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Abstract

Facial 3D Morphable Models are a main computer vi-
sion subject with countless applications and have been
highly optimized in the last two decades. The tremendous
improvements of deep generative networks have created
various possibilities for improving such models and have
attracted wide interest. Moreover, the recent advances in
neural radiance fields, are revolutionising novel-view syn-
thesis of known scenes. In this work, we present a facial 3D
Morphable Model, which exploits both of the above, and
can accurately model a subject’s identity, pose and expres-
sion and render it in arbitrary illumination. This is achieved
by utilizing a powerful deep style-based generator to over-
come two main weaknesses of neural radiance fields, their
rigidity and rendering speed. We introduce a style-based
generative network that synthesizes in one pass all and only
the required rendering samples of a neural radiance field.
We create a vast labelled synthetic dataset of facial renders,
and train the network, so that it can accurately model and
generalize on facial identity, pose and appearance. Finally,
we show that this model can accurately be fit to “in-the-
wild” facial images of arbitrary pose and illumination, ex-
tract the facial characteristics, and be used to re-render the
face in controllable conditions.

1. Introduction
Photorealistic 3D face modeling and reconstruction from

a single image is a widely researched field in computer
vision due to its numerous applications, such as avatar
creation, virtual makeup and speech-driven face anima-
tion. Since the introduction of 3D Morphable Models
(3DMM) in 1999 by the seminal work of Blanz and Vet-
ter [4] to model faces by statistical linear models, the ma-
jority of the research revolve around linear representation
of faces. Many follow-up works have studied the inte-
gration of 3DMMs with Deep Neural Networks [73, 79],
Mesh Convolutions [53], and Generative Adversarial Net-
works (GANs) [24, 26, 23] in order to improve its repre-
sentational strength in high-frequency details and photore-

alism. In this study, we explore the potential of the recently
emerged non-linear representation approach called Neural
Radiance Fields (NeRFs) [52] to evolve 3DMMs into its
strong neural volumetric representation.

NeRFs [52] have recently demonstrated an immense
progress in novel-view synthesis [52], relighting [72, 9],
and reconstruction [15]. They consist of fully connected
neural networks that learn to implicitly represent a scene
and its appearance parameters. Such networks can be opti-
mized by using only a few dozen camera views of the scene
and can be queried to generate novel views of that scene.
Despite their photorealistic renderings and high 3D consis-
tency, most initial NeRF-based methods focus on modeling
and overfitting on a single subject, at a single pose.

On the contrary, methods like the 3D Morphable
Model(3DMM) [4], create a statistical model of human
faces by hundreds or thousands of 3D scans, and can be
used as a prior to reconstructing a 3D face from a single
image, with controllable identity, pose and appearance. De-
spite their flexibility and the tremendous improvements in
their ability to generate photorealistic faces [23], they are
difficult to re-create authentic facial renderings and their
rendering relies on expensive skin shading models [44].

Currently, there has been tremendous progress in high-
resolution 2D image generation, using generative adversar-
ial networks [41, 39]. Such methods have been shown to
successfully generate photorealistic human faces [41, 39].
Extensions have been proposed, which combined with a
3DMM, can even generate facial images with controllable
facial, camera and environment attributes [74]. However,
the domain of such methods lies in the 2D space and at-
tempting to freely interpolate camera or illumination pa-
rameters creates unwanted artifacts.

In this work, we create an implicit 3D Morphable Model,
by leveraging a powerful style-based deep generator net-
work, with a flexible radiance field representation and vol-
ume rendering module. Since NeRFs heavily overfit to a
single scene, they are not constrained by the capacity of
the neural component. On the other hand, generic models,
such GANs and 3DMM, compress information fed into the

3536



model from hundreds of thousands of data samples. In or-
der to build a generic NeRF representation, we propose an
architecture that can predict the whole volumetric represen-
tation in a single inference. The architecture utilizes decon-
volutional layers as in a traditional generator network, thus
provides spatial consistency, computational and memory ef-
ficiency so that it can model a large-scale dataset. In order to
unlock the full potential of our approach, we generate a syn-
thetic dataset including 10,000 photorealisticly rendered 3D
faces with identity, expression, pose and illumination vari-
ations. Therefore, the proposed volumetric representation
model can disentangle attributes such as identity, expres-
sion, illumination and pose, exposing an advantage over
single scene/object [52] and large-scale unsupervised [14]
approaches. In summary, our main contributions are:

• We present 3DMM-RF, a controllable parametric face
model inspired by Neural Radiance Fields.

• We show that the proposed 3DMM-RF model can be
used for 3D reconstruction of “in-the-wild“ face im-
ages.

• Our convolutional generator architecture with depth-
based sampling strategy can generate the samples re-
quired for rendering a volumetric radiance field, in a
single pass.

• We introduce a large-scale synthetic dataset that disen-
tangles identity, expression, camera and illumination.

2. Related Work
2.1. 3D Face Modeling

Ever since the original 3D Morphable Model introduced
by [4], there have been many studies in that direction such
as extension to facial expressions [13, 88, 47, 11, 1, 46,
77, 10], large-scale dataset releases [60, 8, 71, 17], re-
construction by deep regression networks [78, 76, 64, 26],
and reconstruction by analysis-by-synthesis with more ad-
vanced features [6, 24, 23]. Due to its linear nature, the
original 3DMMs under-represent the high-frequency in-
formation and often result in overly-smoothed geometry
and texture models. In terms of preserving photorealism
and high-frequency signals, non-linear generative models
have been shown to be very successful in 2D image syn-
thesis [29, 42, 38, 82], thus, non-linear 3D face model-
ing has been widely studied in the context of deep gen-
erative networks [73, 80, 75], GANs [24, 23, 43], and
VAEs [2, 50, 86, 65]. We refer the reader to [97, 70] for
a more detailed presentation of the 3D face modeling ap-
proaches.

2.2. Neural Radiance Fields

Original NeRF paper [52] showed promising results for
becoming an improvement to the conventional scene rep-
resentations e.g. point-clouds, meshes. This and its ex-

tensions [51, 92] can implicitly represent scenes by us-
ing a differentiable neural rendering algorithm, without the
need of 3D supervision. One of the drawbacks of NeRF
approaches is the computationally heavy rendering pro-
cess and its long training time. Many approaches have
been introduced focusing on reducing training and infer-
ence time [33, 91, 22, 67]. Other approaches focus on 3D
shape reconstruction [89, 55, 83, 3], human bodies registra-
tion [62, 87, 61], dealing with non-static scenes [63, 56],
scene editing [49, 36] and scene relighting [72, 9]. NeRF-
based networks’ applications have been extended on repre-
senting human faces based on a video [20, 56, 32, 84, 57] or
a single image [21, 96, 34]. The recent work i3DMM [90]
is the first to represent a 3DMM using an implicit function,
using signed distance functions (SDF). Our method can be
categorized as the latter type of networks and its applica-
tion is quite similar to [96] and [34]. Our main distinction
is the fact that both of them perform a low-dimension ren-
dering and then improve the image quality through upsam-
pling layers [34] or by a Refine network [96], whereas ours
doesn’t require any optimization after the rendering step.

2.3. Deep Generative Models

The impressive photorealistic results of the GAN pa-
per [28] resulted in its widespread application [37, 70, 40,
41, 39]. Currently, there is a large effort of combining NeRF
approaches with GANs starting with pi-GAN [16] and
GRAF [68]. Most recent approaches like GIRAFFE [54],
StyleNerf [30], CIPS-3D [94] and EG-3D [15] have shown
remarkable image quality results. GIRAFFE [54] and
StyleNerf [30] are two-stage networks, having a Multi-
Layer Perceptron (MLP) at low resolution and then up-
sampling, CIPS-3D [95] synthesizes each pixel indepen-
dently whereas EG-3D [15] introduces a 3D aware gener-
ative model base on the tri-plane representation. A distinc-
tion of our method is that these approaches use an MLP
which predicts feature vectors while ours renders RGBα
output directly. Also, some of those require a two-step sam-
pling procedure, while 3DMM-RF uses a depth-based sam-
pling strategy, which needs just a single pass.

3. 3D Face Model by Neural Radiance Fields
In this work, we describe an implicit parametric facial

model, with disentangled identity, pose and appearance.
The NeRF representation is unfit for such a task, as a)
it represents a rigid scene, b) optimizing a scene with a
large number of identities, poses and appearance requires
an intractable optimization. In this manner, we introduce
3DMM-RF, a model that can represent and render a con-
trollable non-rigid facial scene, using a style-based gener-
ator [41], that generates an instance of an implicit neural
radiance field. Moreover, 3DMM-RF learns to approximate
the area of dense samples for each view, so that a rendering
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Figure 1: Overview of 3DMM-RF, a generative network which creates the sampling space of a neural radiance field depicting
a human face, in one pass, based on the depths acquired from the depth prediction and then renders an image directly using
the volume rendering algorithm [52]. The Generator G is conditioned on a subject’s identity vector zID, as well as the
expression parameters zexp, the scene illumination parameters zill and the camera parameters zcam. zID passes through a
mapping network, while the rest are transformed by SPADE layers before being given as input to G. Based on a ray-face
intersection depth estimation, the generator directly generates the samples needed for volume rendering which speeds up
rendering. Finally, the network is trained on a synthetic dataset, using adversarial, perceptual (VGG) and identity losses.

can be achieved with a single query of the network.
Considering a 3D space as a neural rendering space,

3DMM-RF is a neural morphable model S that renders a
facial image I ∈ R512×512×3 as follows:

I = S (zID, zexp, zcam, zill) (1)

where zID ∈ R512 describes an identity latent code, zexp ∈
R20 the expression 3DMM blendshapes, zcam ∈ R3 the
camera position, whereas zill ∈ R8 the illumination param-
eters. The 3DMM-RF model S consists of style-based gen-
erator G that generates a volumetric radiance field, a volume
rendering module, and a discriminator D. An overview of
the method is shown in Fig. 1, the network architecture is
presented in Sec. 3.1, the training using the synthetic dataset
in Sec. 3.2, and the fitting process in Sec. 3.3.

3.1. The Architecture

3.1.1 Scene Representation

Consider a neural radiance field (NeRF) [52] with an im-
plicit function FΘ(x, y, z, θ, ϕ) −→ (r, g, b, σ), that maps a
world coordinate (x, y, z) and a viewing direction (θ, ϕ), to
a colour (r, g, b) with density σ. A rigid scene can be im-
plicitly learned by the radiance field, by fitting Fθ on differ-
ent views of the scene. To render a novel view, Fθ is queried
using hierarchical sampling, for a number of points on each
ray intersecting the camera, and volume rendering [52] is
used to produce the final colour.

Contrary to the typical NeRF approach [52] which im-
plicitly represents a scene with a trained MLP, we train a

convolutional generator network G (Sec. 3.1.3) that concur-
rently generates all necessary K samples for each ray that
passes through each pixel of the rendered image I , in a sin-
gle pass. Each sample contains colour r, g, b and density σ
values, like the sample vectors in NeRF [52].

3.1.2 Depth-based Smart Volume Rendering

NeRF rendering is plagued by its computational load since,
typically per pixel, firstly a uniform sampling step is re-
quired to find the densest area, and another to extract a
dense sampling area for volume rendering. For our ap-
proach, a given ray r will terminate as soon as it intersects
with the facial surface. This means that samples, which are
a bit far from the surface, will not contribute to the final
RGB values. Based on that idea, we significantly speed-up
rendering, by predicting the ray-face intersection depth Dr,
for the ray r and sample only around this area. The pre-
dicted depth Dr is modelled as a Gaussian distribution with
mean Dµr

and standard variation Dstdr
. Overall, for a ray

r containing K samples, our model generates N channels,
where N = 4K + 2, which the first 4K channels represent
each sample across the ray r, and two additional channels
for the depth prediction. Throughout the layers of the gen-
erator, sample values (4K) evolve together with depth es-
timation, meaning that they are highly correlated thanks to
the ground truth provided by the synthetic data. Thus, gen-
erated sampled values are aligned with the estimated depth
values in the final radiance field.

Therefore, by generating only all the required samples
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along the ray that are close to the facial surface, we can
directly employ the volume rendering, bypassing the multi-
ple MLP queries required by NeRF and its importance sam-
pling strategy [52]. For the single ray r, we separate the
depth prediction channels and reshape the rest into K × 4
samples along the ray. Each sample k ∈ 1 . . .K, includes
the predicted ck = (rk, gk, bk) colour values and their cor-
responding density σk. Using the predicted depth mean
Dµr

and standard variation Dstdr
to sample the depth val-

ues, the final colour Ĉr is measured using standard volume
rendering [52]:

Ĉr =

K∑
k=1

wkck,

wk = Tk (1− exp (−σk (tk+1 − tk))) ,

Tn = exp

(
−

K−1∑
k=1

σk (tk+1 − tk)

)
,

ti ∼ N (Dµr
, Dstdr

) and tk+1 ≥ tk

(2)

wk is each sample’s contribution and tk is its depth.

3.1.3 Convolutional Radiance Field Generator

We extend the above single-ray prediction approach, to
the prediction of all the rays required to render an image
I ∈ R512×512×3. In this manner, we introduce a generator
network G that generates all the required samples of neu-
ral radiance field in a single pass, as it is shown in Fig. 1.
The capacity of the deep convolutional generator enables
it to generate the radiance field of arbitrary scenes, con-
ditioned on certain attributes. The generator consists of a
fully-convolutional mapping network [41], which translates
a subject’s identity vector zID to an extended latent space
identity vector wID, and a synthesis network that generates
all the ray samples of interest.

In addition to the extended latent space identity vector
wID, we condition the generator with properties relating to
the reconstructed scene, namely the blendshape expression
vector zexp, the camera position zcam and the scene illumi-
nation parameters zill, which include the light source direc-
tion, the diffuse, specular and ambient intensity. We also ap-
ply positional encoding [52] to the camera position and the
light source direction vectors. We observed that the genera-
tor G performs better when it receives the scene parameters
as a 2-dimensional vector instead of 1-dimensional. This
is achieved by firstly passing the parameters zexp, zcam, zill
through two modulated convolutional layers [41] which are
then fed to the network through SPADE layers [58].

Following the typical adversarial training strategy [29,
41], a discriminator D is needed to achieve photorealistic
results. We follow the architecture of the StyleGAN2 [41]
discriminator using the conditional strategy introduced by

[39]. Moreover, the discriminator is conditioned by both
identity zID and the rest parameters zexp, zcam, zill, which
are fed to it as a conditional label.

3.2. Training by Synthetic Face Dataset

Given the lack of accurately labelled facial images with
paired depth maps and labelled variations in illumination,
expression and pose, we train the proposed architecture us-
ing a synthetically generated dataset. This vast training
dataset consists of arbitrary photorealistically rendered fa-
cial images, which are based on a 3D Moprhable Model.
They are also paired with metadata concerning their char-
acteristics and rendering, information difficult to acquire
for “in-the-wild” images. Despite using synthetic data, our
generator’s finetuning step (Sec. 3.3) accurately captures
real facial images.

We generate a synthetic dataset using a morphable model
(LSFM [7]), a facial texture generator (TBGAN [23]) and
a facial material network (AvatarMe++ [44]). Specifically,
we draw 10,000 facial shape samples from LSFM, and an-
other 10,000 facial texture samples from TBGAN based on
an identity vector. These samples are purposefully uncorre-
lated to increase subject diversity. However, the textures
lack photorealistically rendering material properties, and
thus we pass them through an image-to-image translation
network (AvatarMe++), which translates each facial texture
to spatially varying (a) diffuse albedo, (b) specular albedo,
(c) diffuse normals and (d) specular normals. As shown
in [44], these can be used for photorealistically rendering
facial images under arbitrary environment conditions using
shaders such as the Blinn-Phong [5], which we implement
in PyTorch3D [66, 44]. Moreover, we sample various real
expression blendshapes Zexp from 4DFAB [13], which cor-
respond to our 3DMM. Finally, we define a space of the en-
vironment illumination Zill with plausible RGB values and
random direction for nl light sources, and plausible RGB
values for ambient illumination, and a space of the frontal-
hemisphere rendering camera parameters Zcam (up to 30◦

on each axis). The models we use [23, 7, 44] are trained
on diverse datasets (see each paper for details), and their
trained models or training data are in the public domain.

During training, we use the above to generate vast
amounts of training data. The complete dataset rendering
function is defined as R(ẑID, zexp, zill, zcam) −→ Rw,h,4,
where ẑID is an identity vector, zexp is an expression vec-
tor, zill is an illumination vector, zcam is a camera vector
and w, h is the image shape. The output’s 3 channel are the
RGB rendering facial image, and the last channel is the ras-
terized camera-space depth, using SoftRasterizer [48]. For
each training iteration i, we generate each labelled image
and its depth, R(ẑIDi

, zexpi
, zilli , zcami

) = {Ii,Di}, by
generating a random identity vector ẑIDi

, and drawing arbi-
trary expression blendshapes zexpi

∈ Zexp, camera params
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Figure 2: Once trained, 3DMM-RF has learned disentangled latent representations for facial attributes and scene parameters,
and can easily be queried to render facial images. From left to right, we show samples of a) subject identity zID ∈ ZID, b)
subject expression zexp ∈ Zexp, c) camera pose zcam ∈ Zcam, and d) scene illumination zill ∈ Zill .

Figure 3: Overview of our dataset generation pipeline: For
each training image, its identity vector ẑID and expres-
sion vector zexp are used to generate diverse facial tex-
tures and shapes with TBGAN [23] and LSFM [7]. Then
AvatarMe++ [44] is used to acquire reflectance textures,
which are photorealistically rendered with PyTorch3D [66],
given then illumination zill and camera zcam vectors.

zcami
∈ Zcam and illumination params zilli ∈ Zill from

their sets. Finally, to increase compatibility with “in-the-
will” images, we use a state-of-the-art face recognition net-
work [18] on the rendered image Ii, to acquire the latent
identity vector zIDi which we give to our model instead of
ẑIDi

, to facilitate the use of an identity loss.

3.3. Fitting for 3D Face Reconstruction

We can utilize our 3DMM-RF model to 3D reconstruct
any single “in-the-wild“ image. Given any face image, our
goal is to get the optimal latent vectors for identity zID, ex-
pression zexp, camera position zcam, and illumination zill
that can reconstruct the target face. Firstly, we align the
target face by using a face detector network [31] and also
acquire its identity latent vector z̃ID by a face recognition
network [19]. Then by using a facial landmark detection
network [12], we extract the 2D face landmarks and get a
face mask based on these landmarks. We initialize the in-
put identity latent vector zID as the identity latent vector
z̃ID, and set the expression parameters zexp to a zero vector,

camera position zcam to a frontal view and illumination zill
to an average illumination setting. During the optimization,
we first freeze our network and optimize the z parameters
where z = {zID, zexp, zcam, zill}, by comparing the final
rendered image and the target image by a combination of
loss functions as follows:

Lfitting = Lpht + Lvgg + LID + Llandmarks (3)

where Lpht is the MSE loss (Photometry) between the ren-
dered and the final image, Lvgg is the perceptual loss as
introduced in [93], LID is the loss between the identity fea-
ture maps based on [19] and Llandmarks is the facial land-
marks loss. We define Llandmarks as the L2− distance be-
tween the activation maps of both images which are fed into
the facial landmark network [12]. To further optimize the
reconstruction of the face, we finetune the generator net-
work G parameters in addition to the input parameters z by
the same loss function with 200-fold smaller learning rate.
This approach helps to recover identity more precisely and
helps to bridge the domain gap between the synthetic train-
ing data and “in-the-wild“ images.

4. Experiments

4.1. Disentanglement control

One of the key goals of training the network to be able
to efficiently disentangle its latent space. This means that
each dimension of the resulting subspace affects a different
variation factor. As shown in Fig. 4, while modifying one
of the input parameters, our synthesis network is capable of
preserving the rest unchanged. Given the input images of
Fig. 4a, the renderings in Fig. 4b demonstrate that 3DMM-
RF achieves expression transfer from the desired target im-
ages to the input ones, while it preserves the same identities,
lighting conditions and camera poses in each case.
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(a) Source (b) Expression transfer (zexp) (c) Illumination transfer (zill) (d) Camera pose transfer (zcam)

Figure 4: We showcase the ability of our network to disentangle facial and scene properties, by reconstructing the source
images on the left, and replacing some of their attributes, with those acquired from target images.

4.2. Comparison with other models

4.2.1 Qualitative comparison

We compare the fitting ability of our method with Mo-
FaNeRF [96] and HeadNeRF [34], both NeRF-based face
models. MoFaNeRF is a parametric model which maps
face images into a vector space including identity, expres-
sion and appearance features. HeadNeRF is another NeRF-
based parametric head model achieving photorealistic re-
sults. Fig. 5 shows the fitting results for the same input
images, which are presented in Fig. 5a. Even though Mo-
FaNeRF appears to perform well(Fig. 5b), in some cases
it completely misses to recreate a human face. Moreover,
although HeadNeRF achieves to reproduce more photoreal-
istic human faces than MoFaNeRF does(Fig. 5c), it doesn’t
always capture the right identity. It is clearly shown that, ex-
cept rows a&e, the final rendered identity is not the same as
the one appearing in the input image. As shown in Fig. 5d,
our approach achieves both high-quality output while it pre-
serves the right identity. Even for rows a&e where Head-
Nerf manages to reconstruct the right identity, our approach
produces finer details.

Moreover, we compare our implicit 3DMM modeling
and rendering, with two state-of-the-art explicit 3DMM fit-
ting methods, GANFIT [25] and AvatarMe++ [44]. Fig. 6
shows our results on two subjects, from a central and side
pose, compared to the above methods. Even though above
methods [25, 44] use explicit rendering based on a mesh, we
showcase that our reconstruction is on-par with such meth-
ods, and our neural facial rotation accurately maintains the
facial and environment characteristics.

Method L1 ↓ LPIPS ↓ SSIM ↑
MoFaNeRF [96] 0.37 0.098 0.9155
HeadNeRF [34] 0.241 0.05 0.9506
3DMM-RF (Ours) 0.216 0.035 0.9563

Table 1: Quantitative comparison between 3DMM-
RF(Ours), MoFaNeRF [96] and HeadNeRF [34] using im-
age comparison metric

4.2.2 Quantitative comparison

We measure the ability of our network of preserving the
identity features by reproducing the steps followed in [24]
and [27]. Firstly, we reconstruct every image of the Labeled
Faces in the Wild Dataset (LFW) [35] using our method and
then we feed them both to a face recognition network [59].
Then, we compare the cosine similarity distributions of the
activations in the network’s embedding layer between pairs
of 1) the original and the reconstructed-rendered image in
Fig. 7a 2) images containing the same/different identities
in Fig. 7b. We show that the reconstructed images have
more than 0.75 cosine similarity to the original images in
average, and same/different pairs of LFW dataset are still
distinguishable after our reconstruction. Both results show
that identities are well-preserved. Our performance closely
matches with the other state-of-the-art methods that are spe-
cializing in identity preservation such as [27, 24, 26, 81].

Additionally, we randomly select 550 images from the
CelebAMask-HQ [45] following the method introduced by
HeadNeRF [34]. We do fit our model on those images and
compare the fitted images with the state-of-the-art models
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(a) Input
Image

(b)
MoFaNeRF [96]

(c)
HeadNeRF [34]

(d) Ours
(3DMM-RF)

(e) Ours
overlaid

(f) HeadNeRF
Novel views

(g) Ours
Novel views

(h) Diffuse
albedo

Figure 5: This figure contains a qualitative comparison between our method (3DMM-RF), MoFaNeRF [96] and Head-
NeRF [34]. From left to right, the columns include the input image, MoFaNeRF’s fitted prediction, HeadNeRF’s prediction,
3DMM-RF’s prediction, a novel view rendered by HeadNeRF and 3DMM-RF and ours under diffuse albedo.

Figure 6: Comparison between our results and explicit 3DMM fitting methods, GANFIT [25] and AvatarMe++ [44]. We
showcase that our reconstruction and rendering are on-par with these state-of-the-art methods, despite being implicit.

MoFaNeRF [96] and HeadNeRF [34]. In contrast with the
approach proposed by the authors of HeadNeRF, we do not
train any of the networks using the rest images contained in
this dataset. As comparison metrics, we use L1-distance,
SSIM [85] and LPIPS [93]. The results illustrated in Tab. 1

show that our method achieves the highest score.

4.3. Ablation Study

One of the key parts of our approach is the use of
SPADE [58] layers for feeding the scene parameters to the
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(a) Identity preservation of
fitted images

(b) Identity seperability of
paired images

Figure 7: 7a: The distribution of cosine similarity between
the original images and the reconstructed-rendered images
of LFW dataset, which indicates strong identity preserva-
tion of the reconstruction of our model. 7b: The distribu-
tions between same (solid line) and different (dashed line)
pairs of LFW dataset after they have been reconstructed and
rendered by our method. The separability of the two distri-
butions shows that the identity is being preserved.

network. We examine the importance of these, by imple-
menting another approach without any SPADE layers, in
which all the parameters are given together as input to the
network. Fitting the image of Fig. 8a to both networks, we
present our network’s reconstructed image in Fig. 8b and a
novel view of it in Fig. 8c, whilst Fig. 8d,8e include the fit-
ted results performed by the network without SPADE lay-
ers. Comparing those figures, it is easily shown that the
w/o SPADE layers network performs worse. We also notice
that the resulting pose isn’t the desired one, meaning that
SPADE layers are a key factor to the disentanglement of the
scene parameters.

Another ablation study focuses on the fitting pipeline.
We examine the importance of each loss function and the
finetuning final step by a leave-one-out experiment. As
shown in Fig. 8, the results in Fig. 8b are the best in com-
parison with the others, meaning that the current used loss
functions, the SPADE layers and the finetuning step play a
key role to the performance of the approach. Qualitatively,
however, it’s very difficult to distinguish the importance of
the LID loss. To measure it, we compare the cosine identity
distance between the input image of Fig. 8a with the recon-
structed images of Fig. 8b and Fig. 8f using the identity
detector provided by deepFace [69]. We found that Fig. 8a
is more similar to Fig. 8a than Fig 8f, meaning that the LID

loss plays an important role in the fitting pipeline.

4.4. Limitations and Future Work

Even though our network can achieve photo-realistic re-
sults, it still has some limitations. One of them is the fact
that it cannot render other parts of the human head such
as ears and hair. This is because the synthetic images we
used for training don’t include any of these parts. On top of
that, in some situations where some hair occludes parts of
the forehead, our network gets baffled. In future work, we

(a) Input image (b) Ours (c) Ours (π/6)

(d) w/o SPADE (e) w/o SPADE
(π/6)

(f) w/o LID

(g) w/o Lpht (h) w/o Lvgg (i) w/o
Finetuning

Figure 8: Leave-one-out ablation study to visualize the con-
tribution of various components of our fitting pipeline.

think of using methods that are capable of producing human
faces including all the parts. Finally, the training data suf-
fer from flattened eyes, as they are represented by a single
facial mesh, which affects the final rendering.

Another limitation is the fact that our training images
don’t include any wearable like glasses. As a result, in some
cases, our network didn’t perform well in getting the right
face texture because of the losses we are using during the
fitting procedure. We consider finetuning our network in
datasets including this type of data.

5. Conclusion
This work presents a facial deep 3D Morphable Model,

which can accurately model a subject’s identity, pose and
expression and render it under arbitrary illumination. This
is achieved by utilizing a powerful deep style-based gen-
erator to by pass two main weaknesses of neural radiance
fields, rigidity and rendering speed, by generating at one
pass all the samples required for the volume rendering al-
gorithm. We have shown that this model can accurately be
fit to “in-the-wild” facial images of arbitrary pose and illu-
mination conditions, extract the facial characteristics, and
be used to re-render the face under controllable conditions.
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