t )

)
+ U↑(s

l+1
t ), sLt = CLS

(
fL
t

)
(7)

Hidden State Fusion Ultimately, the top level offsets s0t
serve to fuse salient hidden state features for exploitation at
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Figure 3: Deformable attention pyramid (DAP). First we calculate multi-level features from xt, and xt−1 using a U-Net [21]
type encoder. In each pyramid level l, k sampling locations slt ∈ RH/2l×W/2l×2k are calculated per pixel to serve as key/value
locations in the upper level’s deformable attention block. Features in the upper level are fused from t−1 towards t according
to slt with cross-attention, before calculating the residual offsets with convolutional block ClS with respect to the lower layer
l + 1. Offsets slt are refined iteratively until the obtained locations s0t at level l = 0 are finally employed to perform cross-
attention fusion in the hidden state ht−1.
⊗: concatenation in channel dimension, ⊕: element-wise addition.

time step t. For that matter, another deformable attention
block vht takes care of fusion in full resolution by leverag-
ing the computed offsets s0t . Since it is critical to minimize
the computational effort for fast VSR, our DAP module is
processing frames in a lower d-dimensional space (d = 8),
because the frames’ channels are fixed in size setting a limit
on available information. Conversely, a larger channel size
in our main processing pipeline – the size of the hidden state
– increases the upper limit of storable information, which
facilitates higher performance. Thus, the hidden state’s de-
formable attention block vht performs query/key matching
in d-dimensional embeddings, while the values are embed-
ded and aggregated in their native high-dimensional space.
We denote our network by DAP-n, n represents the feature
size in the main processing block.

vht
(
Q0

t ,K
h
t−1, V

h
t−1

)
= softmax

(
Q0

tK
hT

t−1√
d

)
V h
t−1

(8)
A significant improvement in runtime is achieved by

grouped sampling inside tensors at all DAP stages, which
are omitted in the notation for clarity. The number of groups
is set according to the number of sampled key/value pairs
k = 4.

4. Experiments
We conduct comprehensive experiments in our ablation

study to highlight our key innovations and compare our best
performing configuration 1 to state-of-the-art methods on
3 diverse standard benchmarks REDS [19], UDM10 [33]
and Vimeo-90K [32] with 2 different subsampling kernels
(Bicubic and Gaussian). We use the proposed split for

1For code and other material refer to https://github.com/
dariofuoli/DAP.

REDS according to [28] along with the provided training
pairs from [19]. Our results for Vimeo-90K and UDM10
test sets are obtained by application of a Gaussian low-pass
filter followed by resampling of every 4-th pixel along each
spatial dimension. Following the literature we set the Gaus-
sian filter’s standard deviation and kernel size to σ = 1.6
and 13 respectively, Vimeo-90K serves as training set for
both test sets. During training we uniformly crop sequences
with spatial size 256× 256 (high resolution) and adopt ran-
dom flips, rotations and temporal inversion to augment the
data. The initial learning rate is set to 10−4 and is reduced
after reaching a plateau in two steps to 0.5 × 10−4, then
10−5. To stabilize training we use gradient clipping. More
specific details will be explained in the respective subsec-
tions. Similar to recent proposals in the literature our net-
works are trained with a smooth version of L1 loss 2, which
showed benefits over L2 loss for super-resolution as it is less
sensitive to outliers. Our model can be trained end-to-end
without relying on pretrained modules or external data. We
use Adam optimizer [17] and set the scaling factor to r = 4
in all our experiments.

4.1. Ablation

To highlight our key contributions, we perform a com-
prehensive ablation study, where a comparison between
different configurations show the benefits of our proposed
modules, see Tab. 1. We use REDS for training and evalu-
ation. During training we collect batches composed of b =
32 samples with crop size T×H×W×C = 5×64×64×3.
We provide both validation and test set results to emphasize
the robustness of our ablation study, but restrict the detailed
discussion to REDSval.

Modules Configuration 1 is trained without any motion
handling and fusion, we only employ the main module N

2PyTorch’s torch.nn.SmoothL1Loss() with β = 10−2
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Configuration Offsets Pyramid Attention Features REDS4val [19] (Y) REDS4 [19] (RGB)

1 64 28.77/0.7906 28.59/0.8155
2 ✓ 64 28.95/0.7926 28.69/0.8184
3 ✓ 64 29.82/0.8194 29.50/0.8461
4 ✓ ✓ 64 30.07/0.8264 29.66/0.8507
5 ✓ ✓ ✓ 64 30.36/0.8341 29.97/0.8571
6 ✓ ✓ ✓ 128 30.77/0.8440 30.49/0.8676

Table 1: Ablation study on REDS (PSNR/SSIM). All models are trained in the same settings on sequences of 5 frames. Red
denotes best, blue denotes second best.

to propagate a hidden state. The large performance drop
compared to all configurations with offsets validates the
importance of handling motion and misalignment in VSR.
It clearly shows the downsides of naive convolution-based
networks for video processing and promotes the necessity
for other mechanisms. Similar conclusions can be drawn
from adding our attention-based fusion module F without
providing offsets. Still, a slight gain of 0.18dB can be
achieved by our fusion module even without offsets. The
addition of offsets to configuration 1 significantly improves
performance by 1.05dB in configuration 3. Furthermore, a
larger receptive field is attained by application of a pyra-
mid refinement mechanism with simple convolutional fu-
sion instead of our proposed deformable attention. Thus,
configuration 4 improves PSNR by 0.25dB. Our complete
setup with all our proposed modules in combination further
boosts performance by 0.29dB (configuration 5). More-
over, increasing the feature dimension from 64 to 128 adds
another 0.41dB. Hence, our proposed DAP network real-
izes large gains for VSR. As an aside, in addition to in-
ferior performance of configuration 4, which relies on off-
set prediction and convolution without our proposed atten-
tion mechanism, we observed instabilities during training,
which leads us to the conclusion that attention stabilizes
training of DNN’s in combination with offset prediction.

Configuration
−−−−−−→
DAP-64

←−−−−−−
DAP-64

−−−−−−−→
DAP-128

←−−−−−−−
DAP-128

REDS [19] 29.97/0.8571 30.16/0.8635 30.49/0.8676 30.72/0.8751

Table 2: Forward/Reverse (→/←) evaluation on REDS4
test set. We evaluate the same model in both directions.

Reverse Evaluation A core feature of state-of-the-art
bidirectional methods is their ability to fuse all informa-
tion over an entire video offline. Further, this strategy in-
cludes aggregation in reverse time order, which may have
additional benefits in certain cases. Window-based methods
usually aggregate information from future frames with sim-
ilar potential advantages. We analyze the effects of relative
motion patterns induced by time reversal also in our online
setting, since such motion can appear even in non-reversed
video, e.g. objects moving away from the camera or a cam-
era that is zooming out. Therefore, we investigate the dif-
ference between forward and backward evaluation, i.e. we
evaluate the sequences on the REDS test set in both tem-

poral directions in Tab. 2. Surprisingly, reverse time order
aggregation in these videos increases performance signifi-
cantly, i.e. by +0.19dB and +0.23dB for DAP-64 and DAP-
128 respectively. After inspection, we attribute this gain
to forward camera motion being more prevalent in these
videos. If objects are moving towards the camera, or vice
versa, in reverse time order they first appear in higher reso-
lution, simplifying super-resolution for these objects. Thus,
having the opportunity to process video in reverse or hav-
ing access to future frames, may substantially improve per-
formance for VSR depending on the content, resulting in
additional advantages for non-causal methods compared to
online algorithms.

4.2. Comparison with State of the Art

We compare the performance of our method to state-of-
the-art methods on 3 different datasets with diverse proper-
ties, see Tab. 3. Since we address the causal VSR problem,
we do not compare to bidirectional methods. Such methods
cannot be evaluated in a single pass, which inhibits their ap-
plication for online processing. Additionally, they have an
incomparable advantage as a consequence of access to all
frames from a video sequence. However, we still report the
results of prominent bidirectional methods [2, 3] for refer-
ence in Tab. 3.

REDS is a challenging high-resolution (720 × 1280)
dataset, because large displacements and a non-stabilized
camera complicate temporal aggregation. UDM10 (720 ×
1272) on the other hand contains more steady camera mo-
tion and continuous movement. Vimeo-90K contains short
sequences of only 7 frames for training and testing in small
resolution (256 × 448). The dataset was released with
window-based evaluation in mind, i.e. only the center frame
is expected to be restored, which impedes a fair comparison
to our recurrent method. To improve comparability we re-
flect the sequences at the end for 3 frames to compute the
metrics on the last frame representing the center frame. Yet,
our method still has a disadvantage due to the pressure of es-
timating each frame up to the end of the sequence, contrary
to aggregation from adjacent frames only.

REDS For comparison with state-of-the-art methods on
REDS we extend our training sequences to facilitate learn-
ing of longer temporal dependencies. We uniformly crop
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. Run fps FLOPs MACs REDS4[19] UDM10[33] Vimeo-90K[32]
Method [ms] [1/s] [G] [G] PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ✓ ✓ ✓ - - - - 26.14/0.7292 28.47/0.8253 31.30/0.8687
TOFlow [31] ✓ ✗ ✗ - - - - 27.98/0.7990 36.26/0.9438 34.62/0.9212
FRVSR [22] ✓ ✓ ✗ ∗137 ∗7.3 - - - 37.09/0.9522 35.64/0.9319
DUF [15] ✓ ✗ ✗ ∗974 ∗1.0 - - 28.63/0.8251 38.48/0.9605 36.87/0.9447
RBPN [8] ✓ ✓ ✗ ∗1507 ∗0.7 - - 30.09/0.8590 38.66/0.9596 37.20/0.9458
PFNL [33] ✓ ✗ ✗ ∗295 ∗3.4 - - 29.63/0.8502 38.74/0.9627 -
MuCAN [18] ✓ ✗ ✗ 2’208 0.5 15’853.2 7’922.8 30.88/0.8750 - -
EDVR-M [28] ✓ ✗ ✗ 116 8.6 925.7 462.3 30.53/0.8699 39.40/0.9663 37.33/0.9484
EDVR [28] ✓ ✗ ✗ 348 2.9 4’037.3 2’017.3 31.09/0.8800 39.89/0.9686 37.81/0.9523
TGA [12] ✓ ✗ ✗ 427 2.3 - - - - 37.59/0.9516
RSDN [11] ✓ ✓ ✗ 63 15.9 713.2 356.3 - 39.35/0.9653 37.23/0.9471
RRN [13] ✓ ✓ ✓ 28 35.7 387.5 193.6 - 38.96/0.9644 -
RLSP [6] ✓ ✗ ✓ 30 33.3 503.7 251.8 - 38.48/0.9606 36.49/0.9403
DAP-128 (ours) ✓ ✓ ✓ 38 26.3 330.0 164.8 30.59/0.8703 39.50/0.9664 37.29/0.9476

BasicVSR [2] ✗ ✗ ✗ 82 12.2 754.3 376.7 31.42/0.8909 39.96/0.9694 37.53/0.9498
IconVSR [2] ✗ ✗ ✗ 100 10.0 904.9 451.9 31.67/0.8948 40.03/0.9694 37.84/0.9524
BasicVSR++ [3] ✗ ✗ ✗ 110 9.1 837.1 418.1 32.39/0.9069 40.72/0.9722 38.21/0.9550

Table 3: Comparison with state of the art. We compare runtime, frames per second (fps), FLOPs, MACs and PSNR/SSIM
metrics on 3 standard benchmarks. Additionally, we denote if a method is unidirectional, i.e. if it can generate output in
a single pass (Unid.), can be evaluated strictly online (Onl.), i.e. no future frames are needed, and if it can produce video
(720p) in real-time (R-T.). All PSNR/SSIM results and runtime measurements marked with * are reported from the respective
papers. All other methods are profiled (Run/fps/FLOPs/MACs) in the same settings on a NVIDIA RTX2080Ti by us. Red
denotes best, blue denotes second best.

sequences of length T = 15 with a reduced batch size of
b = 8, as a result of higher memory demand. To avoid ex-
pensive training from randomly initialized parameters, our
model is initialized with the pre-trained weights of config-
uration 6 from the ablation study and refined for T = 15.
Training on a larger sequence length T further boosts our
performance on REDS by 0.1dB and 0.0027 in PSNR and
SSIM respectively. With the exception of large and slow
models EDVR and MuCAN we significantly surpass all
other models in performance with high speed, we even
supersede EDVR-M with a reduction in runtime of over
×3 and largely reduced computational demand. DAP-128
impressively handles the complex motion in REDS with
only 38ms per frame. Our method is capable of produc-
ing over 24 fps needed for real-time evaluation with the
lowest computational complexity among all methods (330.0
GFLOPs/164.8 GMACs).

Vimeo-90K/UDM10 As already mentioned, Vimeo-
90K has limits due to its intended evaluation protocol. Nev-
ertheless, DAP-128’s performance on Vimeo-90K is com-
parable with recurrent state-of-the-art method RSDN and
window-based EDVR-M, despite EDVR-M’s advantage on
Vimeo-90K being a window-based method. Higher per-
formance is expected for window-based EDVR and TGA
as a consequence of larger capacity and aforementioned
advantages in evaluation on Vimeo-90K. On the contrary,
UDM10 defines a standard evaluation strategy, more suit-

able for a realistic and fair comparison. We achieve the sec-
ond best performance in PSNR with high speed, EDVR is
over 9-times slower with a huge computational complex-
ity overhead. Due to our highly efficient aggregation strat-
egy in our proposed DAP, we significantly surpass recurrent
method RSDN both in terms of performance, runtime and
computational demand. We largely improve performance
over RRN with a gain of +0.54dB, lower computational
complexity and only slightly increased runtime.

Runtime and Computational Complexity We set out
to design an algorithm to overcome the challenges of online
VSR. On top of limitations in temporal information aggre-
gation (only past information available), the fulfilment of
hard time constraints and low computational complexity is
crucial for this task. With our proposed DAP and overall ef-
ficient network design, we achieve the best performance in
relation to computational effort and are able to move the
Pareto front. DAP-128 is a high-speed method with the
lowest computational demand among all other methods in
Tab. 3 (330.0 GFLOPs/164.8 GMACs), it is able to reach
real-time evaluation speed with over 26 frames per second
and high performance. Our network design surpasses the
fundamental algorithmic design used by EDVR and other
window-based methods, since our method achieves bet-
ter performance overall with much reduced computational
complexity and therefore faster runtimes, e.g. EDVR-M vs.
DAP-128. Note, that EDVR’s and other window-based
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DAP-128 (ours)EDVREDVR-MBicubic GT

Figure 4: Visual examples on REDS. Our method achieves competitive performance compared to EDVR-M and EDVR with
significantly reduced computational effort.

method’s runtime measurements do not account for online
evaluation due to the opportunity to process windows in par-
allel offline. Thus, online evaluation most likely leads to
higher runtimes and latency in practice. We also surpass
the design of state-of-the-art recurrent networks like RSDN
with a significant speed-up and over 2-times reduced com-
putational demand. For an illustration of performance vs.
runtime and complexity (number of parameters) please re-
fer to Fig. 1.

Visual Examples We provide visual examples for quali-
tative evaluation in Fig. 4. We compare our method against
Bicubic interpolation as a baseline, state-of-the-art method
EDVR, its lighter version EDVR-M and the ground truth
(GT) on all 4 REDS test sequences. Our method produces
high quality frames in accordance to the PSNR/SSIM eval-
uation in Tab. 3. However, there are individual strengths
and weaknesses among all methods. The signals in the first
row are restored with higher quality than both EDVR-M and
even its heavier version EDVR. On the other hand, the tiger
in row 4 is restored in more detail by EDVR. As explained
in Sec. 4.1, access to future frames can be highly advanta-
geous. EDVR and most other window-based methods ac-
cess future frames in their window. As a consequence of
forward camera motion, the tiger appears in higher resolu-
tion in future frames in this particular scene.

5. Conclusion
We address the two main challenges in online VSR; ef-

ficient temporal aggregation and misalignment. Despite the
inherent relationship between computational complexity
and network capacity, our light-weight designs enable high
performance with fast runtimes in the online setting, which
is achieved by our effective attention-based module for
combined fusion/alignment of information from the hidden
state only. In contrast to other attention-based solutions for
VSR, our proposed DAP avoids exhaustive operations by
dynamically attending to the salient locations in the hidden
state, thereby significantly reducing the high computa-
tional burden associated with attention and transformers.
Our attention mechanism enables efficient pixel-dense
processing, a crucial feature for super-resolution. Com-
prehensive experiments and ablation studies reinforce our
contributions and provide analysis of our method. We
surpass state-of-the art method EDVR-M on two standard
benchmarks with a speed-up of over 3× and the lowest
computational complexity among all compared methods.
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