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Abstract
Super-resolving medical images can help physicians in

providing more accurate diagnostics. In many situations,
computed tomography (CT) or magnetic resonance imag-
ing (MRI) techniques capture several scans (modes) dur-
ing a single investigation, which can jointly be used (in a
multimodal fashion) to further boost the quality of super-
resolution results. To this end, we propose a novel multi-
modal multi-head convolutional attention module to super-
resolve CT and MRI scans. Our attention module uses the
convolution operation to perform joint spatial-channel at-
tention on multiple concatenated input tensors, where the
kernel (receptive field) size controls the reduction rate of
the spatial attention, and the number of convolutional fil-
ters controls the reduction rate of the channel attention,
respectively. We introduce multiple attention heads, each
head having a distinct receptive field size corresponding to
a particular reduction rate for the spatial attention. We in-
tegrate our multimodal multi-head convolutional attention
(MMHCA) into two deep neural architectures for super-
resolution and conduct experiments on three data sets. Our
empirical results show the superiority of our attention mod-
ule over the state-of-the-art attention mechanisms used in
super-resolution. Moreover, we conduct an ablation study
to assess the impact of the components involved in our
attention module, e.g. the number of inputs or the num-
ber of heads. Our code is freely available at https:
//github.com/lilygeorgescu/MHCA.

1. Introduction
Magnetic Resonance Imaging (MRI) and Computer To-

mography (CT) scanners are non-invasive investigation
tools that produce cross-sectional images of various organs
or body parts. In common medical practice, the resulting
scans are used to diagnose and treat various lesions, rang-
ing from malignant tumors to hemorrhages. Moreover, le-
sion detection and segmentation from CT and MRI scans
are central problems studied in medical imaging, being ad-

dressed via automatic techniques [1, 35, 42]. However, one
voxel in typical MRI or CT scans corresponds to a cubic
millimeter of tissue at best, which translates into a rather
low resolution, preventing precise diagnosis and treatment.
Indeed, according to Georgescu et al. [14], physicians rec-
ognize the necessity of increasing the resolution of MRI and
CT scans to improve the accuracy of diagnosis and treat-
ment. Furthermore, a recent study [34] shows that super-
resolution can also aid deep learning models to increase
segmentation performance. Due to the aforementioned ben-
efits, we consider that medical image super-resolution (SR)
is a very important task for medicine nowadays.

A common medical practice is to take multiple scans
with various contrasts (modes) during a single investigation,
providing richer information to physicians, who get a more
clear picture of the patients. A series of previous works
[10, 27, 47, 51, 52] showed the benefits of using multi-
contrast (multimodal) scans to improve super-resolution re-
sults. While previous works [10, 27, 47, 51, 52] combined a
low-resolution (LR) scan with a high-resolution (HR) scan
of distinct contrasts, to the best of our knowledge, we are
the first to study super-resolution with multiple low resolu-
tion scans as input. Our approach is applicable to a broader
set of CT/MRI scanners, as it does not require the avail-
ability of an HR input from another modality (this is rarely
available in daily medical practice).

To approach multi-contrast medical image super-
resolution, we propose a novel multimodal multi-head con-
volutional attention (MMHCA) mechanism that performs
joint spatial and channel attention within each head, by
stacking a convolutional (conv) layer and a deconvolutional
(deconv) layer, as illustrated in Figure 1. Tensors from dif-
ferent contrast neural branches are concatenated along the
channel dimension and given as input to our attention mod-
ule. The convolutional layer reduces the input tensor both
spatially and channel-wise. The channel reduction rate is
controlled by adjusting the number of convolutional filters,
while the spatial reduction rate is controlled by adjusting the
size of the kernel (receptive field). The deconv layer brings
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Figure 1. Our multimodal multi-head convolutional attention module (MMHCA) with h heads, integrated into some neural architecture for
super-resolution. Input low-resolution (LR) images of distinct contrasts are processed by independent branches and the resulting tensors
are concatenated. The concatenated tensor is provided as input to every attention head. Each attention head applies conv and deconv
operations, using a kernel size that is unique to the respective head. The resulting tensors are summed up and passed through a sigmoid
layer. Finally, the attention tensor is multiplied (element-wise) with the concatenated tensor, and the result is further processed by the
network to obtain the high-resolution (HR) image. Best viewed in color.

the output of the convolutional layer back to its original size.
We introduce multiple attention heads, each head having a
distinct kernel size corresponding to a particular reduction
rate for the spatial attention. The tensors from all attention
heads are summed up and passed through a sigmoid layer,
obtaining the final attention. The attention tensor is multi-
plied with the input tensor, enabling the neural network to
focus on the most interesting regions from each input im-
age. As other attention modules [19, 29, 43], MMHCA re-
lies on the bottleneck principle to force the model in keep-
ing the information that merits attention.

We integrate our multi-input multi-head convolutional
attention into two deep neural architectures for super-
resolution [14, 26] and conduct experiments on three data
sets: IXI, NAMIC Multimodality, and Coltea-Lung-CT-
100W. These data sets contain multi-contrast investigations
which allow us to evaluate our multimodal framework. Our
results show that MMHCA brings significant performance
gains for both neural networks on all three data sets. More-
over, our framework outperforms recently introduced atten-
tion modules [10, 29, 43], as well as state-of-the-art meth-
ods [5, 12, 14, 21, 24, 26, 37, 45, 47, 48, 49, 50]. Aside
from evaluating methods via automatic measures, i.e. the
peak signal-to-noise ratio (PSNR) and the structural simi-
larity index measure (SSIM), we conduct a subjective eval-
uation study, asking three physicians to compare the super-

resolution results of a state-of-the-art model, before and af-
ter adding MMHCA, without disclosing the method pro-
ducing each image. The least number of votes assigned by
a human annotator to MMHCA is 75%, suggesting that its
performance gains are indeed significant. In addition, we
present ablation results indicating that each component in-
volved in our attention module is important.

In summary, our contribution is threefold:
• We are the first to perform medical image super-

resolution using a multimodal low-resolution input.

• We propose a novel multimodal multi-head convolu-
tional attention mechanism for multi-contrast medical
image SR.

• We present empirical evidence showing that our atten-
tion module brings significant performance gains on
three multi-contrast data sets.

2. Related Work
2.1. Image Super-Resolution

Most of the recent works [9, 10, 14, 16, 18, 22, 24, 27,
29, 38, 46, 47, 48, 49, 50, 51, 52] addressing the super-
resolution task use deep learning methods in order to in-
crease the resolution of images. One of the early stud-
ies employing deep convolution neural networks (CNNs)
for super-resolution is the work of Kim et al. [24], which
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introduces the Very Deep Super-Resolution (VDSR) net-
work. The VDSR model consists of 20 convolutional lay-
ers and takes as input the interpolated low-resolution (ILR)
image. Different from the work of Kim et al. [24] which
relies on ILR images, Shi et al. [38] proposed the efficient
sub-pixel convolutional (ESPC) layer, which learns to up-
scale low-resolution feature maps into the high-resolution
output. By eliminating the reliance on ILR images (which
have the same height and width as HR images), ESPC is ca-
pable of decreasing the running time by a significant mar-
gin. After the introduction of the ESPC layer, many re-
searchers [9, 10, 14, 18, 29, 46, 50] adopted this approach
in their super-resolution (SR) models.

Super-resolution methods have also shown their benefits
in medical imaging. Medical image super-resolution works
can be grouped into two categories, where one category is
focused on increasing the resolution of individual CT or
MRI slices (2D images) [7, 9, 10, 12, 18, 25, 28, 34, 37,
45, 46, 48, 50], while the other is focused on increasing the
resolution of entire 3D scans (volumes) [4, 8, 14, 20, 30].
Similar to [7, 9, 10, 12, 18, 25, 28, 34, 37, 45, 46, 48, 50],
in this work, we are focusing on increasing the resolu-
tion of CT and MRI slices. Gu et al. [16] proposed the
MedSRGAN model in order to upsample the resolution of
2D medical images using Generative Adversarial Networks
(GANs) [15]. MedSRGAN employs a residual map atten-
tion network in the generator to extract useful information
from different channels. Gu et al. [16] also used a multi-task
loss function comprised of several losses (content loss, ad-
versarial loss and adversarial feature loss) to train the Med-
SRGAN model. Georgescu et al. [14] proposed a method
to increase the resolution of both 2D and 3D medical im-
ages. To super-resolve 3D images, Georgescu et al. [14]
used two CNNs in a sequential manner, the first CNN in-
creasing the resolution on two axes (height and width) and
the second CNN increasing the resolution on the third axis
(depth). Their approach can be used to extend any method
from 2D SR to 3D SR, including our own.

Most of the related works employ single-contrast super-
resolution (SCSR) [7, 9, 14, 18, 25, 28, 34, 37, 45, 46,
48, 50], meaning that they utilize a single-contrast im-
age as input for the upsampling network. There are also
some works that approach multi-contrast super-resolution
(MCSR) [10, 27, 47, 51, 52] using an HR image from an-
other modality, e.g. a T1-weighted1 slice, to increase the
resolution of the targeted LR modality, e.g. a T2-weighted
slice. Zeng et al. [47] proposed a model consisting of two
sub-networks to simultaneously perform SCSR and MCSR.
The first sub-network performs SCSR, upsampling the tar-
get modality, while the second sub-network uses the output
of the first sub-network and an HR image from a differ-

1https://radiopaedia.org/articles/
mri-sequences-overview

ent modality to further refine the target modality. Feng et
al. [10] proposed a multi-stage integration network (MINet)
for MCSR. The MINet model uses two input images that
are processed in parallel by two independent networks, and
their features are fused at each layer to obtain multi-stage
feature representations. Similar to Zeng et al. [47], Feng
et al. [10] integrated a second HR modality to increase
the performance of their model. Different from previous
works [10, 27, 47, 51, 52], we do not employ any HR im-
age to guide our model. Instead, we only rely on the low-
resolution images pertaining to different modalities. To the
best of our knowledge, we are the first to propose an MCSR
method based solely on LR medical images as input.

2.2. Attention Mechanism
The attention mechanism is a very hot topic in the com-

puter vision community, having broad applications ranging
from mainstream computer vision tasks, such as image clas-
sification [43], to more specific tasks, such as natural im-
age SR [29] and medical image SR [10, 48]. Attention
mechanisms are integrated into neural networks to direct
the attention of the model to the area with relevant infor-
mation. Hu et al. [19] proposed the squeeze-and-excitation
(SE) block to recalibrate the channel responses, thus per-
forming channel-wise attention. In order to further increase
the power of the attention mechanism, Woo et al. [43] pro-
posed the Convolutional Block Attention Module (CBAM),
which infers attention maps for two separate dimensions,
spatial and channel, in a sequential manner. Niu et al. [29]
proposed the channel-spatial attention module (CSAM) to
boost the performance of natural image SR. CSAM is com-
posed of 3D conv layers, being able to learn the channel and
spatial interdependencies of the features. In a similar fash-
ion to Niu et al. [29], Feng et al. [10] employed 3D conv lay-
ers to generate attention maps that capture both channel and
spatial information. Unlike previous works [10, 29, 43], our
attention module is based on 2D convolution and deconvo-
lution operations with multiple kernel sizes to perform joint
multi-head spatial-channel attention.

The self-attention mechanism [40] triggered the devel-
opment of models solely based on attention, such as vi-
sion transformers [2, 3, 6, 13, 23, 31, 33, 39, 44, 53, 54],
which have been adopted at an astonishing rate by the com-
puter vision and medical imaging communities, likely due
to the impressive results across a wide range of problems,
from object recognition [6, 39, 44] and object detection
[2, 53, 54] to medical image segmentation [3, 13, 17] and
medical image generation [33]. Although transformers [36]
have been applied to several mainstream medical imaging
tasks, the number of transformer-based methods applied to
medical image super-resolution is relatively small [11, 12].
Different from methods relying solely on attention-based
architectures [11, 12], we propose a novel and flexible at-
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tention module that can be integrated into various architec-
tures. To support this claim, we integrate MMHCA into
two state-of-the-art architectures [14, 26], providing empir-
ical evidence showing that our attention module can signif-
icantly boost the performance of both models.

3. Method
Given a multi-contrast input formed of n low-resolution

input images of p × p pixels, denoted as LR1, LR2, ...,
LRn, our goal is to obtain an HR image of r × r pixels,
denoted as HRk, where r > p, for the target modality
k ∈ {1, 2, ..., n}. In common practice, r is typically chosen
to be equal to 2p or 4p, corresponding to super-resolution
factors of 2× or 4×, respectively. In our experiments, we
consider these commonly-used SR factors.

We propose a spatial-channel attention module to com-
bine the information contained by the multi-contrast LR im-
ages. As illustrated in Figure 1, our multimodal multi-head
convolutional attention (MMHCA) mechanism can be in-
troduced at any layer of any neural architecture, thus being
generic and flexible. We underline that if the baseline ar-
chitecture is designed for a single-contrast input, we can
easily extend the architecture to a multi-contrast input of n
contrasts by replicating the neural branch that comes before
our module, for a number of n times. Let fi be the neu-
ral branch that processes the input LRi. We first obtain the
encoding tensor Ti for each input LRi, as follows:

Ti = fi (θfi , LRi) , (1)
where θfi are the weights of the neural branch fi.

The next step in our approach is to concatenate the en-
coding tensors Ti of all modalities along the channel axis,
obtaining the tensor T◦, as follows:

T◦ = concat (T1, T2, ..., Tn) , (2)
where concat represents the concatenation operation. If a
multimodal input is not available, our multi-head convo-
lutional attention (MHCA) module can still be applied by
considering T◦ = T1, where T1 is the encoding tensor of
the single-contrast input. We use this ablated configuration
in our experiments to show the benefits of using multiple
modalities as opposed to a single modality.

Next, we apply the multi-head convolutional attention.
Our attention module is composed of multiple heads, which
are applied on the concatenation of the encoding tensors,
denoted as T◦. Each head hj , j ∈ {1, 2, ..., h}, where h
is the number of heads, is composed of a conv layer fol-
lowed by a deconv layer, performing both spatial and chan-
nel attention. The conv layer jointly reduces the spatial and
channel dimensions of the input, while the deconv layer is
configured to revert the dimensional reduction performed
by the conv layer, thus restoring the size of the output ten-
sor to the size of the input tensor T◦.

For the j-th convolutional attention head hj , we set the

conv kernel size kj to 2 · (j − 1) + 1. Hence, the first head
is formed of kernels having a receptive field of 1 × 1, the
second head is formed of kernels having a receptive field of
3× 3, and so on. We note that each kernel size corresponds
to a different reduction rate of the spatial attention. For each
head hj , we set the number of conv filters to c

r , where c is
the number of input channels and r is the reduction rate of
the channel attention. Then, we apply a deconv layer with c
filters and the kernel size set to kj × kj to increase the spa-
tial size of the activation maps. We use a stride of 1 and a
padding equal to 0 for both conv and deconv layers. In sum-
mary, the output Hj of the attention head hj is computed as
follows:

Hj = hj

(
θcj , θdj , T◦

)
= max

(
0, T◦ ∗ θcj

)
⊛ θdj , (3)

where θcj are the learnable weights of the conv layer com-
prising c

r filters with a kernel size of kj × kj , θdj are the
parameters of the deconv layer comprising c filters with a
kernel size of kj × kj , max(0, ·) is the ReLU activation
function, ∗ is the convolution operation and ⊛ is the decon-
volution operation. We hereby note that the tensors H1, H2,
..., Hh are of the same size.

Next, we sum all the tensors Hj produced by the atten-
tion heads, obtaining H+, as follows:

H+ =

h∑
j=1

Hj . (4)

We then pass the resulting tensor through the sigmoid func-
tion in order to obtain the final attention tensor denoted as
A, as follows:

A = σ (H+) . (5)

To apply the learned attention to the encoding tensors,
the attention tensor A is multiplied with the tensor T◦, ob-
taining the tensor T∗, as follows:

T∗ = T◦ ⊗A, (6)
where ⊗ denotes the element-wise multiplication operation.

Let g denote the neural branch that takes T∗ as input and
produces the high-resolution output. The last processing
required to obtain the final output of the neural architecture
is expressed as follows:

HRk = g (θg, T∗) , (7)
where θg are the learnable weights of g.

4. Experiments
4.1. Data Sets
IXI. The IXI2 data set is the largest benchmark considered
in our evaluation. We use the same version of the IXI data
set as [48, 50]. The data set contains 3D multimodal MRI
scans, where each MRI has three modalities, namely T1-
weighted (T1w), T2-weighted (T2w) and Proton Density

2http://brain-development.org/ixi-dataset/
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(PD). The data set is split into 500 multimodal MRI scans
for training, 6 multimodal scans for validation and the re-
maining 70 multimodal scans for testing. Each MRI scan
has 96 slices with the resolution of 240× 240 pixels.
NAMIC Brain Multimodality. The National Alliance for
Medical Image Computing (NAMIC) Brain Multimodality3

data set is formed of 20 3D MRI scans. Each 3D image is
formed of 176 slices with the resolution of 256 × 256 pix-
els. The data set contains two modalities, namely T1w and
T2w. Following [14, 32], we randomly split the data set into
10 multimodal MRI scans for training and 10 multimodal
MRI scans for testing. We randomly take 2 MRI scans from
the training set to create a validation set for hyperparameter
tuning.
Coltea-Lung-CT-100W. The Coltea-Lung-CT-100W data
set was recently introduced by Ristea et al. [33]. It contains
100 triphasic (multimodal) lung CT scans. Each scan has
three modalities, namely native, arterial and venous. The
entire data set is formed of 12,430 triphasic slices and each
slice has 512 × 512 pixels. The data set is split into 70
multimodal CT scans for training, 15 multimodal scans for
validation and 15 multimodal scans for testing.

4.2. Evaluation Metrics
As evaluation metrics, we employ the peak signal-to-

noise ratio (PSNR) and the structural similarity index mea-
sure (SSIM) [41]. PSNR is the ratio between the maximum
possible signal and the power of the noise. It only takes
into account the difference between pixels, without quanti-
fying the structural similarity. SSIM [41] takes the struc-
tural similarity into account by combining the contrast, the
luminance and the texture of the images. Higher values of
PSNR and SSIM indicate better reconstruction. We em-
phasize that PSNR is represented in the log-scale. Hence,
seemingly small gains in terms of PSNR can indicate sig-
nificant quality improvements.

To further assess the improvement brought by our atten-
tion module, we also conduct a subjective evaluation study,
asking three physicians (specialized in radiology) from the
Colţea Hospital to compare the super-resolution results of a
state-of-the-art model, before and after adding MMHCA.

4.3. Implementation Details
We compare our attention module with CSAM [10, 29]

and CBAM [43]. We consider EDSR [26] and CNN+ESPC
[14] as underlying models for the attention mechanisms. To
train the EDSR4 and CNN+ESPC5 models, we use the of-
ficial code released by the corresponding authors. For the
EDSR [26] network, we set B = 16 and F = 64. All the
other hyperparameters are left unchanged. For CNN+ESPC

3https://www.na-mic.org/wiki/Downloads
4https://github.com/sanghyun-son/EDSR-PyTorch
5https://github.com/lilygeorgescu/

3d-super-res-cnn

[14], we use the same hyperparameters as suggested by the
authors.

For a fair comparison, we integrate all the attention mod-
ules in the same manner into both networks. For the exper-
iments with single-contrast inputs, we integrate the mod-
ules (CSAM, CBAM, MHCA) after each ResBlock. For
the experiments with multi-contrast inputs, we replicate the
sub-network which ends just before the upsampling layer,
creating copies of the sub-network (each copy having its
own learnable weights). Then, we concatenate the output
of each sub-network and introduce the attention modules
(MCSAM, MCBAM, MMHCA). The multi-contrast inputs
are used without prior alignment.

For MHCA/MMHCA, we tune the number of heads h
and the channel reduction ratio r on the validation set of
each benchmark. We find that the optimal configuration is
based on h = 3 heads and a channel reduction ratio of r =
0.5. This configuration uses kernel sizes of 1 × 1 for h1,
3× 3 for h2, and 5× 5 for h3, respectively.

When comparing our attention modules
(MHCA/MMHCA) with CSAM/MCSAM6 [10, 29]
and CBAM/MCBAM7 [43], we use the official code re-
leased by the respective authors. As for MHCA/MMHCA,
we tune the hyperparameters of CBAM/MCBAM on
the validation sets, while CSAM/MCSAM have no hy-
perparameters that would require tuning. The optimal
configuration for CBAM/MCBAM uses a kernel size of
7× 7 and a reduction ratio of 0.5.

4.4. Results
Following [10, 27, 47, 51, 52], we conduct experiments

on the T2w target modality for the IXI and NAMIC data
sets. The + sign after a method’s name indicates the use of
the geometric self-ensemble [26].
IXI. We present the results obtained on the IXI data set for
two upscaling factors, 2× and 4×, in Table 1. The EDSR
[26] model obtains a PSNR of 39.81 and an SSIM of 0.9865
for an upscaling factor of 2×. When we add the MHCA
module to the single-contrast network, the performance in-
creases to 40.11 and 0.9871 in terms of PSNR and SSIM,
respectively. When we switch to the multimodal input, we
observe performance improvements, regardless of the inte-
grated attention module (MCSAM [10, 29], MCBAM [43]
or MMHCA). This confirms our hypothesis that the infor-
mation from the multi-contrast LR images is useful. By
adding MMHCA, the performance improves even further,
exceeding the performance of both MCSAM and MCBAM.
When EDSR is employed as underlying model, MMHCA+

brings significant gains, generally outperforming the state-
of-the-art methods [5, 12, 14, 21, 24, 26, 37, 48, 49, 50].

6https://github.com/wwlCape/HAN, https://github.
com/chunmeifeng/MINet

7https://github.com/Jongchan/attention-module
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Figure 2. Examples of super-resolved MRI slices from the IXI data set, for an upscaling factor of 4×. The HR images produced by two
baselines (bicubic interpolation and CNN+ESPC [14]) are compared with the images given by two enhanced versions of CNN+ESPC [14],
one based on our single-contrast attention module (MHCA), and another based on our multimodal attention module (MMHCA).

In Figure 2, we illustrate qualitative results obtained
by two baselines (bicubic and CNN+ESPC [14]) ver-
sus two enhanced versions of CNN+ESPC [14], namely
CNN+ESPC [14] + MHCA and CNN+ESPC [14] +
MMHCA, for an upscaling factor of 4×. We observe
that our CNN+ESPC [14] + MMHCA model obtains su-
perior SR results compared with the baselines (bicubic,
CNN+ESPC [14]), being able to recover structural details
that are completely lost by the baselines.
NAMIC. We show the results obtained on the NAMIC
data set for two upscaling factors, 2× and 4×, in Table 2.
The baseline CNN+ESPC [14] obtains a score of 33.92 in
terms of PSNR and 0.9509 in terms of SSIM, for an up-
scaling factor of 4×. When we add MHCA and MMHCA,
the scores improve by considerable margins (in terms of

PSNR, the minimum improvement is 0.69), regardless of
the scale (2× or 4×) or the underlying model (EDSR [26]
or CNN+ESPC [14]).
Coltea-Lung-CT-100W. We show the results obtained on
the Coltea-Lung-CT-100W for two upscaling factors, 2×
and 4×, in Table 3. Once again, we observe performance
improvements brought by the use of multi-contrast LR in-
puts, the only attention that does not increase the baseline
performance being MCBAM [43]. Our MMHCA module
exceeds the baseline and the other attention modules by sig-
nificant margins (in terms of PSNR, the minimum improve-
ment is 0.47), regardless of the scale or the network.
Quality assessment by physicians. In Table 4, we present
the results of our subjective human evaluation study based
on 100 cases, which are randomly selected from the IXI test
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Method 2× 4×
PSNR/SSIM PSNR/SSIM

Bicubic 33.44/0.9589 27.86/0.8611
SRCNN [5] 37.32/0.9796 29.69/0.9052
VDSR [24] 38.65/0.9836 30.79/0.9240
IDN [21] 39.09/0.9846 31.37/0.9312
RDN [49] 38.75/0.9838 31.45/0.9324
FSCWRN [37] 39.44/0.9855 31.71/0.9359
CSN [50] 39.71/0.9863 32.05/0.9413
T2Net [12] 29.38/0.8720 28.66/0.8500
SERAN [48] 40.18/0.9872 32.40/0.9455
SERAN+ [48] 40.30/0.9874 32.62/0.9472
EDSR [26] 39.81/0.9865 31.83/0.9377
EDSR [26] + CSAM [10, 29] 39.81/0.9865 31.83/0.9377
EDSR [26] + CBAM [43] 39.82/0.9865 31.81/0.9374
EDSR [26] + MHCA (ours) 40.11/0.9871 32.15/0.9418
EDSR [26] + MCSAM [10, 29] 40.12/0.9871 32.17/0.9417
EDSR [26] + MCBAM [43] 40.13/0.9871 32.18/0.9421
EDSR [26] + MMHCA (ours) 40.28/0.9874 32.51/0.9452
EDSR [26] + MMHCA+ (ours) 40.43/0.9877 32.70/0.9469
CNN+ESPC [14] 38.67/0.9837 30.57/0.9210
CNN+ESPC [14] + CSAM [10, 29] 38.57/0.9835 30.58/0.9211
CNN+ESPC [14] + CBAM [43] 38.67/0.9838 30.47/0.9192
CNN+ESPC [14] + MHCA (ours) 39.04/0.9847 30.76/0.9233
CNN+ESPC [14] + MCSAM [10, 29] 38.98/0.9845 30.94/0.9265
CNN+ESPC [14] + MCBAM [43] 38.91/0.9844 30.79/0.9238
CNN+ESPC [14] + MMHCA (ours) 39.71/0.9862 31.52/0.9337
CNN+ESPC [14] + MMHCA+ (ours) 39.76/0.9863 31.52/0.9337

Table 1. PSNR and SSIM scores of various state-of-the-art meth-
ods [5, 12, 14, 21, 24, 26, 37, 49, 48, 50] on the IXI data set, for the
T2w target modality. For two of the existing methods (EDSR [26]
and CNN+ESPC [14]), we evaluate enhanced versions, consider-
ing various state-of-the-art attention modules [10, 29, 43], as well
as our own attention module (MMHCA). We consider both single-
contrast (CSAM, CBAM, MHCA) and multi-contrast (MCSAM,
MCBAM, MMHCA, MMHCA+) versions. The top two scores for
each scaling factor (2× and 4×) are highlighted in red and blue,
respectively.

set, for EDSR [26], with and without MMHCA, considering
an upscaling factor of 4×. The quality evaluation study was
completed by three physicians with expertise in radiology.
The doctors had to choose between two images (randomly
positioned on the left side or right side of the ground-truth
HR image), without knowing which method produced each
image. The HR images obtained after adding MMHCA
were chosen in a proportion of 81.3% against the images
produced by the baseline EDSR [26]. Upon disclosing the
method producing each image, the doctors concluded that
MMHCA helps to recover important details, e.g. blood ves-
sels, which are missed by the baseline EDSR.
Ablation study. In Table 5, we present an ablation study
on the NAMIC data set for a scaling factor of 2×. We ob-
serve that the best performance is obtained when the num-
ber of heads is equal to 3, regardless of the number of in-
put modalities (MHCA or MMHCA). We also notice that
every configuration of our MMHCA module obtains better
results than the concatenation of the features without any at-

Method 2× 4×
PSNR/SSIM PSNR/SSIM

Bicubic 37.61/0.9794 31.35/0.9091
MCSR [47] 38.32/0.9450 30.84/0.8110
GAN-CIRCLE [45] 36.19/0.9594 −
EDSR [26] 41.46/0.9906 34.50/0.9558
EDSR [26] + CSAM [10, 29] 41.43/0.9905 34.53/0.9560
EDSR [26] + CBAM [43] 38.66/0.9840 32.59/0.9328
EDSR [26] + MHCA (ours) 41.94/0.9914 34.99/0.9601
EDSR [26] + MCSAM [10, 29] 41.52/0.9907 34.66/0.9571
EDSR [26] + MCBAM [43] 41.49/0.9906 34.65/0.9569
EDSR [26] + MMHCA (ours) 42.15/0.9917 35.35/0.9624
EDSR [26] + MMHCA+ (ours) 42.32/0.9919 35.58/0.9638
CNN+ESPC [14] 40.73/0.9893 33.92/0.9509
CNN+ESPC [14] + CSAM [10, 29] 40.46/0.9888 33.86/0.9503
CNN+ESPC [14] + CBAM [43] 40.54/0.9889 33.60/0.9492
CNN+ESPC [14] + MHCA (ours) 40.81/0.9894 33.94/0.9511
CNN+ESPC [14] + MCSAM [10, 29] 40.74/0.9893 34.04/0.9518
CNN+ESPC [14] + MCBAM [43] 40.73/0.9892 33.88/0.9516
CNN+ESPC [14] + MMHCA (ours) 41.58/0.9908 34.64/0.9573
CNN+ESPC [14] + MMHCA+ (ours) 41.49/0.9904 34.70/0.9573

Table 2. PSNR and SSIM scores of various state-of-the-art meth-
ods [14, 26, 45, 47] on the NAMIC data set, for the T2w tar-
get modality. For two of the existing methods (EDSR [26] and
CNN+ESPC [14]), we evaluate enhanced versions, considering
various state-of-the-art attention modules [10, 29, 43], as well as
our own attention module (MMHCA). We consider both single-
contrast (CSAM, CBAM, MHCA) and multi-contrast (MCSAM,
MCBAM, MMHCA, MMHCA+) versions. The top two scores for
each scaling factor (2× and 4×) are highlighted in red and blue,
respectively.

tention (multimodal input). To demonstrate the utility of the
bottleneck principle, we test an ablated version of MHCA
and MMHCA based on 3 heads, that does not reduce the
input tensor through convolution, hence removing the de-
conv layer. This ablated version (3 heads, no deconv) at-
tains lower performance compared to the complete version
of MHCA and MMHCA based on 3 heads. This experi-
ment supports our design based on the bottleneck principle
through the conv and deconv operations. To show that the
diversity of the heads is important, we compare two mod-
ules with 4 heads each and a reduction ratio of r = 2, one
where all kernel sizes are 1× 1, and another where the ker-
nels are of different sizes, from 1× 1 to 7× 7. The module
based on diverse heads leads to significantly better results,
indicating that using the same kernel size for all heads is
suboptimal. In terms of the number of parameters, the mod-
ule with 4 heads, r = 2 and kernels of 1 × 1 is equivalent
to the module with 1 head and r = 0.5. The module with
1 head attains superior results, showing that simply adding
more heads of the same kind is not useful. In summary, the
empirical results show that our method obtains superior re-
sults not because of the increased capacity of the model, but
due to the diversity of the heads.

In Figure 3, we illustrate the impact of the channel re-
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Method 2× 4×
PSNR/SSIM PSNR/SSIM

Bicubic 38.84/0.9477 31.47/0.8774
EDSR [26] 45.11/0.9621 39.52/0.9394
EDSR [26] + CSAM [10, 29] 45.12/0.9622 39.57/0.9395
EDSR [26] + CBAM [43] 41.14/0.9538 32.92/0.9023
EDSR [26] + MHCA (ours) 45.50/0.9634 40.23/0.9416
EDSR [26] + MCSAM [10, 29] 45.16/0.9623 39.62/0.9397
EDSR [26] + MCBAM [43] 45.12/0.9622 39.65/0.9397
EDSR [26] + MMHCA (ours) 45.58/0.9647 40.06/0.9404
EDSR [26] + MMHCA+ (ours) 45.68/0.9649 40.22/0.9409
CNN+ESPC [14] 44.47/0.9599 38.34/0.9338
CNN+ESPC [14] + CSAM [10, 29] 44.45/0.9599 38.36/0.9337
CNN+ESPC [14] + CBAM [43] 44.44/0.9601 37.23/0.9308
CNN+ESPC [14] + MHCA (ours) 44.72/0.9608 38.62/0.9348
CNN+ESPC [14] + MCSAM [10, 29] 44.51/0.9599 38.38/0.9338
CNN+ESPC [14] + MCBAM [43] 44.43/0.9600 38.19/0.9318
CNN+ESPC [14] + MMHCA (ours) 45.05/0.9621 38.96/0.9365
CNN+ESPC [14] + MMHCA+ (ours) 45.14/0.9623 39.10/0.9370

Table 3. PSNR and SSIM scores of two state-of-the-art meth-
ods [14, 26] on the Coltea-Lung-CT-100W data set, for the na-
tive target modality. We evaluate enhanced versions of the exist-
ing methods, considering various state-of-the-art attention mod-
ules [10, 29, 43], as well as our own attention module (MMHCA).
We consider both single-contrast (CSAM, CBAM, MHCA) and
multi-contrast (MCSAM, MCBAM, MMHCA, MMHCA+) ver-
sions. The top two scores for each scaling factor (2× and 4×) are
highlighted in red and blue, respectively.

Method EDSR [26] EDSR [26] + MMHCA (ours)

Doctor #1 11 89
Doctor #2 25 75
Doctor #3 20 80
Average (%) 18.6% 81.3%

Table 4. Subjective human evaluation results based on 100 ran-
domly selected cases from the IXI test set for EDSR [26], with and
without MMHCA, considering an upscaling factor of 4×. The re-
ported numbers represent votes awarded by three physicians (with
expertise in radiology) for each model.

duction ratio on the MMHCA module based on 3 heads.
We observe that the performance increases with the ratio
until r = 0.5. After this point, further increasing the ratio
does not improve performance.

5. Conclusion
In this paper, we presented a novel multimodal multi-

head convolutional attention (MMHCA) module, which
performs joint spatial and channel attention. We integrated
our module into two neural networks [14, 26] and con-
ducted experiments on three multimodal medical image
benchmarks: IXI, NAMIC and Coltea-Lung-CT-100W. We
showed that our attention module yields higher gains com-
pared with competing attention modules [10, 29, 43], be-
ing able to bring the performance of the underlying models
above the state-of-the-art results [5, 12, 14, 21, 24, 26, 37,

Method PSNR/SSIM

EDSR [26] 41.46/0.9906
EDSR [26] + MHCA (1 head, r = 0.5) 41.40/0.9904
EDSR [26] + MHCA (2 heads, r = 0.5) 41.79/0.9911
EDSR [26] + MHCA (3 heads, r = 0.5) 41.94/0.9914
EDSR [26] + MHCA (4 heads, r = 0.5) 41.90/0.9913
EDSR [26] + MHCA (3 heads, no deconv, r = 0.5) 41.90/0.9913
EDSR [26] + MHCA (4 heads, 1×1 kernels, r = 2) 41.04/0.9898
EDSR [26] + MHCA (4 heads, r = 2) 41.89/0.9913
EDSR [26] + multimodal input 41.50/0.9907
EDSR [26] + MMHCA (1 head, r = 0.5) 41.76/0.9911
EDSR [26] + MMHCA (2 heads, r = 0.5) 42.05/0.9915
EDSR [26] + MMHCA (3 heads, r = 0.5) 42.15/0.9917
EDSR [26] + MMHCA (4 heads, r = 0.5) 42.09/0.9916
EDSR [26] + MMHCA (3 heads, no deconv, r = 0.5) 41.87/0.9912
EDSR [26] + MMHCA (4 heads, 1×1 kernels, r = 2) 41.73/0.9910
EDSR [26] + MMHCA (4 heads, r = 2) 42.05/0.9915

Table 5. Ablation results with EDSR [26] on the NAMIC data set,
for a scaling factor of 2× and the T2w target modality. We con-
sider different configurations for MHCA/MMHCA, varying the
number of heads, the number of inputs, and the size of kernels.

Figure 3. PSNR and SSIM scores of the EDSR [26] +
MMHCA method, considering channel reduction rates in the set
{4, 2, 1, 0.5, 0.25}. Results are reported on the NAMIC data set
for an upscaling factor of 2×.

45, 47, 48, 49, 50].
In future work, we aim to integrate our module into fur-

ther neural models and extend its applicability to natural
images. We will also study the utility of the SR results in
better solving other tasks, e.g. medical image segmentation.
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