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Abstract

Object appearances change dramatically with pose vari-
ations. This creates a challenge for embedding schemes that
seek to map instances with the same object ID to locations
that are as close as possible. This issue becomes signifi-
cantly heightened in complex computer vision tasks such as
re-identification(reID). In this paper, we suggest that these
dramatic appearance changes are indications that an ob-
ject ID is composed of multiple natural groups, and it is
counterproductive to forcefully map instances from differ-
ent groups to a common location. This leads us to intro-
duce Relation Preserving Triplet Mining (RPTM), a feature
matching guided triplet mining scheme, that ensures that
triplets will respect the natural subgroupings within an ob-
ject ID. We use this triplet mining mechanism to establish
a pose-aware, well-conditioned triplet loss by implicitly en-
forcing view consistency. This allows a single network to be
trained with fixed parameters across datasets, while provid-
ing state-of-the-art results. Code is available at https:
//github.com/adhirajghosh/RPTM_reid.

1. Introduction

Re-identification is the process of identifying images of
the same object taken under different conditions. One of
the main challenges of reID is pose-induced appearance
changes [2, 9]. Not only does object appearance change
with pose, different objects often look similar when viewed
from the same pose, also known as inverse-variability.
This paper suggests a new interpretation of the inverse-
variability problem, one with the potential to significantly
improve the effectiveness of reID algorithms. Although we
focus on re-identification, the underlying principles devel-
oped here are not restricted to this task and have the po-
tential to impact a wide range of other computer vision
problems [1, 21, 30, 35]. Current reID frameworks de-
ploy representation and metric learning methodologies in

DMT
DMT RPTM

Figure 1: Comparing the features learned by DMT [13], a
current state-of-the-art, with our proposed Triplet Mining
scheme. Features correspond to the first four IDs of Veri-
776 [25]. The distance preserving UMAP projection shows
the RPTM feature transform is more intuitive.

the attempt to learn embeddings that map semantically sim-
ilar instances to relatively nearby locations; and semanti-
cally dissimilar images to relatively distant locations. This
is typically achieved through a metric loss function such as
triplet loss [37], which encourages a reference (anchor) in-
put to be more similar to a positive (truthy) input than to a
negative (falsy) input. The number of triplet combinations
tend to grow polynomially with the number of instances in
a dataset, as detailed by Hermans et al. [15]; however, most
triplet combinations are redundant. This has led to the de-
velopment of triplet mining, whose aim is to identify the
most important triplets in a given sample set. While triplet
mining is ubiquitous in reID algorithms [2, 13, 15, 39], it
has an innate vulnerability.

Consider a hypothetical dataset containing instances of
apple-the-phone and apple-the-fruit, both of which are clas-
sified as Apple. The dataset also has instances of phones
made by Samsung, classified as Samsung-phone. This
dataset will have many difficult triplets, for example, apple-
the-phone (anchor), apple-the-fruit (positive) and Samsung-
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(a) Without RPTM (b) With RPTM

Figure 2: Loss landscape visualisation of a ResNet-50 trained with SGD using Triplet Loss on Veri-776 with/without Relation
Preserving Triplet Mining. RPTM demonstrates smoother loss surfaces, improved model generalisation and a wider minima,
thus allowing better optimisation during training.

phone (negative), which triplet-mining techniques are en-
couraged to focus on. However, training with such triplets is
counter-productive as they attempt to ensure that instances
of apple-the-phone are mapped closer to instances of apple-
the-fruit than to instances of Samsung-phone. Such a map-
ping mechanism violates the natural appearance relation be-
tween objects, and it can be seen that current metric learning
systems enforce vastly different views of the same object to
be coincident in feature space. It is unlikely that models
trained on this hypothesis generalise adequately.

A similar phenomenon occurs in reID, where most
datasets [23, 25, 34] group instances by ID. However, the
appearance of a person or vehicle’s front, rear and sides
profiles are very different from each other and they appear
to belong to physically different entities. This creates fal-
lacious anchor-positive pairs, where the instances chosen to
be anchor and positive do not share a natural group [2]. This
fallacy in the triplet mining scheme can be further realised
considering the fact that in [37], triplet loss was defined for
face detection, where datasets only have the front view of
the face, hence all anchor-positive pairs are semantically
meaningful. Due to this, triplet mining does not generalise
well to reID. This problem has been recognised in recent
reID works [9, 19, 24, 28, 39], who incorporate pose aware-
ness into the network, and in metric learning [35], in which
latent characteristics shared within and between classes are
explicitly learnt. Although this approach can be effective, it
complicates network training and incurs an additional bur-
den of training a new, dataset-specific, pose-aware layer.

We suggest a simple alternative, where feature match-

ing [5, 26] is leveraged to discover natural groupings.
Therefore, we propose Relation Preserving Triplet Mining
(RPTM), a triplet mining scheme that respects natural ap-
pearance groupings. We further define our solution as Im-
plicitly Enforced View Consistency, which we define as the
process of exploiting internal, natural groupings within a
class and mapping instances with the same view together
as a semantic entity, to overcome intra-class separability.
These groupings follow natural patterns referenced by se-
mantics [21], and tend to be pose-related in the context of
reID. Here, RPTM implicitly enforces pose-aware triplet
mining, which prevents different poses from being mapped
onto one another. This improves the conditioning of the
triplet-cost, allowing for the same training parameters to be
employed across a variety of different datasets. The resul-
tant feature embeddings provide better reID results and are
more intuitive, as shown in Figure 1. We observe that past
triplet mining processes fail in terms of pose awareness and
this may lead to poor ranking results, whereas RPTM not
only shows pose awareness, better conditioned triplet min-
ing also ensures accurate ranking results.

Our experiments are structured to demonstrate how a co-
herent triplet mining scheme can eliminate the largest vul-
nerability of using triplet loss in reID, without the require-
ment of key-point labels and pose estimation pipelines. One
indicator of the effectiveness of our method is observing
the loss optimisation landscape during training. Due to the
smooth loss landscape for RPTM, shown in figure 2, we
demonstrate how RPTM cleans up the triplet mining pro-
cess with a triplet filtration step and prevents erroneous lo-
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cal minimas. Thus, when trained with RPTM, models with
larger parameters can optimise just as fast as smaller net-
works, which serves our main goal of achieving impres-
sive retrieval results with self-imposed constraints on com-
pute power as well as generalising parameter settings across
tasks and datasets. As RPTM is robust to fluctuations of loss
landscape, training deeper networks with SGD on a simple
cost function is more accessible for object retrieval tasks.

In summary, our paper contributions are:

1. We explain how traditional triplet mining methods are
ill-conditioned because it does not take into account
natural groupings;

2. We propose a feature guided triplet mining scheme that
we term Relation Preserving Triplet Mining (RPTM);

3. We show RPTM is well-conditioned enough to permit
the use of constant training parameters across datasets
and tasks. The resultant network is simultaneously ca-
pable of state-of-the-art in vehicle reID and competi-
tive results for person reID.

2. Related Works
Re-identification. The demand for urban surveillance

applications has led to a surge of interest in person and ve-
hicle re-identification. Challenge benchmarks such as Ve-
hicleID [23], Veri-776 [25], DukeMTMC [34] and others
have been established; and many new algorithms have been
proposed [13, 19, 20, 24, 38, 46]. In reID, many algorithms
achieve good results by estimating vehicular pose. Notably,
Tang et al. [39] created a synthetic data set for pose esti-
mation and Meng et al. [28] used a parser model to split
vehicles into four parts for pose-aware feature embedding.
Recently, Vision Transformers (ViT) for reID [14, 42, 50]
were proposed for attention learning and [10] addressed
person reID with noisy labels. We suggest that the root
problem encountered by most of these techniques lies in
their definition of triplet loss. By replacing traditional triplet
losses with our RPTM technique, we show that it is possi-
ble to achieve state-of-the-art results by minimizing a sim-
ple cost function. This stands out from the trend towards
ever more complex reID techniques.

Triplet Loss. The triplet loss was first introduced in the
context of face identification [37]. Since then, it has under-
gone many refinements [2, 15, 44, 45]. Such triplet-based
formulations implicitly assume that the given IDs corre-
spond to meaningful groups. We suggest that this assump-
tion is often wrong and that triplets should be defined with
respect to naturally occurring groups rather than the given
labels. This perspective on triplet loss differs significantly
from that used in most papers. To our knowledge, the re-
search most similar to ours is Bai et al. [2] who acknowl-
edge the importance of naturally occurring groups within an

ID. However, Bai et al. attempts to use the groups to force
tighter mappings of an ID, fighting rather than harnessing
the natural relationships. Another problem for clustering
based works like Bai et al. [2]’s, is that variations often
have no naturally occurring cluster boundaries. This is not
a problem for RPTM which defines relations in a pairwise
manner, rather than on the basis of shared clusters.

Feature Matching. RPTM uses feature matching to help
establish triplets. Feature matching is a well-established
field in computer vision, whose goal is to match key points
between image pairs. Classic feature matching works in-
clude SIFT [26], SURF [3], ORB [36], etc. Recent develop-
ments include [4] for exploiting matching context informa-
tion, and [27] for mismatch removal between two features
sets. In this paper, we employ Grid-Based Motion Statistics
(GMS) [5] as our feature matcher of choice. This is a newer
algorithm which incorporates match coherence [22] to fa-
cilitate key-point matching. GMS outperforms most classic
techniques while also being much faster.

3. Why Triplet Loss?
3.1. Neural Networks as Embedding Functions

Much of computer vision can be interpreted as an at-
tempt to map image instances to a semantically meaningful
embedding. Thus, if xk represents an image instance and
yk its associated feature, the transformation from xk to yk

can be denoted by yk = f(xk), where f : R3×w×h → Rd;
w × h denotes image dimension; and d represents the em-
bedding space’s dimensions. In this scheme, the embedding
function f(.) is learnt by minimising the cross-entropy loss

Eent =

m∑
k=1

Lent(xk), (1)

where m denotes the total number of training images.
Minimising the cost in Eq. 1 provides an embedding

that maximises classification accuracy. However, this does
not ensure that the embedding is semantically meaningful.
The retrieval problem requires an embedding in which se-
mantically similar instances are mapped close to each other,
leading to the development of triplet loss [37].

3.2. The Triplet Loss

A triplet loss is defined with respect to three image in-
stances: Anchor (randomly chosen instance); Positive (in-
stance that shares a common ID with the anchor); Negative
(instance whose ID is different from the anchor). We denote
these instances xa,xp and xn, respectively. Given the an-
chor, positive and negative, the triplet loss is defined as [37]:

Ltri(xa,xp,xn) = max(0, dap − dan + α), (2)
where α is the desired margin separation between positive
and negative instance, dap = ∥f(xa) − f(xp)∥ and dan =
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Figure 3: Representational Schematic for Relation Preserving Triplet Mining. In figure 3a, each ID contains a number
of naturally occurring groups. Relational triplets are based on natural groups rather than IDs, thus preventing pathological
anchor-positives. In figure 3b, observe that the positive shares clear similarities with the anchor(indicating they share a
common natural group) but is not a near-duplicate.

∥f(xa) − f(xn)∥. The final triplet-cost is computed by
summing the individual triplet losses:

Etri =

t∑
c=1

Ltri(xac,xpc,xnc), (3)

where t is the total number of triplets. In general, triplet
costs are not used in isolation. Instead, they are combined
with the cross-entropy cost from Eq. 1, leading to the final
cost function:

E = λentEent + λtriEtri, (4)

where λent and λtri control the weights given to the cross-
entropy loss and triplet-cost respectively.

4. Relation Preserving Triplet Mining
To prevent training pipelines from stagnating, it is im-

portant to implement a good triplet mining scheme. Triplet
mining is part of a larger framework which views features
as the key to machine learning. For example, NetVLAD [1]
and many other domain transfer works, show that adapt-
ing features significantly improves performance. Somewhat
similarly, knowledge distillation [30] tries to compress un-
wieldy networks into more compact features for practical
deployment. We focus on triplet mining, as most related
works in reID use some form of triplet loss and also to ef-
fectively highlight Implicitly Enforced View Consistency.

Naı̈vely incorporating every possible triplet into the loss
yields poor results [15]. Instead, training algorithms em-
ploy triplet-mining, a process which aims to incorporate
only the most relevant triplets into the triplet-cost. Unfortu-

nately, there is no consensus on how relevance can be mea-
sured; thus, triplet mining relies on heuristics. The two most
popular heuristics are: hard-negative mining and semi-hard
negative mining. Hard-negative mining focusses on triplets
whose negatives are very similar to the anchor. Semi-hard
negative mining shifts the focus from the hardest negatives
to negatives close to the decision boundary. Both heuris-
tics seem sensible and often perform well; however, closer
inspection suggests something may be amiss.

Let us perform a thought experiment where we assign
the IDs A and B, to similar car models. Hard or semi-hard
mining finds the most confusing triplets, leading to the fol-
lowing triplet: front of car A as anchor, rear of car A as
positive, and front of car B as negative. The triplet is indeed
very hard; however, its incorporation into the training cost
is counter-productive. This is because such a triplet encour-
ages embedding mapping the rear of A to the front of A.
The embedding is so counter-intuitive, it is unlikely to gen-
eralise well. To avoid such pathological cases, we introduce
relational triplets, which address the problem of intraclass
separability with greater attention than other methods.

4.1. Relational Triplets

Relational triplets change the triplet definition from one
based on human assigned IDs to one based on naturally
occurring groups. Formally, we denote the set of train-
ing images as S = {x1,x2, · · · ,xK}. We hypothesise that
these images are members of naturally occurring (and pos-
sibly overlapping) subsets. The set of subsets is denoted by
N = {Sm}, where

S =
⋃

Sm∈N
Sm. (5)
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Figure 4: Schematic of a re-identification network deploying Relation Preserving Triplet Mining. The RPTM module
includes Instance-Batch Normalisation (IBN) and Squeeze-Excitation (SE) to reduce channel inter-dependencies. The rela-
tional matrix is estimated using GMS matches and is used for triplet selection.

We use the relational indicator.

C(xi,xj) =

{
1, if xi,xj share a subset in N ,

0, otherwise.
(6)

to denote whether two instances share a natural subset. A
relational triplet is one where the anchor-positive pair shares
a common natural subset, while the negative does not.

C(xa,xp) = 1, C(xa,xn) = 0, C(xp,xn) = 0. (7)

Traditional triplets are a special case of relational triplets,
where the given IDs mirror the natural subsets. This is
not the case in reID, as we explained in the thought ex-
periment and through the relational diagram in Figure 3a.
Pathological triplets arise when anchor-positive pairs do not
have natural affinity (share a common group). Observe that
the traditional ID based triplet permits pathological anchor-
positive pairs. In reID, the natural subsets likely correspond
to object poses. This creates the possibility for identifying
such subsets using a feature matching algorithm. The next
section shows how this can be achieved.

4.2. Mining the Relation Preserving Triplets

GMS [5] is a modern feature matcher that uses coher-
ence to validate hypothesised feature matches. The coher-
ence scheme assumes that a true match hypothesis will be
strongly supported by many other match hypotheses be-
tween neighbouring region pairs, while a false match hy-
pothesis will not. The coherence-based validation is no-
tably better than the traditional ratio test [26]. This allows

GMS to reliably match features across significant view-
point changes while simultaneously ensuring few matches
between image pairs with nothing in common. As a result,
the presence of GMS matches between image pairs provides
a good approximation of the relational indicator in Eq. 5.
GMS is quite effective in reID systems to quantify the in-
nate relation between images and is crucial in establishing
implicitly enforced view consistencies.

While GMS has few errors, errors do occur. To ensure
an anchor-positive pair has a relational indicator of one, we
set the positive instance of each anchor to be the image in-
stance whose number of GMS matches with the anchor is
closest to the threshold τ . Here, we accept that setting sim-
ilar anchor-positive pairs leads to poorer training. Hence,
we use a middle-ground approach for anchor-positive se-
lection, which we call RPTMmean, in which τ is set as
the average number of GMS matches in the set of nonzero
pairwise GMS matches between the anchor and all other
images. More formally, for two images, xi,xj we predict
that the natural relational indicator is true, C(xi,xj) = 1,
if the number matches between them exceed τ .

The above provides a semi-hard positive mining, that en-
sures anchor-positive pairs satisfy the relational indicator in
Eq. 5, while also ensuring that the positive differs signif-
icantly from the anchor. An example is shown in Figure
3b.We define negatives using batch hard-triplet mining [15].
If Sb = {xj} denotes the set of instances in a batch that do
not share an ID with xa, the negative is

xn = argmin
xj∈Sb

(∥(f(xa)− f(xj)∥) . (8)
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Figure 5: Qualitative retrieval results for bad targets without
RPTM(R1) and with RPTM(R2). Correct identifications are
outlined in green; wrong ones are outlined in red. RPTM
clearly aligns backbone models with better pose awareness
and provides fine-grained attention.

Observe that the triplets defined in this manner satisfy
Eq. 7, making them relation preserving triplets. Given such
triplets, the final embedding can be obtained by minimis-
ing the cost function in Eq. 4. As evidenced by the mining
strategy, RPTM allows for an intrinsic understanding of the
viewpoint and pose without hard coded pose estimation.

5. Implementation Details
A schematic of the network architecture is provided in

Figure 4. In this section we discuss the model layout, elabo-
rating on the comparative feature matching pipeline in Sec-
tion 5.1 and the model structure with RPTM in Section 5.2.
To test and highlight the universality of RPTM and its abil-
ity to generalise the training pipeline due to its novel triplet
mining scheme, we put limitations on network and parame-
ter tuning across all datasets.

5.1. Feature Matching

As discussed before, we use GMS feature matching to
guide our triplet-mining process, in order to implement
semi-hard positive mining. In theory, we need to establish
GMS matches between an anchor and every other image in
the dataset. In practise, we use image IDs as guides to the
natural groupings and restrict the matching to only images
that share a common ID with the anchor. This greatly re-
duces computational cost in triplet mining. Feature match-
ing is performed on images that have been resized to (224,

224). The GMS feature matching parameters are: 10,000
ORB features whose orientation parameter is set to true and
nearest neighbours are identified with the brute-force ham-
ming distance. All other parameters are set according to the
guidelines reported by [5]. After matching, the number of
matches between image pairs is stored in a relational matrix
m×m, where m is the number of training images.

5.2. Neural Network

For fair comparison of our results with established
benchmarks, we chose ResNet-50 and ResNet-101 pre-
trained on ImageNet as our backbone. Our RPTM mod-
ule includes instance-batch-normalization and a squeeze-
excitation layer[16]. The weights of this network are trained
by minimising the loss function in Eq. 4. This network is
trained using triplets defined through our Relation Preserv-
ing Triplet Mining (RPTM) in Section 4.2.

The images are resized to (240,240) for vehicle reID
and (300,150) for person reID. Data augmentation is ap-
plied, with random flipping, random padding, random eras-
ing and colour jitter (randomly changing contrast, bright-
ness, hue and saturation) all activated. Stochastic Gradient
Descent(SGD) is used as the optimiser for the model. The
initial learning rate is initialised at 0.005 and is set to decay
by a factor of 0.1 every 20 epochs. The model is trained
for 80 epochs with a batch size of 24. Training parame-
ters are fixed for all datasets. 1. Finally, Figure 5 provides
qualitative comparisons showing that RPTM’s top-k-ranked
retrievals are significantly better than its backbone network
(we showcase top-k results alternatively (top-1, top-3...top-
19). We focus on demonstrating the quality of gallery image
retrieval for query samples by RPTM by comparing top-k
retrieval results with and without the RPTM pipeline.

6. Experiments
6.1. Datasets

VehicleID [23] allows us to test RPTM’s scalability by
offering multiple, progressively larger (and harder) test-
sets. We evaluate our algorithm with 800, 1600 and 2400
labels for testing. Veri-776 [25] is a widely used benchmark
with a diverse range of viewpoints for each vehicle and is
designed to provide more constrained but highly realistic
conditions. DukeMTMC [34] is a person re-identification
benchmark with 1,404 distinct classes. While our focus is
vehicle reID, we include this benchmark to show our algo-
rithm can generalise to other problems.

6.2. Evaluation Metrics

Rankings are scored according to the protocols sug-
gested in [23, 25] and all methods are reported with mean

1These parameters are significantly less computationally demanding
than those used by recent state-of-the-art models [10, 14, 33, 41, 50]
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Model Small (query size=800) Medium (query size=1600) Large (query size=2400)
mAP r=1 r=5 mAP r=1 r=5 mAP r=1 r=5

C2F-Rank [11] 63.50 61.10 81.70 60.00 56.20 76.20 53.00 51.40 72.20
AGNet [47] 76.06 73.14 86.25 73.39 70.77 81.75 71.75 69.10 80.40
ANet [31] - 86.00 97.40 - 81.90 95.10 - 79.60 92.70
VANet [9] - 88.12 97.29 - 83.10 95.14 - 80.35 92.97

Smooth-AP [6] - 94.90 97.60 - 93.30 96.40 - 91.90 96.20
RPTM (ResNet-50) 82.30 95.00 96.70 79.90 92.50 96.20 78.60 92.10 95.70

QD-DLP [51] 76.54 72.32 92.48 74.63 70.66 88.90 68.41 64.14 83.37
AAVER [18] - 74.69 93.82 - 68.62 89.95 - 63.54 85.64

VehicleNet [48] - 83.64 96.86 - 81.35 93.61 - 79.46 92.04
RPTM (ResNet-101) 84.80 95.50 97.40 81.20 93.30 96.50 80.50 92.90 96.30

Table 1: Comparison with state-of-the-art methods on VehicleID. RPTM provides the best retrieval results in all three test
sets, with notably better performance in the large test set.

Model mAP r = 1 r = 5

SPAN [7] 68.90 94.00 97.60
PAMTRI [39] 71.88 92.86 96.97

PVEN [28] 79.50 95.60 98.40
TBE [38] 79.50 96.00 98.50

RPTM (ResNet-50) 79.90 96.10 98.50
GAN+LSRO∗ [43] 64.78 88.62 94.52

SAVER∗ [19] 82.00 96.90 97.70
RPTM (ResNet-50) ∗ 86.40 96.70 98.00

CAL [33] 74.30 95.40 97.90
TransReID [14] 80.60 96.80 –

RPTM (ResNet-101) 80.80 96.60 98.90
AAVER∗ [18] 66.35 90.17 94.34

DMT∗ [13] 82.00 96.90 –
VehicleNet∗ [48] 83.41 96.78 –

Strong Baseline∗ [17] 87.10 97.00 –
RPTM (ResNet-101) ∗ 88.00 97.30 98.40

Table 2: Comparison with the state-of-the-art results on the
Veri-776 dataset. The ∗ indicates the usage of re-ranking.

average precision (mAP) and Cumulative Matching Charac-
teristics(CMC). For the Veri-776 and DukeMTMC datasets,
we also use re-ranking [49], which refines the final rankings
by considering the k-reciprocal nearest-neighbours of both
the query and retrieved images, effectively improving upon
the pairwise distance result that is used to quantify mAP and
top-k ranking accuracies. Re-ranking is not adopted for Ve-
hicleID because there is often only one true match ID in the
gallery set [18]. We split past works based on the complex-
ity of the backbone network, with our results on ResNet-50
and ResNet-101 backbones.

6.3. Comparison with State-of-the-art

VehicleID: Table 1 shows that RPTM achieves state-of-
the-art results on the challenging VehicleID dataset, indicat-

Model mAP r = 1 r = 5
P2-Net [12] 73.10 86.50 93.10
GPS [29] 78.70 88.20 95.20
PNL [10] 79.00 89.20 –
SCSN [8] 79.00 91.00 –

RPTM (ResNet-50) 80.20 91.40 95.80
Top-DB-Net∗ [32] 88.60 90.90 –

NFormer∗ [41] 83.40 89.50 –
st-reID∗ [40] 92.70 94.50 96.80

RPTM (ResNet-50)* 87.50 92.30 95.20
PAT∗ [20] 78.20 88.80 –
LDS∗ [46] 91.00 92.90 –

RPTM (ResNet-101)* 89.20 93.50 96.10

Table 3: Comparison on the DukeMTMC benchmark.
RPTM provides competitive results even though it is not
tuned for person reID. ∗ indicates re-ranking.

ing RPTM’s scalability across vehicle datasets. Although
not exceeding Smooth-AP[6], table 4 shows a drop in per-
formance by Smooth-AP on Veri-776 and DukeMTMC.

Veri-776: As shown in table 2, RPTM surpasses the
recent state-of-the-art vehicle reID models. These results
are very respectable, especially if we consider the fact that
well-performing algorithms like VehicleNet [48] uses sup-
plementary data for training. We also edge out Strong Base-
line [17], which uses deeper backbones and larger images.
In addition, RPTM’s training scheme is very simple, as it
only requires gradient descent on a well-defined loss.

DukeMTMC:Table 3 shows RPTM achieves competi-
tive results at person reID, despite training parameters tuned
to vehicle datasets. With the exception of changing the im-
age size to account for the aspect ratio of input images, no
changes were made to the RPTM network or training pa-
rameters. These results are respectable for a network whose
training parameters are tuned for a different task.
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Discussion: Table 1, 2 and 3, show that incorporat-
ing RPTM to feature learning techniques make them more
effective at re-identification. Performance improvements
are especially notable on more difficult datasets like Ve-
hicleID and harsher evaluation metrics (mAP). These per-
formances are quite remarkable when we take into account
that RPTM uses constant training parameters for all three
datasets. Most deep-learning algorithms require parameters
to be tweaked from dataset to dataset, and RPTM’s capa-
bility in this respect is an indication that relational aware
triplet choice makes the triplet losses better conditioned.

To demonstrate the challenge of maintaining constant
training parameters, we trained Smooth-AP [6] on two other
datasets, while using the training parameters of Table 1, as
shown in Table 4. We also acknowledge the use of Visual
Transformers (ViT) in TransReID by He et al. [14], demon-
strating impressive results, albeit using camera embeddings
and viewpoint labelling. Although RPTM uses univer-
sal parameters that are compliant to low compute require-
ments, we still achieve state-of-the-art results compared to
transformer-based ReID models. As an additional exper-
iment, using the increased parameter settings defined in
TransReID, we further improve our retrieval results, achiev-
ing an mAP of 82.5%(w/o re-ranking) on Veri-776.

Method mAP r = 1 r = 5
Smooth-AP (Veri-776) 79.40 91.10 94.20

RPTM (Veri-776) 88.00 97.30 98.40
Smooth-AP (DukeMTMC) 65.70 79.90 88.40

RPTM (DukeMTMC) 89.20 93.50 96.10

Table 4: Performance of Smooth-AP [6] (ResNet-101 back-
bone) on Veri-776 and DukeMTMC, with re-ranking.

6.4. Ablation Study

Image Size. We begin by investigating how image size
impacts re-identification. Table 5a shows that the evaluation
metrics improve as the image size increases, a finding that is
mirrored by many other reID algorithms, which often seek
to use the largest possible image. However, we find that per-
formance peaks at (240, 240) on Veri-776 and VehicleID,
which validates RPTM’s ability to achieve state-of-the-art
results at lower resolutions compared to other benchmarks.

Threshold for Positive Selection Section 4.2 suggests
positive images are chosen using a threshold, τ , which is
the mean number of non-zero matching results. We de-
note this scheme RPTMmean (semi-hard positive mining).
There are a number of alternatives. One possibility is to fix
τ on a low number of matches, such as 10. We term this
scheme RPTMmin. The scheme ensures anchor-positive
pairs are not near duplicates and corresponds to hard posi-

Model Veri-776 VehicleID(small)
mAP r=1 mAP r=1

RPTM128×128 56.5 84.5 72.5 89.0
RPTM160×160 74.8 92.4 80.5 91.8
RPTM224×224 85.1 95.2 83.1 92.9
RPTM240×240 88.0 97.3 84.8 95.5

(a) Image size ablation
Model Veri-776 VehicleID(small)

mAP r=1 mAP r=1
RPTMmin 86.3 95.9 82.1 93.9
RPTMmean 88.0 97.3 84.8 95.5
RPTMmax 82.2 95.6 79.8 93.1

(b) Thresholding ablation

Table 5: (a) ReID performance with increasing image size.
mAP and rank-1 increase with image size until (240, 240),
after which performance plateaus. (b) Comparing positive
selection thresholds. RPTMmin,mean,max correspond to
hard positive, semi-hard positive and easy positive-mining.

tive mining. The drawback is a vulnerability to occasional
matching errors. Another possibility is to set τ to the largest
number of matches that the anchor image has. We term
this RPTMmax. This eliminates any vulnerability to GMS
matching errors but sacrifices the positive image’s distinc-
tiveness. This corresponds to easy positive mining. Ta-
ble 5b indicates that RPTMmean has the best performance;
hence, it is adopted as our default mining scheme.

7. Conclusion

In this work, we have shown that respecting natural
data groupings within classes can help significantly im-
prove triplet mining, not only facilitating the selection of
better anchor-positive pairs but also, consequently, creating
a more tractable optimisation procedure that leads to better
generalisation. To that end, we introduced Relation Pre-
serving Triplet Mining (RPTM), a triplet-alignment scheme
to generate samples wary of the inverse-variability problem,
proving that implicitly enforced view consistencies can sig-
nificantly improve the reID pipeline. We showed how fea-
ture matches could be used to develop relation-aware triplet
mining, leading to a better conditioned triplet loss, creating
feature learners with enhanced training stability. Moreover,
we highlighted that RPTM outperforms recent reID mod-
els while maintaining constant training parameters across
datasets. Finally, we believe our research can be extended
to Unsupervised Domain Adaptation for even better scal-
abilty across reID datasets due to RPTM’s implicit ability
to align similar features, Anomaly Detection in reID to see
how noise affects performance, and also for general deep
image retrieval to evaluate RPTM outside re-identification.
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