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Abstract

Multi-view stereo reconstruction of scenes from satellite

images is traditionally performed with a pair-wise stereo-

vision approach: (1) multiple views are grouped into pairs,

(2) each pair is processed by two-view stereo methods pro-

ducing an elevation model or point cloud, lastly (3) the pair-

wise reconstructions are integrated and filtered to obtain a

final result. These steps are organized in a pipeline and the

end-to-end performance of reconstructions depends on the

behavior of these steps. This work introduces two changes

that increase the performance of the reconstructions: a new

pair selection approach and a new integration method are

presented. The new pair selection replaces commonly used

heuristics with a principled criterion that predicts the com-

pleteness of a pair based on offline simulations. The pre-

sented integration method is based on an iterated bilateral

filter. Experiments show that these changes yield a system-

atic improvement on the performance of the pipeline.

1. Introduction

Multi-View Stereo (MVS) vision aims at reconstructing

a 3D scene from multiple 2D views. In satellite imaging,

it has been traditionally performed by a pair-wise MVS ap-

proach: the views are grouped into pairs and each pair is

processed by two-view stereo matching methods, produc-

ing an elevation model or point cloud; then all the pair-

wise reconstructions are aggregated to obtain a final re-

sult [7, 19, 16, 23]. True MVS methods (which reconstruct

the scene directly from the whole set of images) are popular

for close range imaging [26, 17] but are still seldom used for

satellite images as they have not shown significantly better

results [29, 13] or are too computationally expensive to be

applied to large scale images [9, 18].

In pair-wise MVS, given a set of N images taken from a

scene, N(N − 1) ordered pairs can be considered for stereo

reconstruction. For each pair, a Digital Surface Model

(DSM) of the scene is determined. The final MVS recon-

struction of the scene can then be obtained by the integra-

tion of all the computed DSMs. The quality of the final

reconstruction is determined by the quality of the pair-wise

DSMs, which depend on several factors such as the orien-

tations of the views of a pair and changes in the acquisition

conditions between the images, among others. Besides the

stereo matching step, two other steps are crucial in a pair-

wise MVS pipeline to achieve a good reconstruction: (a) the

selection of the best pairs to run the pair-wise pipeline and

(b) the final integration of the resulting DSMs.

Regarding the pair selection step, multiple factors may

influence the quality of a pair and it is hard to identify all

of them and tell their relative importance. This difficult task

has been traditionally tackled by designing heuristics that

take into account the metadata of the images [11, 6]. In [25]

a supervised machine learning approach was proposed to

derive a quality indicator from the metadata of a pair.

On the other end of the pair-wise MVS pipeline, differ-

ent methods can be applied for the integration (also called

fusion or aggregation) of the information of the computed

DSMs. Averaging is the most basic approach; but integra-

tion by the median is usually preferred as it takes into ac-

count the presence of outliers in the DSMs, as can be seen

in a recent review on the matter [21].

This article focuses on the pair selection and the DSM

integration steps and presents two contributions to enhance

the performance of a satellite MVS pipeline. Firstly, for the

pair selection, an approach based on the simulation of im-

age and camera model pairs is presented. Synthetic stereo

pairs are simulated under all possible geometric configura-

tions on the hemisphere surrounding an artificial scene and

the stereo reconstruction quality can be assessed for each

pair. This pre-computed quality is then used as a proxy for

the quality of real pairs of images. Secondly, for the integra-

tion step, an approach based on the bilateral filtering [27] is

presented. Contrary to the most commonly used per-pixel

median, the approach allows to better integrate DSMs con-

sidering the spatial coherence of different properties of the
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Figure 1. (a) Six images of a region of the Omaha dataset. (b) Ground truth (GT) height map of the region. MVS reconstructions using all

30 stereo pairs: (c) DSMs computed using the MGM [10] correlator and integrated by the median of the DSMs, (d) DSMs computed using

the GANet [28, 13] correlator and integrated by the median of the DSMs, (e) DSMs computed using the GANet correlator and integrated

by bilateral filtering. Profiles corresponding to the red line: (e) from images b and c, (f) from images b and d, (f) from images b and e.

data such as height, gray level, etc. The method produces

a spatial regularization effect, without affecting the borders

of the structures as can be seen in Figure 1.

This paper is organized as follows: Section 2 introduces

the MVS pipeline used in this work. Section 3 discusses

the pair selection alternatives and introduces a new criterion

based on simulation. Section 4 presents the DSM integra-

tion step. Experimental results are presented in Section 5

and Section 6 concludes and holds the final remarks.

2. The satellite MVS stereo pipeline

The S2P1 pipeline [7] was used for the experiments

in this work. The pipeline input is a stereo pair of im-

ages with their respective Rational Polynomial Coefficients

(RPC) camera models, which are simplified models for the

pushbroom cameras used in satellites [12].

Input images are cut into small tiles. Tiling allows to lo-

cally approximate the pushbroom sensor by an affine cam-

era model with a small error, which enables the use of well

established stereo rectification and matching methods [7].

Image correspondences are computed on the rectified im-

ages with a stereo matching algorithm. The computed cor-

respondences are then triangulated to produce a georefer-

enced 3D point cloud and a Digital Surface Model (DSM).

Lastly, the results for all the tiles are combined to produce

the whole image DSM. When multiple images are available,

the pipeline can be applied on multiple pairs and the result-

ing DSMs are integrated to obtain a final DSM.

The experiments in this work are conducted on S2P, but

the proposed changes are generic and can be applied to

1https://github.com/centreborelli/s2p

Figure 2. Block diagram of the simulator. Please refer to the text

for the description of the blocks and the flow of data.

other pipelines as well. We use by default MGM [10] but

other correlators are available such as SGM [14], or can be

adapted, such as GANet [28] as shown in [13].

3. Pair selection for multi-view stereo

In pair-wise MVS, it is well known that the DSM aggre-

gation improves in general the completeness [22, 11]. A

new stereo pair may give information of an occluded part of

the scene. However, if a DSM computed from a bad pair is

included, the result may degrade. This issue along with the

fact that the number of possible pairs grows as O(N2), with

N the number of images, makes necessary to pre-select the

best pairs to be used for the reconstruction.

In [11] a simple heuristic based on the images metadata

was proposed: images in the pair must have an incidence

angle smaller than 40º, the angle between views should be

in the range [5º, 45º], preferably around 20º and pairs with

near acquisition dates are preferred. In [6] pairs with angle
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between views in the range [15º, 25º] are preferred for urban

and industrial areas.

Here we present a method to empirically map the relation

between the orientation of the views and the reconstruction

quality through simulation. The simulation tool produce

views of a 3D scene from multiple orientations generat-

ing images along with RPC models suitable for a pair-wise

stereo pipeline. The stereo reconstructions can be assessed

by comparing to the known altitude of the scene. This en-

ables to pre-compute a map that encodes the reconstruction

quality in relation to the incidence angles of the views with

the vertical (or zenith angles) and the intersection angle (an-

gle between views) of any pair of views sampled from the

hemisphere surrounding the scene. This map acts as a proxy

for the quality of real pairs and can be used to sort the pairs

in a more funded way than the previous heuristics.

3.1. Image and RPC simulation tool

Starting from a pre-built 3D scene, the longitude and lat-

itude coordinates of the scene center and the orientation of

the view, the simulation tool generates an image and a cor-

responding RPC camera model suitable to be used in a satel-

lite stereo pipeline. The simulator uses Blender [5] as the

3D engine to render the views. Blender is launched and

configured automatically through Python scripts.

Figure 2 presents a block diagram of the simulation tool.

Given a scene and a view direction, an affine camera model

is determined. The affine camera model is a sensible ap-

proximation of a real satellite projection for a small area of

interest (AOI) [8]. This model gives corresponding 3D/2D

coordinates between the volume of interest (AOI plus height

range) and the image. The correspondences are then used

to adjust an RPC camera model using the RPCFIT tool [2],

which fits an RPC model to the 3D/2D correspondences

through a regularized least squares minimization.

In order to render the image of the scene, a camera

model, compatible with the affine camera model, is cre-

ated in Blender. Figure 3 shows examples of the simulation

tool with two different scenes: a simple one with a cylin-

der on a flat surface, and an artificial urban scene.2 The

simulation tool is available at https://github.com/

zemogoravla/simsatool.

3.2. Stereo reconstruction from simulated image­
RPC pairs

The simulator tool allows to draw any pair of views in

the hemisphere surrounding a 3D scene. With the generated

image pair and their corresponding RPC it is possible to

compute a stereo reconstruction with a satellite pipeline and

evaluate the reconstruction against the ground truth (GT)

altitude of the scene. This enables to empirically study and

2Urban scene downloaded from https://open3dmodel.com/. Accessed

on October 2022.

Figure 3. Results of the simulation tool with two different 3D

scenes. From left to right: a view of the 3D scene, a stereo pair

generated with the simulation tool, and the DSM reconstructed

with the S2P pipeline. Above: Cylinder scene. The scene is com-

posed of a cylinder with a radius of 25m and a height of 30m.

Surfaces have a random texture. Below: Artificial city scene.

map the relation between the orientation of the views and

the quality of the 3D reconstruction of a pair.

We sampled the hemisphere over a 3D scene and gen-

erated pairs of image-RPC from those positions. Figure 4

shows the distribution of the considered reference and sec-

ondary views in the hemisphere over the scene. In the plots,

the sampled reference views are depicted with a square dot

and secondary views with circle dots. Relative orientations

are considered with the reference view in zero azimuth. A

reference-secondary pair keeps the same relative orientation

when a vertical rotation is applied, so should give similar

results. Texture or noise can favor some orientations over

others. To smooth out these effects, six orientations are

considered for each reference-secondary pair. The results

are computed as the median over the six cases.

The DSMs computed from the sampled pairs were com-

pared against the GT DSM to assess the reconstruction per-

formance for the stereo pairs. The completeness (COMP)

metric, defined as the proportion of the evaluated pixels

where the altitude of the computed map differs from the GT

less or equal than z tol = 1m, was considered for the tests.

The completeness is a comprehensive metric tradition-

ally used for the evaluation of satellite stereo reconstruc-

tions [4, 3]. Among the evaluated pixels (i.e. with GT in-

formation) there are two types of errors in a reconstructed

DSM: (a) Invalid pixels where the altitude could not be

computed, (b) Bad pixels where the computed altitude dif-

fers from the GT more than a given threshold. Invalid pix-

els are places with incoherent disparities between left and

right disparity maps on the stereo matching step. These are

mostly caused by occlusions. Bad pixels may arise due to

matching or triangulation errors. In the first case, repeti-
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Figure 4. Reconstruction errors of simulations for different reference-secondary image orientations. The square represents the reference

view and circular points represent the tested secondary views. Metric 1-COMP is shown for increasing zenith angle of the reference view.

Blue corresponds to small errors while red indicates large errors. The blue, orange and green curves indicate the positions in the hemisphere

for views 5º, 20º and 45º apart from the reference, respectively.

tive textures may cause coherent matching at a wrong po-

sition. Regarding triangulation, the angle between views is

the main factor that determines the uncertainty of this step.

Small angles between views result in a worse conditioning

of the triangulation, which amplifies the small matching er-

rors. On the other hand, an off nadir view implies a fore-

shortening in one direction causing an anisotropic loss of

resolution in the image. Indeed, as shown in [20], the rel-

ative position of the views in the hemisphere surrounding

the scene entails an affine deformation between the images

that may bedevil the matching. Totalbad is defined as the

sum of Bad and Invalid pixels and is the complement of the

completeness Totalbad = 1 - COMP.

Stereo reconstruction is affected in a complex manner by

all these factors. The analytical study of all these contribu-

tions and interactions is hard, thus simulation becomes a

good alternative to tackle this problem.

Figure 4 illustrates the reconstruction error as a func-

tion of the reference-secondary relative image orientations.

These results are computed using the cylinder scene, but

similar results are obtained with more complex scenes. In

each case the reference image—the black square—is posi-

tioned in a certain zenith angle and the secondary image—

the black circular dots—are positioned in a sampling of the

hemisphere. Intermediate values are obtained by interpola-

tion of the calculated values at the sampled positions. Blue

corresponds to small errors while red indicates large errors.

3.3. MVS pair selection based on simulation results

Given a set of N real satellite images taken from the

same region, there are N × (N − 1) possible ordered pairs.

For each candidate pair, we can estimate the reconstruction

error (as 1 − COMP) by querying the orientations of the

real images in the pre-computed error maps of Figure 4.

This provides an ordering for the integration of the DSMs

reconstructed from the pairs. This ordering based on the

completeness obtained from the simulation acts as a proxy

for the true completeness, which cannot be computed in a

real scene where the GT is not available.

4. DSM integration

Multiple strategies to integrate DSMs have been pro-

posed. A recent review [21] presents an extensive list of

methods. The most common way of integrating a set of

DSMs is to apply a per-pixel median of the heights in the

set of DSMs. This usually yields a robust estimation and

removes most outliers in the DSMs. However, this pixel-

wise approach does not introduce spatial coherence.

In this work an approach based on the bilateral filter [27]

is used. The method is related to the one presented in [24]

in the sense that both try to include a spatial regularization

inspired on the bilateral filter. In [24] for each pixel an ir-

regular region around it is determined considering spatial

and color proximity and then a median of the values of the

DSMs is applied on that region. Instead, we directly ap-

ply a bilateral filter to the samples in the DSMs. The bi-

lateral filter framework allows to robustly integrate the spa-

tial information along with other available sources of infor-

mation that can regularize the final integrated DSM. Typi-

cally, the framework can integrate not only the height of the

DSMs and the gray level or color of a reference image, but
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also other features as a semantic segmentation or confidence

maps if available.

The bilateral filter framework is applied in an iterative

scheme. This allows to gradually refine the solution. Using

progressively more restrictive ranges for the height allows

to focus on the height samples that are close to the previ-

ous estimation and are then probably more accurate. The

bilateral filter integration of a set of L DSMs for pixel i at

iteration n is computed as

B[i] =
1

ν(i)

∑

k

∑

j∈[wsn ,wsn ]

W [k][i, j]L[k][i− j], (1)

where

W [k][i, j] = e
−

|j|2

2.sn2 e
−

|L[k][i−j]−D[i]|2

2.rn2 e
−

|I[i−j]−I[i]|2

2.cn2 . (2)

Here k is an index on the DSMs list, j is an index on the

spatial neighbors of pixel i, rn is the sigma of the Gaussian

that determines the height range neighborhood, sn is the

sigma of the Gaussian that determines the spatial neighbor-

hood and cn is the sigma of the Gaussian for the gray/color

value neighborhood on iteration n in all cases, and the nor-

malization factor is

ν(i) =
∑

k

∑

j∈[wsn ,wsn ]

W [k][i, j]. (3)

Algorithm 1 shows the main steps of the method. The in-

puts are a list of registered DSMs L, a reference gray/color

level image I and lists of sigmas to be applied in each itera-

tion to weight the contribution of neighbors to the integrated

altitude of each pixel (S: proximity, R: altitude similarity,

and C: gray/color value similarity). The image I can be

one of the images from the stereo pairs used to compute the

DSMs (ortho-rectified to match the DSMs). The integration

D is initialized by the per-pixel median of the set of DSMs.

For each iteration, (a) the DSMs in L are registered in height

to D (shift of each DSM to match the median height of D),

(b) the integrated altitude of each pixel is computed.

5. Experiments

Experiments were conducted to test the behavior of the

S2P pipeline when changing the pair selection step as pro-

posed in Section 3 and the integration step as proposed in

Section 4. We used three datasets, consisting on satellite im-

ages from the Multiple View Stereo Benchmark for Satellite

Imagery (MVS3D) [4] and the US3D dataset [3].

The MVS3D is a set of 47 satellite images of Buenos

Aires (MVS), Argentina. The corresponding GT DSMs

are derived from an airborne Lidar acquisition (from a

different date than the satellite images) of the same re-

gion. The US3D dataset consists of 26 WorldView-3 target-

mode panchromatic images collected between 2014 and

Algorithm 1: Iterative bilateral DSM integration

input : List of DSMs: L = [DSM[k], k:0...K-1 ]

Ortho-rectified Reference image: I

Number of iterations: N

List of range sigmas: R=[rn, n : 0...N − 1]

List of spatial sigmas: S=[sn, n : 0...N − 1]

List of color sigmas: C=[cn, n : 0...N − 1]

output: Integrated DSM: D

1 D ← pixel wise median(L)
2 for n in 0...N − 1 do

3 L←

[register in height(L[k], D), for k in 0...K − 1]
4 for each pixel i do

5 B[i]← as in equation (1)

6 D ← B

2016 over Jacksonville (JAX), Florida and 43 WorldView-3

target-mode panchromatic images collected between 2014

and 2015 over Omaha (OMA), Nebraska. Semantic labels

and an airborne Lidar are also available. The Lidar, ac-

quired at a different date than the satellite images by the

USGS, is used to derive the GT DSMs.

For our evaluation, 5 subregions from each of the

datasets are considered. In each subregion, a set of 6 images

is considered in order to allow a tractable pairwise analysis.

This gives a set of 30 ordered pairs for each subregion. Im-

ages in each set span a small time interval (same day or

some days apart) to avoid seasonal changes that could hin-

der the study.

We tested with two different matching algorithms in the

S2P pipeline (MGM[10] and GANet [28]) to show that

the presented improvements are rather independent of the

used method. In order to evaluate the performance of the

different approaches two metrics were considered [4, 3]:

(a) Completeness (COMP): Proportion of evaluated pixels

where the altitude of the computed map differs from the

GT less or equal than z tol = 1m. (b) Accuracy as the

Median Absolute Error (MAE) between computed and GT

maps considering only the pixels that have valid informa-

tion in both maps.

5.1. Analysis of the pair selection strategy.

To analyze the usefulness of the simulation for pair se-

lection, we study if the simulation proxy ranks the pairs in a

better way than the commonly used heuristics [11]. This is

done by comparing the reconstructed DSMs against the GT.

Table 1 presents the correlation results for the pair rank-

ings given by the heuristic (described in Section 3) and the

presented simulation proxy, compared to the rankings ob-

tained by evaluating the true reconstructions. The analy-
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Bad Invalid Totalbad = 1 - COMP

Region 20º heuristic Cylinder City 20º heuristic Cylinder City 20º heuristic Cylinder City

OMA 203 -0.19 (0.91) 0.68 (<0.01) -0.08 (0.71) 0.25 (0.03) 0.69 (<0.01) 0.63 (<0.01) 0.15 (0.13) 0.30 (0.01) 0.09 (0.26)

OMA 247 -0.36 (1.00) 0.78 (<0.01) -0.13 (0.82) -0.05 (0.64) 0.30 (0.01) 0.26 (0.03) -0.20 (0.93) -0.01 (0.53) -0.28 (0.98)

OMA 251 -0.41 (1.00) 0.72 (<0.01) -0.13 (0.81) 0.12 (0.21) 0.50 (<0.01) 0.43 (<0.01) -0.05 (0.63) 0.19 (0.10) -0.10 (0.75)

OMA 287 -0.40 (1.00) 0.68 (<0.01) -0.08 (0.68) 0.00 (0.50) 0.47 (<0.01) 0.46 (<0.01) -0.21 (0.91) 0.00 (0.50) -0.03 (0.56)

OMA 353 -0.44 (1.00) 0.74 (<0.01) -0.14 (0.86) 0.29 (0.01) 0.66 (<0.01) 0.65 (<0.01) -0.09 (0.74) 0.12 (0.19) -0.10 (0.78)

JAX 156 -0.07 (0.71) 0.68 (<0.01) 0.17 (0.10) 0.08 (0.28) 0.24 (0.03) 0.38 (<0.01) 0.07 (0.31) 0.38 (<0.01) -0.01 (0.54)

JAX 165 -0.08 (0.73) 0.72 (<0.01) 0.20 (0.08) 0.08 (0.29) 0.31 (0.01) 0.37 (<0.01) 0.28 (0.02) 0.35 (<0.01) 0.39 (<0.01)

JAX 214 -0.10 (0.76) 0.58 (<0.01) 0.14 (0.17) 0.14 (0.17) 0.26 (0.03) 0.41 (<0.01) 0.19 (0.09) 0.28 (0.02) 0.30 (0.01)

JAX 251 -0.06 (0.68) 0.70 (<0.01) 0.16 (0.11) 0.05 (0.35) 0.32 (0.01) 0.44 (<0.01) 0.28 (0.02) 0.43 (<0.01) 0.31 (0.01)

JAX 264 -0.10 (0.77) 0.58 (<0.01) 0.07 (0.29) 0.07 (0.31) 0.28 (0.02) 0.38 (<0.01) 0.17 (0.10) 0.35 (<0.01) 0.02 (0.43)

MVS 001 0.28 (0.02) 0.80 (<0.01) 0.60 (<0.01) -0.22 (0.95) 0.44 (<0.01) 0.65 (<0.01) 0.45 (<0.01) 0.27 (0.02) 0.37 (<0.01)

MVS 002 0.36 (<0.01) 0.86 (<0.01) 0.63 (<0.01) -0.11 (0.80) 0.43 (<0.01) 0.64 (<0.01) 0.65 (<0.01) 0.79 (<0.01) -0.11 (0.80)

MVS 003 0.30 (0.01) 0.88 (<0.01) 0.58 (<0.01) -0.25 (0.97) 0.41 (<0.01) 0.64 (<0.01) 0.43 (<0.01) 0.15 (0.13) 0.53 (<0.01)

MVS 004 0.28 (0.02) 0.86 (<0.01) 0.57 (<0.01) -0.21 (0.94) 0.40 (<0.01) 0.62 (<0.01) 0.54 (<0.01) 0.30 (0.01) 0.48 (<0.01)

MVS 005 0.17 (0.11) 0.75 (<0.01) 0.48 (<0.01) -0.26 (0.97) 0.37 (<0.01) 0.59 (<0.01) 0.45 (<0.01) 0.38 (<0.01) 0.00 (0.49)

Table 1. Analysis of the pair rankings given by the heuristic and the simulation compared to the rankings given by the true recon-

structions. For a given metric each cell shows the Kendall-tau correlation and its p-value. For example, in the cell corresponding to

Bad/Cylider/OMA 203, the ranking by metric Bad of the pairs from that region (metric computed comparing the DMSs against the GT)

and the ranking by metric Bad for the cylinder based simulation, have a Kendall-tau correlation of 0.68 with p-value < 0.01. The water

and vegetation pixels were masked out for this analysis. Cells highlighted in bold correspond to correlations with p-value < 0.05

sis is repeated for each of the error metrics (Bad, Invalid

and Totalbad). For a given metric each cell in the table

shows the Kendall-tau (KT) rank correlation coefficient and

its corresponding p-value [15, 1]. Simulations are made on

both scenes shown in Figure 3 (i.e. Cylinder and City).

As mentioned in Section 3, the errors of a stereo recon-

struction are comprised of Bad and Invalid pixels. While

the Bad pixels are more related to the orientation of the

views, Invalid pixels have a strong relation to the geome-

try of the scene (e.g. occlusions are related to the contents

and the spatial relation of the objects in the scene). Results

on Table 1 show that for the simulation with the Cylinder

scene, there is a significant correlation between the rank-

ings for both the Bad and Invalid metrics on simulations

using the Cylinder and City scenes. This simple scene cor-

rectly captures the main error components given the view

orientations and can rank the pairs in a similar way as with

the real images. In particular, the simulation on the Cylin-

der scene presents a strong correlation for the Bad metric,

which is mostly related to the views and not to the scene.

Bad pixels are mostly related to the view orientations and

not to errors in the matching step and the simple Cylinder

scene allows to observe these errors independently of prob-

lems that a more complex scene could introduce. In the

case of the Invalid metric, the Cylinder has still a positive

and significant correlation but the City scene, with a more

complex structure, represents better the inter-occlusions of

a urban scene.

From Table 1 we see that the simulation based pair se-

lection rightly predicts the best ordering in relation with the

Bad and the Invalid number of pixels, but is less conclu-

sive for the number of Totalbad pixels. We shall note that

Bad and Invalid are antagonistic metrics. A large angle be-

tween views reduces the uncertainty for the triangulation

while causes large occluded regions. This antagonistic re-

lation and the dependence on the scene layout explains that

the correlation for Totalbad with the ideal ordering is not as

strong as the correlation of its components. We posit that

simulating using an adequate layout adapted to each par-

ticular scene (a priori unknown), would improve this cor-

relation. Despite this limitation, the results show that the

pair selection method using a very simple simulation model

(Cylinder) gives good results in mean, as illustrated in Fig-

ure 6, and works better than the currently used heuristic

method.

The experiments show that it is possible to develop a bet-

ter (founded) pair selection strategy than the currently used

heuristic [11]. The simulation tool allows to consider all

the possible configurations of incidence and angles between

views, related to the two error types mentioned in Section 3.

Overall, the correlation of the heuristic strategy with the dif-

ferent metrics is rather disappointing, except for the case of

the MVS sets, on which it was fine-tuned [11]. This seems

to indicate that the existing heuristic miss some relevant

cases. For instance, note that in Figure 4 the heuristic of 20º

preference for the angle between views [11] is confirmed

by the first plots. But the simulation reveals that as the in-

cidence angle of one of the views grows, it is preferable to

have the other view near the nadir even if the angle between

views moves away from 20º. Less error is found when the

secondary view has a similar azimuth to the reference (that

is, moving from the reference to the nadir). A secondary

view near the nadir in the same azimuth as the reference

does not increase the occlusions and has maximum resolu-
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Figure 5. Progressive integration of DSMs for region JAX 156.

Completeness (top) and MAE (bottom) evolution when integrat-

ing a growing number of DSMs. Purple curve corresponds to an

integration by the median and an oracle ordering. Curves in blue,

orange and green correspond to the C1, C2 and C3 configurations

of the pipeline respectively. Red curve corresponds to an imple-

mentation of the method in [24]. Refer to the text for a complete

description.

tion as it minimizes the foreshortening. That view will be

better than one 20º apart from the reference with different

azimuth (e.g a view to a side of the reference with same

zenith angle).

The simulation can be used as a pre-computed mapping

to estimate the expected completeness and select the pairs

in such a way as to minimize the 3D reconstruction error.

The analysis of the simulation results shows that a simple

scene as the Cylinder can be used to order the pairs.

5.2. Analysis of the end­to­end performance.

In order to assess the end-to-end effects of the presented

contributions (pair selection and DSM integration) the fol-

lowing configurations of the pipeline were tested: (C1) Se-

lection by the 20º heuristic, integration by median, as in

the current S2P pipeline, (C2) Selection by simulation as

proposed in section Section 3, integration by median, (C3)

selection by simulation, integration by iterative bilateral fil-

tering as presented in Section 4. Regarding the iterative bi-

lateral filtering, the shown results use a decreasing sigma

for the height range of [2.5, 2.0, 1.5, 1, 0.5], spatial sigma

of 6 and color sigma of 20% of the gray level range.

Figure 5 illustrates the performance change on one re-

gion of the dataset when the contributions of this work

are introduced in the pipeline (results for other regions are

Figure 6. Incremental results between configurations C1, C2 and

C3 (see text). For each region in the datasets, the top 5 DSMs are

integrated and the resulting DSM compared to the GT. Left: C2

- C1 (pair selection by simulation vs. heuristics), Center: C2 -

C1 (integration by bilateral filter vs. integration by the median).

Right: C3 - C1 (both improvements vs. the original baseline

pipeline). Note how each contribution increases the global per-

formance.

available in the supplementary material). The graphs show

the behavior of the two metrics—completeness and median

of the absolute error—for the region as the number of in-

tegrated DSMs is increased according to different ordering

criteria. Purple curve depicts an integration with the median

and an “oracle” ordering based on the actual completeness

computed with an available altitude GT. In the oracle order-

ing, the next DSM is selected to maximize the completeness

of the integration up to the moment. This almost optimal

ordering illustrates the common situation where the com-

pleteness peak is achieved with the DSMs from a few good

pairs and the inclusion of more DSMs degrades the aggre-

gated result. These “toxic” DSMs are the result of bad im-

age pairs. The oracle puts these bad DSMs at the end of the

ordering. Blue, orange and green curves correspond to the

C1, C2 and C3 configurations respectively. In the example

of Figure 5 the introduced methods enhance the complete-

ness and the accuracy allowing to achieve better results with

fewer DSMs. Considering, for example, the first five se-

lected DSMs, the selection by the simulation is closer to the

ideal selection by the oracle; integration by iterated bilateral

filtering adds another performance boost that surpasses the

peak performance of the integration by the median.

This trend is general for the ensemble of the datasets as

depicted in Figure 6, which shows, for all the tested regions

(dots in the figure), the variation in the reconstruction met-
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COMP MAE

Selection 5/30 Matching method DSM Integration Jacksonville Omaha Buenos Aires All Jacksonville Omaha Buenos Aires All

20º Heuristic MGM Median 0.700 0.811 0.720 0.744 0.306 0.231 0.285 0.274

By simulation MGM Median 0.733 0.811 0.715 0.753 0.225 0.227 0.284 0.245

By simulation MGM Bilateral 0.747 0.829 0.732 0.770 0.199 0.180 0.255 0.212

20º Heuristic GANet Median 0.695 0.832 0.723 0.750 0.373 0.232 0.306 0.304

By simulation GANet Median 0.725 0.830 0.718 0.758 0.296 0.246 0.307 0.283

By simulation GANet Bilateral 0.736 0.838 0.731 0.769 0.275 0.228 0.287 0.263

Table 2. Results for the whole satellite pipeline on the tested data sets for configurations C1, C2 and C3. The results are the average of

the metrics on the datasets. In all cases the comparison is against the GT and using the best five pairs chosen either by the heuristics or by

the simulation tool. Note how the integration by bilateral filter improves the completeness (COMP) over the median approach both when

using the MGM or the GANet matching methods. The same behavior is observed for the Median of the absolute differences (MAE).

Figure 7. An example of results for a region from the Jacskonville dataset. From right to left the first 3 columns show the reconstruction

using the best 5 DSMs and the configurations: (C1) Selection by the 20º heuristic, integration by median, (C2) Selection by simulation,

integration by median, (C3) selection by simulation, integration by iterative bilateral filtering. All results use the MGM stereo matcher.

Last column graphically compares the completeness difference between (C3) and (C1): blue color are correctly reconstructed pixels (height

error < 1m) by (C3) and badly reconstructed by (C1); red color are badly reconstructed pixels by (C3) and correctly reconstructed by

(C1). Note that the improvements –in blue– prevail and are concentrated on the edges of the structures, with the exception of an upper right

region with vegetation.

rics when the presented improvements are introduced into

the pipeline. The three configurations defined before (C1,

C2 and C3) are considered: C1 is the baseline, C2 changes

the selection of pairs with respect to C1, and C3 changes the

integration step with respect to C2. Figure 6 shows the error

metrics change considering (C2-C1), (C3-C2) and (C3-C1)

to evaluate the contribution of each proposed improvements

in the global performance. The boxplots show that each

contribution produce a consistent improvement in the re-

constructions both in completeness and accuracy.

As mentioned in Section 4, the presented bilateral fil-

tering integration method is related to [24]. The method,

hereafter called bilateral median (BM), was implemented

in order to compare it with our proposal. Figure 5 com-

pares, for a given image, the integration evolution with the

BM (red) and with the bilateral filtering (green), using the

same parameters. BM exhibits very good results with the

first few DSMs but falls behind bilateral filtering integration

as the number of DSMs increase. This evolution is similar

for all the tested regions (results for other regions are in the

supplementary material). While color range and spatial reg-

ularization are common to both methods, the ability to take

into account the height range with decreasing sigmas is key

to integrate the best of all available DSMs. Note that the

implementation and parameter values for the BM method

might differ from the actual method in [24].

Table 2 summarizes the results obtained for configura-

tions C1, C2, and C3, averaged by site. Performance gain

is mainly due to the integration by the bilateral filter. Fig-

ure 6 shows that the contribution of the selection is positive

in mean, in spite of the fact in Table 2 that for some sites

the simulated based selection is not optimal. Both contri-

butions combined improve the overall performance of the

pipeline in terms of completeness and accuracy and this ob-

servation persists regardless of the matching method used

(MGM or GANet). Figure 7 shows that the completeness

improvements of the integration method are concentrated

on the borders of the structures like buildings. This con-

tributes to a better definition and fidelity to the GT of the

reconstructed 3D structures as seen also in Figure 1.

6. Conclusions and future work

In this paper we present two alternative steps for the

MVS satellite pipelines: the method to select the pairs to be

used and the method to integrate the resulting DSMs. Ex-

periments show that both improve the completeness of re-

constructed DSMs and reconstruction accuracy. The results

are consistent for two different stereo matching methods.

Integration by bilateral filtering systematically attains better

results compared to the classic median integration. The pair

selection based on the results of a simulation has achieved

encouraging results. In the presented approach, the orien-

tation of the views are considered. The tool can be further

improved by including the sun position in the simulation.
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