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Abstract

We focus on controllable disentangled representation
learning (C-Dis-RL), where users can control the partition of
the disentangled latent space to factorize dataset attributes
(concepts) for downstream tasks. Two general problems
remain under-explored in current methods: (1) They lack
comprehensive disentanglement constraints, especially miss-
ing the minimization of mutual information between different
attributes across latent and observation domains. (2) They
lack convexity constraints, which is important for meaning-
fully manipulating specific attributes for downstream tasks.
To encourage both comprehensive C-Dis-RL and convexity si-
multaneously, we propose a simple yet efficient method: Con-
trollable Interpolation Regularization (CIR), which creates a
positive loop where disentanglement and convexity can help
each other. Specifically, we conduct controlled interpolation
in latent space during training, and we reuse the encoder to
help form a ’perfect disentanglement’ regularization. In that
case, (a) disentanglement loss implicitly enlarges the poten-
tial understandable distribution to encourage convexity; (b)
convexity can in turn improve robust and precise disentan-
glement. CIR is a general module and we merge CIR with
three different algorithms: ELEGANT, 121-Dis, and GZS-Net
to show the compatibility and effectiveness. Qualitative and
quantitative experiments show improvement in C-Dis-RL and
latent convexity by CIR. This further improves downstream
tasks: controllable image synthesis, cross-modality image
translation and zero-shot synthesis.

1. Introduction

Disentangled representation learning empowers models to
learn an orderly latent representation, in which each separate
set of dimensions is responsible for one semantic attribute
[10, 5, 22]. If we categorize different disentangled represen-
tation methods by whether they could control the partition
of the obtained disentangled latent representation (e.g., ex-
plicitly assign first 10 dimensions to be responsible for face
attribute), there are two main threads:

(1) Uncontrollable disentangled methods, such as Vari-
ational Autoencoders (VAEs) [13, 11, 18], add prior con-
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Figure 1. Our proposed approach CIR improves the result quality of
3 tasks by encouraging both disentanglement and convexity in the
latent space: (a) Face attribute editing with ELEGANT (add/remove
glasses on face); CIR is better able to transfer glasses with less
disturbance on other face parts. (b) Image to image translation
transfer from a dog image to a cat image with same pose (content);
CIR better matches the desired pose with fewer artifacts. (c) Zero-
shot synthesis with GZS-Net to synthesize an image with a new
background by interpolating in the corresponding latent space; CIR
better interpolates the background only without changing letter size,
color or font style. See Suppl. fig. 1 for a larger version.

straints (e.g., Gaussian distribution) in latent space to implic-
itly infer a disentangled latent code. Most are unsupervised
methods that can easily generalize to different datasets and
extract latent semantic factors. Yet, they struggle to obtain
controllable disentanglement because the unsupervised latent
encoding does not map onto user-controllable attributes. (2)
Controllable disentangled methods, which explicitly control
the partition of the disentangled latent space and the corre-
sponding mapping to semantic attributes by utilizing dataset
attribute labels or task domain knowledge. Because users can
precisely control and design their task-driven disentangled
latent representation, they are widely used in various down-
stream tasks: in cross-modality image-to-image translation,
121-Dis [14] disentangle content and attribute to improve
image translation quality (Fig. 1(b)); In controllable image
synthesis, ELEGANT [21] and DNA-GAN [20] disentangle
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different face attributes to achieves face attribute transfer by
exchanging certain part of their latent encoding across im-
ages ((Fig. 1(a))). In group supervised learning, GZS-Net [8]
uses disentangled representation learning to simulate human
imagination and achieve zero-shot synthesis (Fig. 1(c)).

However, controllable disentangled methods suffer from
2 general problems: 1) The constraints on disentanglement
are partial and incomplete, they lack comprehensive dis-
entanglement constraints. For example, while ELEGANT
enforces that modifying the part of the latent code assigned
to an attribute (e.g., hair color) will affect that attribute, it
does not explicitly enforce that a given attribute will not
be affected when the latent dimensions for other attributes
are changed (Fig. 1(a)). 2) Most of the above-mentioned
downstream tasks require manipulating specific attribute-
related dimensions in the obtained disentangled representa-
tion; for instance, changing only the style while preserving
the content in an image-to-image translation task. For such
manipulation, the convexity of each disentangled attribute
representation (i.e., interpolation within that attribute should
give rise to meaningful outputs) is not guaranteed by current
methods (Fig. 1, Fig. 3(a) and Fig. 7(a)). Further, convexity
demonstrates an ability to generalize, which implies that
the autoencoder structure has not simply memorized the
representation of a small collection of data points. Instead,
the model uncovered some structure about the data and has
captured it in the latent space [3]. How to achieve both
comprehensive disentanglement, and convexity in the latent
space, is under-explored.

To solve the above problems, we first provide a definition
of controllable disentanglement with the final goals of per-
fect controllable disentanglement and of convexity in latent
space. Then, we use information theory and interpolation to
analyze different ways to achieve disentangled (Sec. 3.1) and
convex (Sec. 3.2) representation learning. To optimize them
together, based on the definition and analysis, we use approx-
imations to create a positive loop where disentanglement and
convexity can help each other. We propose Controllable
Interpolation Regularization (CIR), a simple yet effective
general method that compatible with different algorithms to
encourage both controllable disentanglement and convexity
in the latent space (Sec. 3.3). Specifically, CIR first conducts
controllable interpolation, i.e., controls which attribute to
interpolate and how in the disentangled latent space, then
reuses the encoder to ’'re-obtain’ the latent code and add
regularization to explicitly encourage perfect controllable
disentanglement and implicitly boost convexity. We show
that this iterative approximation approach converges towards
perfect disentanglement and convexity in the limit of infinite
interpolated samples.

Our contributions are: (i) Describe a new abstract frame-
work for perfect controllable disentanglement and convexity
in the latent space, and use information theory to summa-

rize potential optimization methods (Sec. 3.1, Sec. 3.2). (ii)
Propose Controllable Interpolation Regularization (CIR), a
general module compatible with different algorithms, to en-
courage both controllable disentanglement and convex in
latent representation by creating a positive loop to make
them help each other. CIR is shown to converge towards per-
fect disentanglement and convexity for infinite interpolated
samples (Sec. 3.3). (iii)) Demonstrate that better disentangle-
ment and convexity are achieved with CIR on various tasks:
controllable image synthesis, cross-domain image-to-image
translation and group supervised learning (Sec. 4, Sec. 5).

2. Related Work

Controllable Disentangled Representation Learning (C-
Dis-RL) is different from Uncontrollable Dis-RL (such as
VAE:s [13, 11, 4]), which implicitly achieves disentangle-
ment by incorporating a distance measure into the objective,
encouraging the latent factors to be statistically independent.
However, these methods and not able to freely control the
relationship between attribute and latent dimensions. C-Dis-
RL learns a partition control of the disentanglement from se-
mantic attribute labels in the latent representation and boosts
the performance of various tasks: ELEGANT [21] and DNA-
GAN [20] for face attribute transfer; 121-Dis [14] for diverse
image-to-image translation; DGNet [22] and IS-GAN [7] for
person re-identification; GZS-Net [8] for controllable zero-
shot synthesis with group-supervised learning. However,
their constraints on disentanglement are implicit and surro-
gate by image quality loss, which also misses the constraint
between different attributes across latent and observation.
As a general module, CIR is compatible and complementary
with different C-Dis-RL algorithms by directly constraining
disentanglement while focusing on minimizing the mutual
information between different attributes across latent and
observation.

Convexity of Latent Space is defined as a set in which
the line segment connecting any pair of points will fall
within the rest of the set [17]. Linear interpolations in a
low-dimensional latent space often produce comprehensible
representations when projected back into high-dimensional
space [6, 9]. However, linear interpolations are not neces-
sarily justified in many controllable disentanglement models
because latent-space projections are not trained explicitly
to form a convex set. VAEs overcome non-convexity by
forcing the latent representation into a pre-defined distri-
bution, which may be a suboptimal representation of the
high-dimensional data. GAIN [17] adds interpolation in the
generator in the middle latent space and uses a discrimina-
tive loss to help optimize convexity. Our method controls
the interpolation in a subspace of the disentangled latent
space and uses disentanglement regularization to encourage
a convex latent space for each semantic attribute.
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Figure 2. Intuitive understanding of Controllable Interpolation Reg-
ularization (CIR). (a) Only encourage controllable disentangled
representation (C-Dis) with general Mutual Information (MI) con-
strain method: maximize the MI between the same attribute across
latent and observation domains while minimizing the MI between
the different attribute across latent and observation domains.(b)
Only encourage convexity with interpolation and image quality
evaluation. (c) A simple yet efficient method, CIR, encourages
both C-Dis and convexity in latent representation. CIR consists
of a Controllable Interpolation (CI) module and a Reuse Encoder
Regularization (RER) module.

3. Controllable Interpolation Regularization

3.1. Mutual Information for Perfect Controllable

disentanglement
A general autoencoder structure (D o E): X — X
is composed of an encoder network FE X — R4,

and a decoder network D : RY — X. R is a latent
space, compared with the original input space X (e.g.,
image space). The disentanglement is a property of la-
tent space R? where each separate set of dimensions is
responsible for one semantic attribute of given dataset.
Formally, a dataset (e.g., face dataset) contains n sam-
ples D = {z(W}"_ , each accompanied by m attributes
D, = {(a&l), aé ). n?)}?:l- Each attribute a; € A; can
be either binary (two attribute values, e.g., .A; may denote
wearing glass or not; .4; = {wear glass, not wear glass}),
or a multi-class attribute, which contains a countable set
of attribute values (e.g., Az may denote hair-colors Ay =
{black, gold, red, . .. }). Controllable disentangled represen-
tation learning (C-Dis-RL) methods have two properties: (1)
Users can explicitly control the partition of the disentangled
latent space R< and (2) Users can control the semantic at-
tributes mapping between R¢ to input space X'. To describe
the ideal goal for all C-Dis-RL, we define a perfect control-
lable disentanglement property in latent space R? and the
autoencoder.

Definition 1 perfect CONTROLLABLE DISENTANGLEMENT
(perfect-C-D)(E, D, D): Given a general encoder E :
X — R% adecoder D : R® — X, and a dataset D with
m independent semantic attributes A, we say the general
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x Controllable Interpolation

Figure 3. Interpolation in the disentangled latent space for back-
ground color of GZS-Net (a) without CIR, the latent space is not
convex (purple point out of understandable gray region) and the
synthesized image shows some contamination over unmodified
attributes (size and foreground letter) (b) Architecture of GZS-Net
+ CIR, which encourages a more disentangled and convex latent
space.

autoencoder achieve perfect controllable disentanglement
for dataset D if the following property is satisfied: (1) For
encoder E, if one attribute A; of input x was specifically
modified, transforming x into &, after computing latent codes
z = E(z) and 2 = E(&), the difference between z and %
should be zero for all latent dimensions except those that
represent the modified attribute. (2) Similarly, for decoder
D, the latent space change should only influence the cor-
responding attribute expression in the output (e.g., image)
space.

To encourage a general autoencoder structure model to
obtain perfect controllable disentanglement property, we
propose an information-theoretic regularization with two
perspectives (Fig. 2(a)): (1) Maximize the mutual informa-
tion (I()) between the same attribute across latent space R¢
and observation input space X’; and (2) Minimize the mutual
information between the different attributes across latent R?
and observation input space X. Formally:

i | o B0 + (B0 DB

(1)
in | Tea. E)a,) + I(Be)a, D@L

where x 4, and D(FE(x)) 4, represent the observation of
attribute A; in X’ domain (e.g., hair color in human image);
E(x) 4, represents the dimensions in R? that represent at-
tribute A;; 4,7 € [1..m] and ¢ # j (Fig. 2(a)).
3.2. Convexity Constraint with Interpolation

A convex latent space has the property that the line seg-
ment connecting any pair of points will fall within the rest
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of the space [17]. As shown in Fig. 3(a), the gray region
represents the 2D projection of the latent representation of
one attribute (e.g., background color) for a dataset. This
distribution would be non-convex, because the purple point,
though between two points in the distribution (the red and
blue points, represent two background color), falls in the
space that does not correspond to the data distribution. This
non-convexity may cause that the projection back into the
image space does not correspond to a proper semantically
meaningful realistic image (z in Fig. 3(a) influence other
unmodified attributes, i.e, size and foreground letter). This
limitation makes disentanglement vulnerable and hinders po-
tential latent manipulation in downstream tasks. The result
of Fig. 4 and 5in experiments illustrate this problem.

To encourage a convex data manifold, the usefulness of inter-
polation has been explored in the context of representation
learning [2] and regularization [19]. As is shown in Fig. 1(b),
we summarize the constraint of convexity in the latent space:
we use a dataset-related quality evaluation function Q() to
evaluate the ”semantic meaningfulness” of input domain
samples; a higher value means high quality and more seman-
tic meaning. After interpolation in latent space R?, we want
the projection back into the original space to have a high Q()
score. Formally:

{ Brs e [QUDI0E @) + (1 - 0) B | | @

)

where x1 and x4 are two data samples and « € [0..1] controls
the latent code interpolation in RY.

The dataset-related quality evaluation function () also
has different implementations: [17] utilizes additional dis-
criminator and training adversarially on latent interpolations;
[3] uses a critic network as a surrogate which tries to recover
the mixing coefficient from interpolated data.

3.3. CIR: encourage both C-Dis-RL and Convexity

Our goal is to encourage a controllable disentangled rep-
resentation, and, for each semantic attribute-related latent
dimension, the created space should be as convex as possible.
Specifically, we want to optimize both controllable disen-
tanglement (Eq. 1) and convexity (Eq. 2) for each semantic
attribute. In practice, each mutual information term in Eq. 1
is hard to optimize directly as it requires access to the pos-
terior. Most of the current methods use approximation to
obtain the lower bound for optimizing the maximum [5, 1]
or upper bound for optimizing minimum [13]. However,
it is hard to approximate so many (2m(m — 1) + 2m) dif-
ferent mutual information terms in Eq. 1) simultaneously,
not to mention considering the convexity of m latent space
(Eq. 2) as well. To optimize them together, we propose to
use a controllable disentanglement constraint to help the
optimization of convexity and in turn, use convexity con-
straint to help a more robust optimization of the controllable
disentanglement. In other words, we create a positive loop

between controllable disentanglement and convexity, to help
each other. Specifically, as shown in Fig. 1(c), we propose
a simple yet efficient regularization method, Controllable
Interpolation Regularization (CIR), which consists of two
main modules: a Controllable Interpolation (CI) module and
a Reuse Encoder Regularization (RER) module. It works as
follows: an input sample x goes through F to obtain latent
code z = F(z). Because our goal is controllable disentan-
glement, on each iteration we only focus on one attribute. CI
module first selects one attribute .4; among all m attributes,
and then interpolates along the A; related latent space in z
while preserving the other unselected attributes, yielding 2 4.
After D translates the interpolated latent z 4, back to image
space, the RER module takes D(z 4, ) as input and reuses the
encoder to get the latent representation 2’ = E(D(z4,)).
RER then adds a reconstruction loss on the unmodified latent
space as a regularization:

Lieg = [|z—a; — 25%,||nn 3)

where z_ 4, and 2%, denote the all latent dimensions of z 4,
and 2’y respectively, except those that represent the modi-
fied attribute A,. Eq. 3 explicitly optimizes Eq. 1: in each
iteration, if the modified latent region z 4, only influences
the expression of x 4,, then, after reusing I, the unmodi-
fied region in E(D(z4,)) should remain as is (min E, D in
Eq. 1). On the one hand, for those unselected attributes, their
information should be preserved in the whole process (max
E, Din Eq. 1). Eq. 3 also implicitly optimizes Eq. 2: if the
interpolated latent code is not *understandable’ by E and D,
the RER module does not work and the L., would be large.
Fig. 2 (a) and (b) abstractly demonstrate the latent space
convexity difference before and after adding CIR to GZS-
Net [8]. Convexity and disentanglement are dual tasks in
the sense that one can help enhance the other’s performance.
On the other hand, the reconstruction loss towards perfect
controllable disentanglement implicitly encourages a con-
vex attribute latent space; The more convex the latent space,
the more semantically meaningful samples synthesized by
interpolation will help the optimization of controllable dis-
entanglement, which encourages a more robust C-Dis-RL.
From the perspectives of loss function and optimization, if
the reconstruction loss could decrease to zero for a given
dataset augmented by many interpolated samples, then per-
fect disentanglement and convexification are achieved. That
is, CIR forces, in the limit of infinite interpolated samples,
the disentangled latent representation of every attribute to be
convex, where every interpolation along every attribute is
guaranteed to be meaningful.

4. Qualitative Experiments

We qualitatively evaluated our CIR as a general module
and merged it into three baseline models on three different
tasks (Fig. 5): multiple face attributes transfer with ELE-
GANT [21] (Sec. 4.1), cross modality image translation with
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Figure 4. CIR consists of a Controllable Interpolation (CI; shown
in blue) module and a Reuse Encoder Regularization (RER; green)
module. (a-c) CIR compatible to different models. (a) GZS-Net
[8] + CIR (b) ELEGANT [21] + CIR. (¢) I12I-Dis [14] + CIR. Grey
components are the baseline methods.

121-Dis [14] (Sec. 4.2) and zero-shot synthesis with GZS-
Net [8] (Sec. 4.3). CIR encourages a better disentanglement
and convexity in their latent space to further improve their
performance.

4.1. CIR boosts multiple face attributes transfer

We conduct the same face attribute transfer tasks as in
ELEGANT [21] paper with CelebA [15]. Task 1: taking two
face images with the opposite attribute as input and generate
new face images which exactly transfer the opposite attribute
between each other (Fig. 5). Task 2: generate different face
images with the same style of the attribute in the reference
images (Fig. 6). Both of the two tasks require a robust
controllable disentangled latent space to swap attributes of
interest to synthesize new images and the convexity of latent
space influences image quality.

Fig. 4(b) shows the high-level structure about how CIR
(blue and green block) compatible to ELEGANT (grey).
ELEGANT adopts a U-Net [16] structure (autoencoder) to
generate high-resolution images with exemplars. In this way,
the output of the encoder is the latent code of disentangled
attributes and the context information is contained in the
output of the intermediary layer of the encoder. ELEGANT
adopts an iterative training strategy: training the model with
respect to a particular attribute each time. We use the same
training strategy but adding our regularization loss term. As
shown in Fig. 4 (b), to encourage the disentanglement and
convexity of attribute A;, CIR interpolates A;-related di-
mensions in latent code (yellow) and constrains the other
latent dimensions to remain unchanged after D and reused
E. Specifically, when training ELEGANT about the A; at-
tribute Eyeglasses at a given iteration, we obtain the latent
code zA = E(A) and zB = E(B) with E for each pair
of images A and B with opposite A; attribute value. The
disentangled latent code is partitioned into 2z 4, for latent di-
mensions related to A;, and z_ 4, for unrelated dimensions.

c D c D
A B ELEGANT  ELEGANT

ELEGANT+CIR  ELEGANT +CIR

Glasses

Beard

Figure 5. ELEGANT + CIR performance (task 1) for two images
face attribute transfer (inputs: A,B ; outputs: C,D).

Input ELEGANT

ELEGANT + CIR

Figure 6. ELEGANT + CIR performance (task 2) for face gener-
ation by exemplars: Input image (orange) should be modified as
different face images with the same style of the Eyeglasses attribute
in the reference images (green).

We interpolate in 2z 4, with zA and zB while keeping the
other dimensions z_ 4, as is to obtain interpolated latent
code zA 4, and 2B 4,. After D and reuse E, we get the re-
constructed latent representation 2 A’Y = E(D(zA4,, 24))

and 2B’ = E(D(2By4,,2B)). The reconstruction loss as
a regularization is (an instantiation of Eq. 3):
Lieg = |24 a, = 2AZ [lia +[|2B-a, — 2By i (4)
The overall generative loss of ELEGANT + CIR is:
L(G) = Lyeconstruction + Liady + Acir Lireg )

where Lyeconstruction and L,gy are ELEGANT original loss
terms, Acir > O control the relative importance of the loss
terms. we keep the discriminative loss. (More network
architecture and training details are in Supplementary)

Fig. 5 shows the task 1 performance on two images face
attribute transfer. Take Eyeglasses as an example attribute

4765



to swap: A,B are input, the output C and D should keep
all other attributes unmodified except for swapping the Eye-
glasses. ELEGANT generated C and D have artifacts in
Eyeglasses-unrelated regions, which means ELEGANT can-
not disentangle well in latent space. After adding CIR, the
generated C and D better preserve the irrelevant regions
during face attribute transfer, which demonstrates that CIR
helps encourage a more convex and disentangled latent space.
The Eyebrow and Beard attribute results also show the im-
provement from CIR. Fig. 6 shows the task 2 performance
on face image generation by exemplars. Input image (or-
ange) should be modified as different face images with the
same style of the Eyeglasses attribute in the reference images
(green). ELEGANT generated new images with artifacts in
Eyeglasses-unrelated regions that cannot disentangle well.
Synthesis is also inferior in the glasses region, which we
posit is due to non-convexity in the eyeglass-related latent
space. With the help of CIR, the generated images improve
both Eyeglass quality and irrelevant region preservation.

4.2. CIR boosts cross modality image translation

We conduct the same image-to-image translation task as
in 121-Dis [14] paper with cat2dog dataset [14]. Fig. 4(c)
shows the high-level structure about how CIR (blue and
green block) compatible to 121-Dis (grey). There are two
image domains X" (cat) and Y (dog), I2I-Dis embeds input
images onto a shared content space C with specific encoders
(E% and EY,), and domain-specific attribute spaces Ax and
Ay with specific encoders (E and EY,) respectively. Af-
ter that, new images can be synthesized by transferring the
shared content attribute cross-domain (between cat and dog),
such as generating unseen dogs with the same content at-
tribute value (pose and outline) as the reference cat (Fig. 7).
Domain-specific attribute Ay and Ay already been con-
straint by adding a KL-Divergence loss with Gaussian distri-
bution; thus, we can freely sample in Gaussian for synthesis.
The shared content space C could be encouraged as a more
convex and disentangled space by CIR.

We use the same network architecture and training strat-
egy as 12I-Dis except for adding our regularization loss term.
As shown in Fig. 4 (c), during each training iteration, a cat
image z and a dog image y go through corresponding en-
coders and each of them produce latent codes of domain
(224 = E$ (%), 2ya = E5(y) ) and content (zz, = E% (),
zye = E5,(y)). Then an interpolated content attribute latent
code (yellow) zzy,. (between zx. and zy,.) concatenates with
the domain attribute latent code of cat image zx, and dog
image zy, respectively and forms two new latent codes, and
decoders turns them into new images u = Gx (224, 22Y.),
v = Gy(2Ya, 22y, ). To encourage the disentanglement and
convexity of the content attribute, we reuse EY, and E, to
get the reconstructed domain attribute latent representations
zap® = E%(u), 2y4¢ = E5(v) and add the reconstruction

Identity Sample

.‘..1I|||||||||||||I|.... Fi

Interpiation

Identity Sample

..... alll.. >

(a)

()

Content Provider

Fix

¥y )
Figure 7. 12I-Dis + CIR performance of diverse image-to-image
translation. (a) For any dog image sample, create several inter-
polated images with content (here, pose, ear orientation, etc) in
between that of the two reference cat images. (b) For several cat
identity samples, synthesize images with that cat’s identity but the
content (pose, etc) of the reference dog image.

loss as a regularization (an instantiation of Eq. 3):
Lieg = ||225° — zxa|[nn + 1295 — 2yallin (6)

The overall loss of 12I-Dis + CIR is

__ycontentyc ccrce domain yr domain
L _/\adv Ladv + )‘1 Ll + )‘adv Ladu +

)\'Il‘econL;econ 4 )\llatentLllatent +AxLLirL + ACIRLreg

()
where content and domain adversarial loss L ;| gg;’“””,
cross-cycle consistency loss L, self-reconstruction loss
L7econ Tatent regression loss L™ and KL loss L, are
121-Dis original loss terms, A > 0 control the relative im-
portance of the loss terms. (More details in Supplementary).

Fig. 7 shows the image-to-image translation performance.
(a) We fix the identity (domain) latent code and change
the content latent code by interpolation; generated images
should keep the domain attribute (belong to the same dog).
121-Dis generated dog images have artifacts, which means
the non-convex latent space cannot "understand’ the inter-
polated content code. After adding our CIR, the generated
images have both better image quality and consistency of
the same identity. (b) We fix the content latent code and
change the identity by sampling; generated images should
keep the same content attribute (pose and outline). Cat im-
ages generated by I2I-Dis have large pose variance (contain
both left and right pose), and large face outline variance (ear
positions and sizes). After adding our CIR, the generated
images have smaller pose and outline variance. (More results
in Supplementary)

4.3. CIR boosts zero-shot synthesis

We use the same architecture of autoencoders as GZS-
Net [8] and Fonts dataset [8]. Fig. 4(a) shows the high-level
structure about how CIR (blue and green block) compatible
to GZS-Net (grey). The latent feature after encoder E is a

4766



Background

AAAAAAAA
AAAAAAAA

Font
?0\ ' m 5
Sum B mmmmmmmmm]
Le MM EmMmMmmmmm

Figure 8. GZS-Net + CIR performance of interpolation-based at-
tribute controllable synthesis. Top: Interpolation in the latent space
of background color. Middle: interpolation of letter size. Bottom:
Interpolation of font style. In all three cases, CIR provides both
better disentanglement (attributes other than the interpolated one do
not change as much) and higher interpolation quality (interpolated
attributes show fewer artifacts).

100-dim vector, and each of the five Fonts attributes (content,
size, font color, background color, font) covers 20-dim. The
decoder D, symmetric to E, takes the 100-dim vector as
input and outputs a synthesized sample. We use the same
Group-Supervised learning training strategy as GZS-Net
except for adding our regularization loss term Eq. 1, which
is exactly the same as the one described in Sec. 3.3 and Fig. 3
(b). Besides the reconstruction loss L., swap reconstruction
loss Lg: and cycle swap reconstruction loss L.y which are
same as GSL, we add a regularization reconstruction loss
Lieg. The total loss function is:

L(E7 D) = Lr + /\srLsr + )\csrLcsr + )\CIRLreg (8)

where Ay, Acsr, Acir > 0 control the relative importance of
the loss terms.

Fig. 8 shows the interpolation-based controllable synthe-
sis performance on background, size, and font attributes.
Take background interpolation synthesis as an example: we
obtain background latent codes by interpolating between the
left and right images, and each of them concatenates with
the unselected 80-dim latent code from the left image. Gen-
erated images should keep all other attributes unmodified
except for the background. GZS-Net generated images have
artifacts in background-unrelated regions, i.e., GZS-Net can-
not disentangle well in latent space. After adding our CIR,
the generated images better preserve the irrelevant areas dur-
ing synthesis. The size and font attribute results also show
improvement from CIR. (More results in Supplementary).

5. Quantitative Experiments

We conduct five quantitative experiments to evaluate the
performance of CIR on latent disentanglement and convexity.

Content  Size  FontColor BackColor  Style Content  Size

Content | 0,99 0.92  0.11 0.13 0.30 Content | 1.00 © 0.57 0.11 0.12 0.01

size| 0.78  1.00  0.11 015 0.36 size| 0.02 | 1.00 0.11 0.12 0.01

Fontcolor | 0.70 ~ 0.88  1.00 0.16 0.23 Fontcolor| 0.02 | 0.74 = 1.00  0.41 0.01

Backcolor| 0.53 ~ 0.78 0.21 [ 1.00  0.15 Backcolor| 0.02 ~ 0.57 0.25 | 1.00  0.02

style| 0.70  0.93  0.12 012 0.63 Style| 0.02 = 058 0.11 0.11 0.69
(a) GZS-Net (b) GZS-Net + CIR

Figure 9. Disentangled representation analysis. (a) Baseline GZS-
Net. (b) With CIR, off-diagonal elements (entanglement across
attributes) are reduced.

5.1. Controllable Disentanglement Evaluation by
Attribute Co-prediction.

Can latent features of one attribute predict the attribute
value? Can they also predict values for other attributes? Un-
der perfect controllable disentanglement, we should answer
always for the first and never for the second. We quantita-
tively assess disentanglement by calculating a model-based
confusion matrix between attributes. We evaluate GZS-Net
[8] + CIR with the Fonts [8] dataset (latent of ELEGANT
and I2I-Dis are not suitable). Each image in Fonts contains
an alphabet letter rendered using 5 independent attributes:
content (52 classes), size (3), font color (10), background
color (10), and font (100). We take the test examples and
split them 80:20 for trainpg:testpr. For each attribute pair
j,r € [1..m] x [1..m], we train a classifier (3 layer MLP)
from g; of trainpr to the attribute values of 7, then obtain
the accuracy of each attribute by testing with g; of testpg.
Fig. 9 compares how well features of each attribute (row)
can predict an attribute value (column): perfect should be
as close as possible to Identity matrix, with off-diagonal
entries close to random (i.e., 1 / |A,|). The off-diagonal
values of GZS-Net show the limitation of disentanglement
performance; with CIR’s help, the co-prediction value shows
a better disentanglement.

5.2. Controllable Disentanglement Evaluation by
Correlation Coefficient.

For each method, we collect 10,000 images from the
corresponding dataset (ELEGANT [21] with CelebA [15],
GZS-Net with Fonts [8]) and obtain 10,000 latent codes
by E's. We calculate the correlation coefficient matrix be-
tween dimensions in latent space. A near-perfect disentan-
glement should yield high intra-attribute correlation but low
inter-attribute correlation. ELEGANT disentangles two at-
tributes: eyeglasses and mustache, each of which covers
256-dimensions. GZS-Net disentangles five attributes: con-
tent, size, font color, background color, and font; each covers
20-dimensions. Fig. 10 shows that CIR improves the dis-
entanglement in latent space, as demonstrated by higher
intra-attribute and lower inter-attribute correlations (More
details in Suppl.).
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Figure 10. Disentanglement Evaluation by Correlation Coeffi-
cient. Intra-attribute correlation increases with CIR (GZS-Net (top):

7.2%, ELEGANT (bottom): 3.2%) while inter-attribute decreases
(GZS-Net: 60.9%, ELEGANT: 3.1%).

Table 1. Convexity Evaluation with Image Quality Score

Algorithms Train images Test images High quality probability
BIEGANT s CIR | 0000 1500 o0
piDisr e | 15 1500 e
GzSNesCR_| 90 1000 v

5.3. Convexity Evaluate with Image Quality Score.

To evaluate the overall convexity in latent space, we use
an image quality classifier to evaluate the quality of images
generated by interpolating in latent space. We train a spe-
cific image quality classifier for each baseline algorithm and
corresponding dataset. Take ELEGANT as an instance: To
train a classifier for ELEGANT and ELEGANT + CIR, we
use 3000 CelebA original images as positive, high-quality
images. To collect negative images, we first randomly inter-
polate the latent space of both ELEGANT and ELEGANT
+ CIR and generate interpolated images for negative low-
quality images; then, we manually select 3000 low-quality
images (artifact, non-sense, fuzzy ...) and form a 6000 im-
ages training set. After training an image quality classifier,
we test it on 1500 images generated by interpolation-based
attribute controllable synthesis as Exp. 4.1. Table 1 shows
the average probability of high-quality images (higher is
better). The training and testing for 12I-Dis (+ CIR) and
GZS-Net (+ CIR) are similar.

5.4. Perfect Disentanglement Property Evaluation.

As we defined in Sec. 3.1, Perfect disentanglement prop-
erty can be evaluated by the difference of the unmodified
attribute related dimensions in R? after modifying a specific
attribute .4; in image space. For the two methods in each
column (Table 2) and corresponding datasets, we modify one
attribute value A; of each input  and get Z, then obtain latent
codes (z = E(x), £ = E(&)) with two methods’ encoders

Table 2. Perfect Disentanglement Property Evaluation

Algorithms EIEGANT 12I-Dis GZS-Net
MSE 1.9 1.8 3.42

Algorithms | EIEGANT + CIR | I2I-Dis + CIR | GZS-Net + CIR
MSE 0.38 0.1 0.27

Table 3. Disentanglement Evaluation with StyleGAN Perceptual

Path Length Metric. Lower difference is better.
2I-Dis | I2I-Dis + CIR ‘ EIEGANT ‘ EIEGANT + CIR

29 21 1.23 0.68

respectively. After we normalized the latent codes from two
methods into the same scale, we calculate the Mean Square
Error (MSE) of the unmodified region M SE(z_4,,%2-4,)
between z and Z (lower is better). Table 2 shows that af-
ter adding CIR, we obtain a lower MSE, which means CIR
encourages a better disentangled latent space.

5.5. C-Dis Evaluation with Perceptual Path Length

We use a method similar to the perceptual path length
metric in StyleGAN [12], which measure the difference
between consecutive images (their VGG16 embeddings)
when interpolating between two random inputs. We sub-
divide a latent space interpolation path into linear seg-
ments. In our experiment, we use a small subdivision
epsilon ¢ = 10~* and linear interpolation (lerp). Thus,
the average perceptual path length in latent space Z is
lz = E[%d (G (lerp (21, 22;1)) , G (lerp (21, 22; t + €)))]
Z1,Zo is the start point and the end point. G can be a de-
coder in Auto-encoder or generator in a GAN-based model.
t ~ U(0,1). dis the distance in VGG16 embeddings. Our
results can be seen in Table. 3 where CIR improves the latent
disentanglement.

6. Conclusion

We proposed a general disentanglement module, Control-

lable Interpolation Regularization (CIR), compatible with
different algorithms to encourage more convex and robust
disentangled representation learning. We show the perfor-
mance of CIR with three baseline methods ELEGANT, 12I-
Dis, and GZE-Net. CIR first conducts controllable interpola-
tion in latent space and then ‘reuses’ the encoder to form an
explicit disentanglement constraint. Qualitative and quanti-
tative experiments show that CIR improves baseline meth-
ods performance on different controllable synthesis tasks:
face attribute transfer, diverse image-to-image transfer, and
zero-shot image synthesis with different datasets: CelebA,
cat2dog and Fonts respectively.
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