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Abstract

Plant roots are difficult to monitor and study since they

are hidden belowground. Minirhizotrons offer an in-situ

monitoring solution but their widespread adoption is still

limited by the capabilities of automatic analysis methods.

These capabilities so far consist only of estimating a single

number (total root length) per image.

We propose a method for a more fine-grained analysis

which estimates the root turnover, i.e. the amount of root

growth and decay between two minirhizotron images. It

consists of a neural network that computes which roots are

visible in both images and is trained in an unsupervised

manner without additional annotations.

Our code is available as a part of an analysis tool with

a user interface ready to be used by ecologists. 1

1. Introduction

Quantification and close monitoring of plant root growth

is of essential importance for many scientific fields, as only

the inclusion of such data allows for accurate modeling of

many ecosystem processes [20, 12]. For instance, depend-

ing on ecosystem type, 30-95% of plant biomass is accumu-

lated below ground in the form of roots [13]. Rhizodepo-

sition (release of organic compounds from roots) and root

litter is a primary pathway for the transfer of atmospheric

carbon into the soil [21].

Observation of plant roots, especially in-situ in the field,

is difficult. Traditional methods, such as harvesting and

washing out of roots, are highly destructive and can provide

only a snapshot measurement as the plant is killed in the

process, making observation of a single plant over longer

periods infeasible.

1https://github.com/alexander-g/Root-Tracking

Therefore, the so called minirhizotron-technique [7] has

become the most important tool for the monitoring of plant

roots. Minirhizotrons are transparent tubes that are installed

into the soil underneath a plant, commonly at a 45◦ angle.

After this initial intervention, root growth at the soil-tube

interface can be recorded without further disturbance with

the help of specialized cameras or scanners that are inserted

into the tube.

The most often used metric in root research is total root

length. However, this metric does not capture the actual

amount of growth that occurred inbetween measurements.

Consider an observation station at a remote location such

that measurements can be taken only once per year. The

root length would stay roughly constant over this time pe-

riod, not revealing the actual amount of root growth dynam-

ics, i.e. their turnover. This is a real problem in root re-

search and the time span does not have to be taken to such

extremes. Fine roots which are of particular importance for

water absorption and thus for the growth of the whole plant

often have a life span of only a few days to weeks.

Our contribution aims to break down the total root length

metric into its components, growth and decay, by compar-

ing two images acquired on different days. An example of

this problem can be seen in figure 1. Note that the problem

is not simply about finding a single translation vector or a

homography for a pair of images. Instead, we want to find a

displacement for every root that exists in both images since

roots can move over time as they grow, thereby changing the

distance to each other nonlinearly. Moreover, soil can move

as well for example due to swelling and shrinking caused

by shifts in soil water content. This is especially prevalent

in highly organic soils [9]. This movement often accounts

for only a few pixels, but this is enough to distort measure-

ments. Additional difficulties arise from the fact that roots

can change their appearance (e.g. turn from white to red
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Figure 1: Problem Overview. Left and center: two minirhizotron images from the same experiment acquired approximately

one year apart. Right: The result of our root tracking method. White pixels represent roots that are present in both images,

red pixels are roots that are only visible in the first image (decayed or obstructed), green pixels are only visible in the second

image (likely new growth).

color) or from changing environmental and image acquisi-

tion conditions. Examples of those issues are illustrated in

figure 2.

We approach this task by finding correspondences in the

image pairs with a neural network trained to compare im-

age patches of roots. These correspondences are then used

to warp the root segmentation map of the first image onto

the second one. Importantly, our method is trained in an

unsupervised manner with contrastive and self-supervised

losses and does not require additional annotations, except

for training the root detection network which are often al-

ready available anyway.

2. Related Work

Since manual tracing of roots in minirhizotron images

is a slow and tedious task, several automatic analysis sys-

tems have been already introduced such as those in [16, 19]

which are based on a segmentation neural network such as

the popular U-Net[14] architecture. Further improvement

of the analysis results has been achieved with methods like

data augmentations [16] such as grid deformations. The au-

thors of [23] used transfer learning by pretraining on dif-

ferent plant species and [25, 26] use weak supervision with

multiple instance learning to reduce the amount of required

annotations. In [2, 3] inpainting has been used against un-

dersegmentation i.e. to correct gaps in segmentation results

and in [6] oversegmentation of plants with dense root sys-

tems has been mitigated.

All of the works mentioned above only use a single im-

age, i.e. one point in time, and mainly aim to improve the

accuracy of the total root length measurements. To the best

of our knowledge, no research has been published on the

analysis of root growth from comparison of time series of

minirhizotron images.

There exist several methods for other types of acquisition

systems which take the temporal component into account.

ChronoRoot[5] for example combines CNNs with LSTMs.

Yet, these methods are dealing with image data from highly

controlled and standardized experiments, e.g. single plants

grown in petri dishes on transparent agarized medium and

a fixed camera system with high temporal resolution such

as PhenomNet [24]. These methods are difficult to apply to

uncontrolled real-world environments and over longer peri-

ods of time.

A well established method to find correspondeces in two

or more images is to use local feature descriptors such as the

scale invariant feature transform (SIFT)[11], which com-

putes a 3D histogram of local oriented gradients around a

keypoint. It is widely used for problems like image stitching

or localization and mapping. We have tried out this method

but have found its performance to be insufficient in our case.

A comparison with our method can be found in the evalua-

tion section.

Neural network based feature matching methods such as

SuperGlue [15], LoFTR [17] or COTR [10] promise better

performance, however contrary to our method, they require

ground truth annotations which are expensive to obtain with

our images. Moreover, LoFTR has insufficient precision for

fine roots as it only matches 8×8 patches.

A somewhat similar problem is deformable image reg-

istration from the medical domain, with methods such as

VoxelMorph [1]. The goal here is to find a dense corre-

spondence field that aligns two images. Specifically Voxel-

Morph can be trained in an unsupervised manner by min-
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Figure 2: Some of the challenges encountered in this task.

(a) Roots and soil can move over time, hence finding a ho-

mography is insufficient. (b) Roots can change their ap-

pearance, for example here their color. (c) Soil can change

appearance, for example due to different moisture levels.

imizing the difference in RGB or grayscale values of the

two input images. However, this task is not identical to our

problem because in our case, roots that are present in one

image are often missing in the second one (newly grown

or decayed roots). Moreover, these techniques often make

use of templates, i.e. a kind of prototypical representation

of organs like brain, lungs etc, which is not applicable to

our problem. We have evaluated the original VoxelMorph

source code nevertheless, but have encountered some issues

with it as explained in the evaluation section.

3. Method

3.1. Overview

Given two minirhizotron images x0 and x1 from the

same experiment where x0 is the chronologically earlier

one, we want to compute a dense displacement field that

maps every pixel of x0 onto the corresponding location in

x1 with a particular focus on correctness at the location of

the roots.

We assume a pre-trained semantic segmentation network

that can classify each pixel as “root” or “not-root”. Such

systems have been presented in [16, 19]. Specifically ,we

use an architecture based on U-Net [14] with a pretrained

backbone, but the method does not depend on this choice,

other segmentation networks would work as well. In the

following, this network is denoted with f with f(x)i = 1
being a detected root at pixel coordinate i in image x.

The core of our root tracking system consists of a sec-

ond neural network g that is trained to learn the similarity

of two image patches containing roots. We use the same ar-

chitecture as for the root segmentation network except that

we remove the last layer so that it returns the c-dimensional

feature embeddings for each pixel (c = 32).

To compute how similar two locations in two images are,

we use RoIAlign [8] to extract a (d×d×c)-sized descriptor

with a box size of (b×b) of the output g(x). Where not oth-

erwise mentioned we use b = 64, d = b/4. g(x)i denotes

an extracted descriptor from image x at coordinate i. We

then normalize the descriptors along the channel dimension

and compute the cosine similarity.

3.2. Training

Our system is trained in two stages, neither of which re-

quires additional annotations. In both stages, we use the

weights of the semantic segmentation network f as the ini-

tialization parameters and train with the SGD optimizer

with a learning rate of 0.01 and a momentum value of 0.9
for 10 epochs where not otherwise mentioned. We have

found the network to overfit quite easily as analyzed in the

supplementary material.

3.2.1 Training Stage 1: Contrastive Learning

We want the neural network g to return embeddings with a

high similarity for descriptors extracted at the same root and

low similarity for descriptors extracted at different roots.

Since we do not know which roots from two images cor-

respond to each other, we first train on descriptors extracted

at the same location in the same image. To avoid trivial

solutions, we utilize augmentations, as commonly used in

contrastive learning methods [4].

Contrary to those generic contrastive learning methods,

we are limited in the types of augmentations we can use for

positive or negative views. For positive views we only use

pixel-wise image transforms like color, contrast and bright-

ness jitter to simulate different acquisition and environment

conditions. For negative views, rotations and flipping op-

erations are used. The idea here is that although roots can

move, they rarely change their shape in a local area. This
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Figure 3: (a) Schematic overview of our root tracking system. (b) In the first training stage we train on augmented views of

the same image. For positive views only pixel-wise augmentations like brightness and color jitter are used. Negative views

consist of rotatations or flips of the same location and other locations in the same image. In the second training stage we use

different images.

way, the network is trained to compare by shape rather than

color or texture. Descriptors that were extracted at differ-

ent locations serve as additional negative views. Example

images of the augmented views are shown in figure 3b.

The losses for this stage are defined as:

Lstage1
pos =

1

|I|

∑

i∈I

−log g(x)i g(φpos(x))i (1)

Lstage1
neg =

1

|I|2

∑

i∈I

∑

j∈I

−log 1− g(x)i g(φneg(x))j (2)

where I is a random subset of the root pixel locations

{i | f(x)i = 1} while ensuring that each element of this

subset has a minimum distance to others and φpos, φneg are

the positive and negative augmentation transforms respec-

tively. In images where no roots could be found, completely

random points are used. The final loss is then defined as

Lstage1 = Lstage1
pos + Lstage1

neg .

3.2.2 Training Stage 2: Self-supervision

The network above is already able to recognize same roots

from different images quite well but it struggles with image

pairs where the environment has changed considerably. A

second training stage on different images is needed.

For this, we use the stage 1 model to find a set of corre-

spondences M in different images. These correspondences

are then used instead of the augmented views of the same

image. The positive loss is modified to:

Lstage2
pos =

1

|M |

∑

i,j∈M

−log g(x0)i g(x1)j (3)

with i ∈ I a keypoint location in image x0 and j ∈ J in

image x1. The other losses are modified accordingly.

3.3. Inference

3.3.1 Root Matching

We are only interested in matching roots with each other,

therefore we directly use the coordinates where f(x) = 1
as keypoints. To reduce the number of points to match, we

apply the skeletonization method [27] on the segmentation

map. This effectively means that we only match the centers

of roots to each other.

Similar to [11] we perform cross checking and a ratio

test to reject descriptors that have ambiguous matching part-

ners, i.e. we ensure that the best match has a significantly

higher cosine similarity to the second-best match. Since

our keypoints are non-sparse, i.e. many have a distance of

1 to each other, the descriptors of neighboring keypoints

are often the best and second-best match. Therefore, when

searching for the second-best match we exclude keypoints

within a certain euclidean distance from the best match. Ex-

pressed more formally, the computation of the ratio looks as
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follows:

ri =

max
j∈J

g(x0)ig(x1)j

max
k∈K

g(x0)ig(x1)k

K = {k | dist
(

argmax
j

g(x0)ig(x1)j , k
)

> t} ⊆ J

(4)

where dist is the euclidean distance of the keypoint loca-

tions and t a minimum distance threshold which set set to

t = 64.

As a final step in the keypoint matching procedure, out-

lier rejection is performed. Although roots can move over

time, this movement is usually limited to small distances.

Therefore, we filter out matches that deviate from the me-

dian displacement vector by a threshold.

We define an image pair as successfully matched if there

are at least two matched keypoint pairs left that have a min-

imum distance of 64 pixels to each other.

3.3.2 Alignment and Turnover Map

Given a set of matched root keypoints in both images we

warp the root segmentation result f(x0) onto f(x1). To do

this, we construct a dense deformation field by performing

triangulation on the matched keypoints of image x0. The

new coordinates are then computed in each triangle via lin-

ear barycentric interpolation of the corresponding keypoints

coordinates in x1 [18]. Values outside of the matched key-

points’ convex hull are extrapolated by adding additional

points to the four corners of the image x0 with values found

via nearest neighbor interpolation.

Lastly, we construct the final result which we term a

(root) turnover map containing the three classes “same”

(root is detected in both images), “decay” (root is detected

only in the first image) and ”growth” (root is detected only

in the second image):

T :=











same, warp(f(x0)) = 1 and f(x1) = 1

decay, warp(f(x0)) = 1 and f(x1) = 0

growth, warp(f(x0)) = 0 and f(x1) = 1

(5)

where warp aligns the segmentation map f(x0) to f(x1) as

described above.

More important for the end user is the total length of the

newly grown or decayed roots. The skeletonization method

[27] is commonly used to estimate this property for binary

segmentation maps, however it cannot be used for multi-

class ones. Applying it on a single class is not an option ei-

ther as it would create artifacts at root borders, for example

when a root gains width. Therefore, we redefine it for our

case as combinations of the binary outputs and the turnover

map T :

S(T ) :=











same, S( f(x1) ) = 1 and T = same

decay, S(warp(f(x0))) = 1 and T = decay

growth, S( f(x1) ) = 1 and T = growth

(6)

where S(x) is the skeletonization method applied on a

binary image x. The total lengths are then estimated with

the sum of skeleton pixels of S(T ) over each class.

4. Experimental Setup

4.1. Datasets and Annotation

Our main dataset consists of 2550×2273px minirhi-

zotron images acquired with a CI-600 In-Situ Root Imager

(CID Bio-Science Inc.). The images stem from mesocosm

(outdoor pot experiments under semi-controlled, roughly

constant conditions) and field (outdoor and uncontrolled)

experiments. Overall 854 unannotated images were used for

the training which mostly contain roots of Carex rostrata,

Mentha aquatica and Equisetum fluviatile plant species.

For the evaluation, we have annotated additional 62 im-

age pairs. We have not considered image pairs in which

even annotators were not able to find correspondences. The

annotation consists of matched root keypoints that human

annotators regarded to be the same root in both images and

the corresponding turnover maps. Creating such an annota-

tion from scratch is an extremely tedious and slow process,

therefore annotators were tasked only to correct mistakes

caused by the root matching algorithm that was presented

in section 3, i.e. to add missing matches or to remove incor-

rect ones. Despite this simplification, a single image pair

can take up to two hours to annotate due to the high image

resolution and sometimes many fine roots.

The annotation was created with a custom user interface

which was built specifically for this task. The user interface

allows to add new matches either by clicking on correspond-

ing locations in both images or by clicking and dragging

within a single turnover map. This process is illustrated in

figure 4.

To test how well our method adapts to other datasets we

additionally use the Sunflower subset of the PRMI dataset

[22] as a secondaray dataset. This dataset has an agricul-

tural background for which root turnover is of lesser im-

portance. For a fair evaluation all networks were retrained

on this dataset only. It is used only where explicitly men-

tioned, otherwise the data refer to the main mesocosm and

field dataset.

4.2. Evaluation Metrics

We use the following metrics for the evaluation:

• Intersection over Union (IoU) applied on the classes

“same” and “growth” of the turnover map. Note that

the class “decay” cannot be used because the annota-

tion is focused on matching roots that are present in
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Figure 4: Our main annotation procedure. Users can it-

eratively correct mistakes in the turnover map, which we

then use for the evaluation. Note that the branching decayed

root (red) at the bottom changes its position in the process.

The intersection with the original prediction is zero and the

IoU metric would count this as incorrect although it actually

isn’t (the class was correctly predicted). This metric cannot

be applied on the ”decay” class for this reason.

both images. The location of decayed roots cannot be

accurately annotated in our turnover map. This prob-

lem is also explained in figure 4. IoU is widely used in

segmentation tasks but in our case this metric can be

unreliable due to the mode of annotation, as dicussed

in subsection 5.3.

• Relative error in the total number of “same”,

“growth” and “decay” pixel counts in the turnover

map T . This can be interpreted as an estimate of to-

tal root biomass.

• Relative error in the total number of “same”,

“growth” and “decay” skeleton pixels of the skele-

tonized turnover map S(T ). This metric can be in-

terpreted as an estimate of total root length.

• Matching success rate with the success condition as

defined in 3.3.1

4.3. Compared Methods

Since there are no dedicated methods for tracking roots

in minirhizotron images yet, we source similar methods

from other domains as baselines for the comparative eval-

uation. We have considered the following alternatives and

compare them here to our method:

• SIFT [11] serves as a minimal baseline to compute

correspondences in an image pair. These are then fed

into the pipeline described in subsections 3.3.1 and

3.3.2 to create a turnover map.

• SIFT is not aware of the root locations in the image

and thus uses keypoints at arbitrary locations. To im-

prove performance we add additional keypoints at the

skeleton pixels. The scale parameter for these key-

points is estimated from the median of the original

SIFT keypoints. Denoted with SIFT(sk).

• VoxelMorph [1] by itself struggles to align two

minirhizotron images because the offsets can be very

large. Therefore, we use it as a second step after ap-

plying the SIFT method. Specifically, we train it on the

segmentation maps warp(f(x0)) warped with the cor-

respondences found with SIFT. This is the best combi-

nation that we have tried. We have used the source

code as published by the authors.

• Feature embeddings of the root segmentation net-

work f instead of g. The rationale here is that f al-

ready knows what roots look like and thus might be

enough to compare them. This method has the advan-

tage that only one network has to be trained. Denoted

with f Emb.

As of our method, we compare the two different training

stages:

• Stage 1: Trained via contrastive learning only on aug-

mented views from the same image. This stage is de-

scribed in subsection 3.2.1.

• Stage 2: Trained via self-supervision on different im-

ages. This is our main method and is described in sub-

section 3.2.2.

5. Results

Additional evaluations and full sized results can be found

in the supplement.

5.1. Main Results

Our main evaluation results are presented in table 1. We

observe a significantly better performance of our method

on all evaluated metrics. Simply using the traditional SIFT

method alone can lead to deviations of almost 50% in root

length measurements. Adding additional keypoints at the

root locations does help but it is still outcompeted by our

method. VoxelMorph is able to align roots quite well to

each other as long as they are present in both images but

struggles with roots that are visible only in one of the im-

ages. As can be seen in figure 5 it often tries to extend roots

from the first image into newly grown ones and even more

often shrinks down decayed roots to a thin line, resulting in

large errors in the “decay” class. Despite good length errors

on the “same” and “growth” classes, this issue makes it less

trustworthy and explainable than our method. Additionally,

errors are more difficult to correct manually.

The results on the PRMI dataset (table 2) are similar.

One notable difference is that the feature embeddings of the

root segmentation network f perform better than our stage 1

model. We attribute this to less environmental variance, so

that pixel-wise augmentations have a smaller positive effect.
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Mesocosms & Field (n = 62)

Method
IoU↑
s/g

Counts↓
s/d/g

Lengths↓
s/d/g

Success Rate↑

SIFT .59/.62 .30/.29/.38 .35/.44/.45 77.4%

SIFT(sk) .65/.67 .22/.27/.25 .28/.41/.30 88.7%

SIFT+VoxelMorph .76/.64 .13/.75/.18 .10/.52/.10 88.7%

f Emb. .69/.69 .18/.23/.20 .23/.33/.25 88.7%

Ours (Stage 1) .75/.74 .12/.20/.12 .13/.19/.13 93.5%

Ours (Stage 2) .83/.81 .08/.10/.09 .09/.12/.10 93.5%

Table 1: Main results. Bold font indicates best values. Counts and Lengths are relative error values. s/d/g stands for the

turnover map classes “same”, “decay” and “growth”.

Figure 5: Typical failure case of VoxelMorph. From left to

right: root segmentation maps f(x0), f(x1), VoxelMorph

output, i.e. warped f(x0). VoxelMorph is prone to hallu-

cinating new roots (indicated by green arrows) or shrinking

decayed ones (red arrows).

PRMI Sunflower (n = 20)

Method mIoU↑ Counts↓ Lengths↓ Success↑

SIFT 0.51 0.82 1.17 80%

SIFT(sk) 0.58 0.53 0.77 100%

f Emb. 0.77 0.18 0.22 80%

Ours (Stage 1) 0.72 0.28 0.38 90%

Ours (Stage 2) 0.86 0.12 0.16 90%

Table 2: Results on the PRMI dataset. Bold font indicates

best values. Counts and Lengths are relative error values.

5.2. Time Dependence

Additionally, we compare how the performance depends

on the acquisition time difference of the compared images.

The longer the time span the larger the changes in roots and

soil, thus in theory, the performance should go down. Fig-

ure 6 shows the same metrics evaluated on a subset of the

data above, broken down into 5 time frames from one week

to half a year. Specifically, image pairs from 4 mesocosm

experiments were used, each pair starting with the same im-

age.

As expected, the performance is best over shorter time

periods, with no longer than 2 weeks being an optimum for

our method. Contrary to our expectation, training on dif-

ferent images (i.e. stage 2) does not extend the optimum

time span significantly. Instead, its main advantage is sim-

ply being able to match more keypoints as depicted in the

additional figures in the supplementary material. Changing

environmental conditions are still a challenge for it. Vanilla

SIFT has even problems at detecting any correspondences

at all over longer periods with matching success rate drop-

ping down to zero after two months.

5.3. Annotation Bias Analysis

The annotation as used above, was created from the out-

put of the stage 2 model as the starting point. As a result,

this annotation might be biased towards this model because

annotators might have skipped areas which they deemed

good enough. Only a few pixels of shift in one direction

might accumulate in a significant amount of bias especially

for the IoU metric. An example of this type of bias is shown

in figure 7.

To analyze the extent of this bias, we have re-annotated a

random 10% of the same image pairs by correcting the out-

put of the stage 1 model which we denote with AnnS1. The

same 10% of the previous annotation (with stage 2 as the

starting point) is denoted as AnnS2. We have re-evaluated

the metrics for this new annotation, the results are shown in

table 3.

Mean IoU↑ Mean Counts↓ Mean Lengths↓
AnnS1 AnnS2 AnnS1 AnnS2 AnnS1 AnnS2

AnnS1 - 0.845 - 0.016 - 0.014

AnnS2 0.845 - 0.016 - 0.014 -

Stage 1 0.794 0.772 0.151 0.144 0.153 0.141

Stage 2 0.793 0.831 0.099 0.093 0.110 0.097

Table 3: Re-evaluated metrics for different annotations.

Bold font indicates best values for each annotation.
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Figure 6: Influence of the acquisition time difference on the IoU, length error and success rate.

Figure 7: Typical source for bias in the annotation. Left:

output of stage 1, right: stage 2. The stage 1 model did not

match this root perfectly, yet both cases were left untouched

by annotators thus favoring the corresponding model during

evaluation. The shift amounts to only a few pixels but it

accumulates along the length of the root.

As can be seen, a bias is certainly present since the per-

formance gain of the stage 2 model is completely gone

when comparing with the IoU metric on the AnnS1 anno-

tation. This bias is much less pronounced on the relative

pixel count error and relative length error metrics on which

the stage 2 model still performs significantly better. The

same pattern can be observed when comparing both sets of

annotations to each other. The rather low IoU value of 0.845
indicates a high variation on a per-pixel level, but this goes

down to less than 2% for the image-level metrics.

We conclude that IoU is unreliable for our mode of anno-

tation and focus should be put on the other metrics instead,

which are of higher importance for the end user anyway.

6. Concluding Remarks

Our measurements of newly grown and decayed roots

are only estimates. For one, large movements of roots still

pose a challenge as illustrated in figure 8. Secondly, roots

can get obstructed by soil which our method would count

(a)

(b)

Figure 8: Failure cases of our method.

(a) Large movement of roots poses a problem since our de-

scriptors are trained to learn the shape and are not rotation

invariant. (b) A root hidden behind others can be classi-

fied as “same” in the turnover map due to its rather simple

definition of overlapping segmentations.

as decay. This is rather an inherent limitation of minirhi-

zotron imagery. Future work might focus on improving

the matching performance for longer time periods. Voxel-

Morph shows partially promising results but has drawbacks

that need to be addressed. A combination with our work

might be possible.

Our method is already in a usable state and we hope that

it can enable new insights in the field of root research.
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