
Mobile Robot Manipulation using Pure Object Detection

Brent Griffin
Agility Robotics

brent.griffin@agilityrobotics.com

Abstract

This paper addresses the problem of mobile robot ma-
nipulation using object detection. Our approach uses de-
tection and control as complimentary functions that learn
from real-world interactions. We develop an end-to-end
manipulation method based solely on detection and intro-
duce Task-focused Few-shot Object Detection (TFOD) to
learn new objects and settings. Our robot collects its own
training data and automatically determines when to retrain
detection to improve performance across various subtasks
(e.g., grasping). Notably, detection training is low-cost, and
our robot learns to manipulate new objects using as few
as four clicks of annotation. In physical experiments, our
robot learns visual control from a single click of annotation
and a novel update formulation, manipulates new objects
in clutter and other mobile settings, and achieves state-
of-the-art results on an existing visual servo control and
depth estimation benchmark. Finally, we develop a TFOD
Benchmark to support future object detection research for
robotics: https://github.com/griffbr/TFOD.

1. Introduction
Object detection, i.e., predicting bounding boxes and cat-

egory labels for objects in an RGB image, has seen remark-
able methodological advances [7, 50, 51] thanks to an abun-
dance of annotated training and evaluation data in high-
quality datasets [13, 19, 36]. Recently, few-shot object de-
tection [10, 58, 65] has emerged as a critical innovation to
detect new object classes using a limited subset of annotated
examples from existing datasets [28, 56].

Detection also supports many downstream applications
[45, 63, 70]. When changing objects, tasks, or environ-
ments, however, we find that off-the-shelf detectors are less
reliable outside of their initial training setting, causing the
subsequent application to fail. Thus, passive learning is not
enough, especially for robots, where visual experience is
dynamic and interactive [4]. Furthermore, robots that only
use passive data are wasting a critical asset—the ability to
interact with the world and learn from those interactions.

Figure 1. Detection-based Manipulation. Perceiving objects
from camera motion and bounding boxes (right), our robot learns
to grasp the Chips Can in four robot-collected training examples.

To that end, this paper presents ClickBot, a robot that
learns mobile manipulation for new objects and changing
environments using pure object detection (i.e., learning and
perceiving objects using only 2D bounding boxes). Our ap-
proach relies on two primary contributions.

1) Detection-Based Manipulation. We develop a novel
set of detection-based tasks to complete mobile robot
manipulation. Innovations include a novel update for-
mulation to learn visual servo control, motion-based
depth estimation that improves as ClickBot approaches
objects, and active multi-view grasp selection. Using
our approach, ClickBot manipulates unstructured ob-
jects without 3D models using a single RGB camera.
To our knowledge, this is the first work to develop end-
to-end object manipulation entirely from detection.

2) Task-Focused Few-Shot Object Detection (TFOD).
We introduce TFOD to learn detection-based tasks for

561



new objects and settings. Using TFOD, ClickBot au-
tomatically performs tasks, collects data, determines if
new few-shot examples are required, and, if so, directs
annotation toward specific tasks. In practice, TFOD
improves performance for difficult or evolving robot
tasks while reducing overall annotation costs.

We validate our combined approach in a variety of robot
experiments. First, ClickBot learns detection-based visual
control on average in less than 14 s and reduces learn-
ing variability by 65-85% relative to prior visual servo ap-
proaches. Next, ClickBot achieves state-of-the-art results
on the VOSVS Benchmark [16], increasing visual servo
control and depth estimation performance by 16.7% and
25.0% respectively. Finally, ClickBot learns to grasp ob-
jects in clutter (see Figure 1) and cleans up scattered objects
with moving placement locations at 124.6 picks-per-hour.

This paper builds a foundation to guide future research
and innovation for using few-shot detection algorithms in
robotics. However, many researchers do not have a robot or
data to evaluate their algorithms in a robotics setting. Thus,
as a final contribution, we develop a corresponding TFOD
Benchmark. The TFOD Benchmark is configurable for a
variety of few-shot object detection settings, includes eval-
uation across a diverse set of YCB Dataset objects [6] using
standard MS-COCO AP metrics [36], and will guide future
research toward increasingly reliable detection in this new
task-focused setting for robot manipulation.

2. Related Work
Object Detection is a preliminary process for many meth-
ods in our community. Example detection-based methods
include segmentation [21], 3D shape prediction [15], depth
[17] and pose estimation [45, 63], and single-view metrol-
ogy [70], to name but a few. In this paper, we introduce a
novel detection-based method for mobile robot manipula-
tion that similarly operates directly from object detection.

Learning object detection typically requires a large num-
ber of bounding box annotations from a labeled dataset for
training and evaluation [13, 36], with some datasets addi-
tionally focusing on continuous recognition [37] or multi-
view indoor environments [52]. However, static datasets do
not account for new objects and settings in the wild.

Few-Shot Object Detection (FSOD) addresses part of this
limitation by detecting new objects from only a few anno-
tated examples [10]. For evaluation, the first FSOD bench-
mark [28] uses set splits of k = 1, 2, 3, 5, 10 annotated
bounding boxes for 5 few-shot objects on the PASCAL
VOC Dataset [13] and k = 10, 30 for 20 few-shot objects
on the MS-COCO Dataset [36]. Subsequent work [56] re-
vises this protocol by randomly selecting few-shot objects
and annotated examples with an average evaluation over 40
trials with additional results on the LVIS Dataset [19].

Using these prior benchmarks, FSOD has seen rampant
methodological advances. Initial finetuning methods treat
FSOD as a transfer learning problem from a large source do-
main to few-shot objects [10, 56]. Other methods use meta-
learning algorithms to learn from existing detectors and
quickly adapt to few-shot objects, either by using feature
rewieghting schemes [28, 65] or by using model parameter
generation from base classes to efficiently learn few-shot
objects [58]. Other FSOD approaches include a distance
metric learning-based classifier [29], incremental few-shot
learning to reduce training requirements [43, 47], one-shot
detection by matching and aligning target-image-features
with query-image-features [44], plug-and-play detectors to
maintain known category performance while learning new
concepts [67], and an attention-guided cosine margin to mit-
igate class imbalance [2], to name but a few.

However, generating few-shot examples for new objects
or using FSOD to support other applications has drawn
scant attention. One recent work collects new detection
training data by teleoperating a UAV [3], but this ap-
proach uses substantially more training examples than cur-
rent FSOD methods require (k ≫ 30) and does not consider
applications other than detection. On the other hand, one
FSOD method [63] supports viewpoint estimation applica-
tions by developing a unified framework that uses arbitrary
3D models of few-shot objects, but this work only detects
and estimates viewpoints for objects in existing datasets.

To that end, this paper extends FSOD by improving de-
tection for specific application tasks and collecting new
few-shot examples in the wild for new objects and settings
using an approach we call Task-Focused Few-Shot Object
Detection (TFOD). Furthermore, rather than trying to pre-
dict the best set of few-shot examples a priori, we let the
robot and difficulty of each task decide, thereby limiting an-
notation to a few relevant examples. Notably, we use a fine-
tuning FSOD method in our TFOD experiments, but, as we
will show, TFOD is generalizable across FSOD methods.

Visual Servo Control (VS) uses visual data in a servo loop
for robot control. Closed-form VS methods typically relate
image features to robot actuators using a feature Jacobian
[8, 24, 59] with advanced methods learning the feature Jaco-
bian directly on the robot [9, 22, 25]. Closed-form VS can
position UAVs [18, 41] or wheeled robots [38, 40] and ma-
nipulate objects [25, 30, 57]. Although this early VS work
demonstrates the utility of VS, these methods rely on struc-
tured visual features (e.g., fiducial markers or LED panels).

Subsequent VS methods manipulate non-structured ob-
jects using deep learning. Learning VS manipulation end-
to-end can occur entirely on a robot [1, 31, 48] or in
simulation with innovative sim-to-real transfer techniques
[27, 46, 71]. However, all of these end-to-end methods
learn in a fixed workspace and do not address the challenges
of mobile manipulation, which includes moving cameras,

562



changing environments, and dynamic grasp positioning.
To bridge the gap between learned VS and mobile robot

applications, in recent work, we developed mobile VS with
features based on pre-trained video object segmentation
[16]. However, this approach does not learn new objects,
tasks, or environments, which would require a substantial
cost to annotate new segmentation masks [26]. To that end,
this paper develops a novel detection-based approach to mo-
bile VS, which, in comparative experiments, requires less
than 5% the annotation cost while significantly improving
performance. We also develop a new approach to learn VS
using the pseudoinverse feature Jacobian, which, relative to
prior work, learns VS faster and more consistently. Finally,
coupling our mobile VS with TFOD and other tasks lets our
robot learn to locate and manipulate new objects efficiently.

3. Task-Focused Few-Shot Object Detection
We develop an interactive approach we call Task-

Focused Few-Shot Object Detection (TFOD) to collect data
and learn detection for new objects and applications.

3.1. Task and Detection Model

TFOD is generally applicable for any task T and object
detection model D that satisfy the following criteria:

1. T observes n ≥ 1 images {I1, I2, . . . , In}.
2. D(I) outputs a set of bounding boxes with class labels.
3. There are one or more failure criteria F based on D.
4. If F occurs, m ≥ 1 images {IF1 , IF2 , . . . , IFm}

∈ {I1, I2, . . . , In} are saved to log the failure.
5. D can update its output predictions given a set of p ≥ 1

annotated few-shot examples E(IE1
, IE2

, . . . , IEp
).

Using these definitions, the goal of TFOD is to update D
until T is completed without F using the minimum p.

In plain words, as our robot attempts difficult or evolving
detection-based tasks, its detection model can fail. How-
ever, if our robot recognizes a failure (F ), it is a meaningful
opportunity for learning, and our robot saves image data of
the failure for annotation (IF ). After we provide annotation
(E), our robot updates its detection model. Notably, criteria
for F and selecting IF can change depending on the specific
task, and we provide several examples in Section 4.

3.2. Task-Focused Data Collection

Given task T and detection model D, our robot performs
T using D(I1), D(I2), . . . , D(In). If F occurs during T ,
our robot selects one or more representative failure images
IF ∈ {I1, . . . , In} for annotation. For each IF we annotate,
our robot adds it to an aggregate set of annotated few-shot
examples E(IE1 , IE2 , . . . , IEp) that update D. In effect,
these updates prevent F from recurring and let our robot
learn difficult or evolving tasks. Once T completes without
F , our robot goes on to complete others task.

Figure 2. Task-Focused Annotation. ClickBot collects task data
and selects new few-shot examples for tasks requiring better de-
tection, e.g., Find (left), Grasp (middle), and Placement (right).

In practice, unless objects or settings change, our robot
rarely needs an update after D is learned for T . We also find
that sharing few-shot examples in E across related tasks re-
duces the overall number of examples required.

3.3. Few-Shot Annotation

We provide annotation E(IE1 , IE2 , . . . , IEp) using a
custom GUI. After F , a user reviews new failure images IF
saved by our robot. For each IF with task-relevant objects,
the user can drag bounding boxes around each object and
then add the new few-shot example IE to E (see Figure 2).

In practice, annotating a bounding box takes about 7 sec-
onds per object [26]. Also, IF without objects can option-
ally be added to E as a true negative, which generally re-
duces false positives from D, e.g., for a task that searches
for objects. In this work, we only annotate one IF with
task-relevant objects per update, which gives our robot the
opportunity to complete a task using the least annotation.

4. Detection-Based Manipulation
We perform mobile robot manipulation using a novel set

of detection-based tasks. Notably, for objects learned a pri-
ori, our approach also works with standard object detection
and tracking algorithms. To start, our robot needs to find
task-relevant objects for manipulation, i.e., the Find Task.

4.1. Finding Objects for Manipulation

For the Find Task, we use a set of n robot kinematic
poses that moves a camera in the task space. Our robot col-
lects an image at each pose (I1, I2, . . . ) until an object is
found using detection model D, which completes the Find
Task. Our failure criterion F is if our robot collects all n im-
ages without detection, in which case, each image is saved
for few-shot annotation (IF ). Using this process, the Find
Task is typically how our robot first learns new objects.

In practice, after learning and manipulating new objects,
we discontinue the Find Task’s failure criterion F to initi-
ate Sentry Mode. In Sentry Mode, our robot intermittently
uses the Find Task to search for objects but no longer as-
sumes that the absence of detections indicates a false neg-
ative. Thus, our robot finds objects if they are in the task
space without generating unnecessary few-shot examples if
they are absent.

563



4.2. Learning Visual Servo Control from Detection

A key innovation for mobile manipulation is our learned
visual servo controller (VS), which enables our robot to po-
sition itself relative to found objects, i.e., the Servo Task.

Image Features from Detection. To start, we use detection
model D, input image I , and a target object class label l to
define image features s ∈ R2 as

s
(
D(I), l, st−1

)
:=

[
sx, sy

]⊺
, (1)

where bounding boxes with class labels other than l are ig-
nored, st−1 represents s from the previous time step, and
sx, sy denote the two image coordinates of the target ob-
ject’s bounding box center. We use st−1 in (1) for two rea-
sons. First, if there are multiple boxes with label l, we se-
lect the closest match to st−1 for stability. Second, we use
∥s− st−1∥L1

to check if s indicates a physically improba-
ble discontinuity in object position. Finally, if detection of
l is absent at any time step, we temporarily use s = st−1.

Using (1), our failure criteria F for the Servo Task are:

1. A discontinuity ∥s− st−1∥L1
> 150 pixels.

2. Detection of l is absent for 20 consecutive time steps.

If either of these occur, our robot stops the Servo Task and
saves the last input image for few-shot annotation (IF ).

Visual Servo Feedback Control. We use image features s
(1) for our VS feedback error e, which is defined as

e = s− s∗ =
[
sx − s∗x, sy − s∗y

]⊺
, (2)

where s∗ ∈ R2 is the vector of desired feature values. We
also use s∗ to initiate s at t = 0 as s

(
D(I), l, s∗

)
, which

starts VS on the target object closest to the desired position.
Typical VS [8] relates image features s to six-degrees-of-

freedom (6DOF) camera velocity v using ṡ = Lsv, where
Ls ∈ R2×6 is called the feature Jacobian. In this work, we
use a constant s∗ (i.e., ṡ∗ = 0), which, from (2), implies
that ė = ṡ and ṡ = Lsv = ė. Using this relationship, we
find our control input v to minimize e using

v = -L̂+
s e, (3)

where L̂+
s ∈ R6×2 is the pseudoinverse feature Jacobian.

When our robot controls e (3) below a threshold, it is ac-
curately positioned relative to an object and the Servo Task
is complete. In experiments, we use a threshold of 10 pixels
before depth estimation and 5 pixels before grasping.

A New Update Formulation to Learn Visual Control.
It is impossible to know the exact feature Jacobian Ls on
real VS systems [8]. Instead, some VS work estimates Ls

[22, 25] or L̂+
s [16] from observations using a Broyden up-

date. Inspired by [5, (4.12)] in Broyden’s original paper, we

introduce a new update formulation to estimate L̂+
s in (3) as

L̂+
s t+1 := L̂+

s t + α

((
∆x− L̂+

s t∆e
)
∆e⊺

∆e⊺∆e

)
◦H, (4)

where α ∈ R determines the update speed, ∆x = xt−xt−1

is the change in 6DOF camera position since the last update,
∆e = et−et−1 is the change in error, and the element-wise
product with logical matrix H ∈ R6×2 determines which
L̂+
s elements can update. We add H to prevent association

of unrelated elements in v and e (3), which leads to more
consistent and faster learning in comparative experiments.

Our robot actively learns to relate detection to camera
motion for visual control (3) using (4). In plain words,
our robot moves a camera (∆x), observes corresponding
changes in detection-based error (∆e), then updates its
learned motion-detection model (L̂+

s ) based on the dif-
ference between the actual (∆x) and predicted (L̂+

s t∆e)
change in camera position.

In our experiments, we initiate (4) with L̂+
s t=0 = 06×2,

α = 0.5, and H =

[
0 1 0 0 0 0
1 0 0 0 0 0

]⊺
. This choice of

H couples image features sx and sy in e (2) with the x- and
y-axis camera velocities in v (3).

4.3. Estimating Depth from Motion and Detection

After centering the camera on an object using the Servo
Task, our robot estimates the object’s depth using active per-
ception with detection, i.e., the Depth Task.

In recent work, we estimated object depth by comparing
changes in camera pose to changes in detection bounding
box size [17, (9)]. In this work, we improve this estimate
by actively advancing the robot’s camera toward an object
while recalculating the object’s depth using every available
detection D(I1), . . . , D(In) with its corresponding kine-
matic camera pose. Once our robot estimates the object is
within 0.2 m, the Depth Task is complete. Our failure crite-
rion F for the Depth Task is if detection of the object’s label
l disappears, in which case, our robot stops the Depth Task
and saves the last input image for annotation (IF ).

For depth-based grasping, our robot uses the median of
an aggregate set of depth estimates, which consists of the
latest estimate at every 0.05 m of camera motion. Basically,
this approach mitigates any proximity-based detection er-
rors that can occur when the camera is close to an object.

4.4. Grasping with Active Perception and Detection

After estimating an object’s depth, our robot grasps the
object using detection, i.e., the Grasp Task. Similar to other
work, we use a simple visual representation that general-
izes grasping across many novel objects [55] but also use
multiple views to improve grasp selection [42].

564



Figure 3. Grasping from Detection. ClickBot rotates its camera
(left) to find the narrowest detection-based parallel grasp points
(middle) then uses a force-based grasp and lifts the Drill (right).

For active grasp planning, our robot moves its camera
0.16 m above the object’s estimated depth then uses VS to
center the object underneath its gripper. Next, our robot
rotates its camera to find the best fit between the object and
detection bounding boxes. Bounding boxes are rectangular,
so our robot only rotates the camera π

2 radians because 1)
the height at any angle θ is the same as the width at θ + π

2
and 2) the box dimensions at θ and θ + π are the same. As
in the Depth Task, our Grasp Task failure criterion F is if
detection of the object disappears, which causes our robot
to stop and save the last input image for annotation (IF ).
After rotation and detection, our robot uses the box with the
overall minimum height or width to plan its grasp.

Our grasp plan uses an antipodal grasp (i.e., a parallel
grasp closing on two points). Basically, our robot uses the
narrowest set of detection-based parallel grasp points and
grasps at the object’s center for balance (see Figure 3). After
rotating its open gripper to align with the minimum height
or width, our robot lowers its gripper to the object’s esti-
mated depth and applies a force-based parallel grasp. Our
robot then lifts the object while continuing to apply force. If
the gripper fingers remain separated by the object, the grasp
is a success, and our robot releases the object at a goal loca-
tion before returning to the Find Task for other objects.

5. Experimental Results

We validate TFOD and detection-based manipulation
(ClickBot) in a variety of robot experiments with videos
available at https://youtu.be/Bby4Unw7HrI.

5.1. Experimental Setup

Robot and Camera Hardware. We use a Toyota Human
Support Robot (HSR) for our experiments [64]. We detect
objects using HSR’s end effector-mounted wide-angle grasp
camera, which streams 640×480 RGB images at 25 Hz. We
grasp detected objects using HSR’s end effector-mounted
parallel gripper with series elastic fingertips, which have a
135 mm maximum width. HSR’s end effector moves on a
4DOF manipulator arm mounted on a torso with prismatic

0 2 4 6 8 10 12 14

−5

0

5

·10−4

Number of Updates

Pa
ra

m
et

er
V

al
ue

∂y
∂sy
∂x
∂sx

Figure 4. Learned Visual Control L̂+
s Parameter Convergence.

and revolute joints, but the relative pose between the grasp
camera and gripper are constant. We typically point the end
effector at the ground for detection and grasping (see Fig-
ures 1 and 3). For mobility, HSR uses a differential drive
base. HSR’s base also has a torso revolute joint directly
above it, so we can control HSR as an omnidirectional robot
(i.e., 3DOF ground-plane translation and rotation). We use
quadratic programming [53] to command camera velocities
v (3), but any velocity controller is applicable.

Detection Model. For our baseline model, we use Faster
R-CNN [51], which runs in real time and has improved
since its original publication. For reproducibility, we use
the same Faster R-CNN configuration as Detectron2 [61]
with ResNet 50 pre-trained on ImageNet and a FPN back-
bone trained on MS-COCO [61]. In our experiments, we
update our detection model using annotated few-shot exam-
ples E (Section 3), which consists of fine-tuning from the
baseline model for 1,000 training iterations and takes less
than four minutes using a standard workstation and GPU
(GTX 1080 Ti). We also use a relatively high 0.9 confidence
score threshold for detection, which significantly decreases
false positives at the cost of increasing false negatives.

5.2. Learning Visual Servo Control from One Click

ClickBot learns visual servo control (VS) from camera
motion and detection using our new update formulation (4).
For each VS learning experiment, ClickBot starts a motion
sequence, tracks detection changes, and updates L̂+

s after
each motion. Each learning experiments ends when L̂+

s

converges, i.e.,
∥∥∥L̂+

s t+1 − L̂+
s t

∥∥∥
L1

< 10−6.

For camera motion (∆x), ClickBot repeats eight motions
comprising the permutations of {-5, 0, 5} cm across the x
and y axes (e.g., x =-5, y =5). These motions are varied yet
cycle through the initial camera pose for continued learning.

For detection, we use the racquetball from the YCB Ob-
ject Dataset [6]. The racquetball is placed underneath Click-
Bot’s grasp camera and our detection model learns from a
single bounding box (i.e., one click of annotation). Notably,
ClickBot learns VS from detection error changes ∆e (4), so

565



Table 1. Visual Servo Learning Results are from a single con-
secutive set of 10 trials for each update formulation.

Updates Range of L̂+
s Parameter

L̂+
s Update Required Values Learned (·10−4)
Equation Mean Range ∂x

∂sx
∂x
∂sy

∂y
∂sx

∂y
∂sy

ClickBot (4) 13.6 9–21 -6.2– -5.6 0.0–0.0 0.0–0.0 5.4–6.1
VOSVS [16, (11)] 22.5 15–30 -6.1– -5.6 0.0–0.0 0.0–0.0 5.4–8.3
Broyden [5, (4.12)] 31.7 15–76 -6.4– -5.8 -0.2–0.3 -1.0–1.5 5.4–7.2
Broyden [5, (4.5)] 45.8 21–101 -6.5– -5.6 -0.4–0.8 -1.1–2.2 5.5–8.3

Figure 5. Experiment Objects from YCB Dataset. Object sets
left to right are Kitchen, Food, Tool, and Shape. Dimensions span
between 4–470 mm and many objects exhibit specular reflection.

the constant desired values s∗ in e (2) are arbitrary.
In addition to learning VS for our remaining ClickBot

experiments, we perform a single consecutive set of trials to
compare (4) against existing L̂+

s update formulations. No-
tably, two formulas use ∆x⊺L̂+

s t∆e in the denominator and
are undefined for L̂+

s t=0 = 06×2. Thus, for VOSVS [16,
(11)] and Broyden [5, (4.5)], we use VOSVS’s convention

and initiate with L̂+
s t=0 =

[
0 1 0 0 0 0
1 0 0 0 0 0

]⊺
· 10−3.

Results. ClickBot learns the VS model that we use in our
remaining experiments in 13.29 s with 13 Broyden updates.
Immediately afterward, we push the racquetball and Click-
Bot follows it, confirming that the learned visual controller
(3) is a success (see video in supplementary material). We
plot the learned L̂+

s values at each update in Figure 4.
We provide comparative VS learning results in Table 1.

Relative to prior formulations, ClickBot requires 30-60%
the updates and has 15-35% as much overall learned param-
eter variation. Thus, our new update formulation (4) learns
VS faster and more reliably than the prior formulations.

5.3. VOSVS Benchmark

We evaluate ClickBot’s VS and active depth estimation
using the VOSVS Benchmark [16]. This benchmark con-
sists of eight consecutive trials of VS and depth estimation
(DE) on the YCB objects [6] shown in Figure 5. Each trial
starts with three objects supported at 0.0, 0.125, and 0.25 m

Table 2. VOSVS Benchmark Results use a single consecutive set
of trials. Visual Servo (VS) is a success (✓) if a robot moves to
an object for depth estimation (DE). DE is a success if a robot’s
gripper closes on an object without collision.

Support Method
Object Height YCB ClickBot VOSVS [16]

Set (m) Object [6] VS DE VS DE
Tool 0.25 Power Drill ✓ ✓ ✓
Tool 0.125 Marker ✓ ✓
Tool 0.0 Padlock ✓ ✓ ✓
Tool 0.25 Wood ✓ ✓ ✓
Tool 0.125 Spring Clamp ✓ ✓
Tool 0.0 Screwdriver ✓ ✓ ✓
Food 0.25 Chips Can ✓ ✓ ✓ ✓
Food 0.125 Potted Meat ✓ ✓ ✓ ✓
Food 0.0 Plastic Banana ✓ ✓ ✓ ✓
Food 0.25 Box of Sugar ✓ ✓ ✓ ✓
Food 0.125 Tuna ✓ ✓ ✓
Food 0.0 Gelatin ✓ ✓ ✓ ✓
Kitchen 0.25 Mug ✓ ✓ ✓ ✓
Kitchen 0.125 Softscrub ✓
Kitchen 0.0 Skillet with Lid ✓
Kitchen 0.25 Plate ✓ ✓ ✓ ✓
Kitchen 0.125 Spatula ✓
Kitchen 0.0 Knife ✓ ✓ ✓
Shape 0.25 Baseball ✓ ✓ ✓
Shape 0.125 Plastic Chain ✓ ✓ ✓
Shape 0.0 Washer ✓ ✓
Shape 0.25 Stacking Cup ✓ ✓ ✓ ✓
Shape 0.125 Dice ✓
Shape 0.0 Foam Brick ✓ ✓ ✓ ✓

Success Rate (%) 100 66.7 83.3 41.7

Annotations Per Object 3.7 10
Annotation Time Per Object 26 s 540 s

above the ground within camera view. VS is a success if a
robot locates and servos to an object for DE. DE is a success
if a robot advances without collision then closes it’s gripper
on the object without hitting the underlying surface.

We also use the VOSVS Benchmark to evaluate TFOD-
based learning. ClickBot learns new objects for each trial
using the Find, Servo, and Depth tasks from Section 4.
Starting without any annotation, ClickBot’s first few-shot
example E(IE1

) is from an initial Find pose, and ClickBot
returns to the Find Task after any other vision updates.

For each trial object, ClickBot finds it (Find), servos to
it until e < 10 pixels (3) (Servo), descends within an es-
timated 0.2 m (Depth), then closes it’s gripper at the esti-
mated depth. Each object is removed after its first full at-
tempt, i.e., Find, Servo, Depth, and grasp closure without
an update.

Results. We provide comparative VOSVS Benchmark re-
sults in Table 2. ClickBot achieves a perfect VS score
and improves the prior DE success rate from 42% to 67%.
ClickBot is perfect on the Food set but leaves room to im-
prove DE on the Tool and Kitchen sets by 50%.

We also compare annotation time in Table 2. A segmen-
tation mask takes about 54 s to annotate [26], which equates

566



Table 3. Task-Focused Few-Shot Annotation Results are averaged across corresponding trials (individual results in supplementary
material). Clicks are the number of annotated bounding boxes, which each require 7 s (see user study [26]). CPU refers to training time.

Number of Task-Focused Requirements Per Object Class
Few-Shot Examples Generated (E) Annotation Robot CPU

Task-Focused Learning Experiment Find Servo Depth Grasp Total Clicks Time (seconds)
Learning Visual Servo Control 1.0 0.0 N/A N/A 1.0 1.0 7.0 13.3 227
VOSVS Benchmark 1.0 0.9 3.1 N/A 5.0 3.7 26.0 20.2 383
Pick-and-Place with Prior Annotation 0.3 0.3 1.3 2.8 4.5 3.4 23.9 29.1 343
Pick-and-Place in Clutter with Prior Annotation 0.5 0.8 0.0 2.3 3.5 2.7 18.7 23.2 287
Pick-and-Place 1.0 0.8 2.5 3.8 8.0 6.0 42.0 51.4 615
Pick-and-Place in Clutter 1.0 2.0 4.3 3.3 10.5 7.5 52.5 67.3 811

to VOSVS using 540 s of annotation per object. On the
other hand, ClickBot uses a simpler bounding box-based
representation with task-focused annotation, which equates
to 26 s of annotation per object, a 95% reduction.

We provide detailed TFOD results in Table 3. ClickBot
averages 5 updates per trial with more few-shot examples
for Depth than Find and Servo combined. A primary goal of
TFOD is to focus annotation on difficult tasks, so we are en-
couraged that ClickBot automatically identifies and directs
annotation to the task that requires the most improvement.

5.4. Pick-and-Place in Cluttered Environments

We evaluate ClickBot’s end-to-end manipulation by
adding pick-and-place to the VOSVS Benchmark for a new
set of consecutive trials. First, we add the full Grasp Task
(Section 4.4) after VS and DE for the Tool and Food sets.
Notably, HSR cannot physically grasp some Kitchen and
Shape objects, e.g., because they are too heavy (Skillet with
Lid) or too low to the ground (Washer). After grasping,
ClickBot also attempts to place objects in a bin. For evalua-
tion, Grasp is only considered a success if ClickBot moves
the object without dropping it and then releases it in the bin.
Finally, as an added challenge, we repeat all of the consec-
utive pick-and-place trials in a cluttered environment.

We also use these pick-and-place trials to test two abla-
tive TFOD configurations. For the first ablative configura-
tion, we modify ClickBot to start with prior annotation from
Section 5.3 for the non-cluttered pick-and-place trials. Sub-
sequently, any new annotation is also included when learn-
ing pick-and-place in clutter. For a second ablative config-
uration, we remove TFOD and ClickBot only uses the prior
annotation. For this configuration, ClickBot also uses a 0.1
confidence score threshold to increase detection likelihood.

Results. We provide ablative pick-and-place results in Ta-
ble 4. The standard configuration achieves the best clut-
tered Grasp and pick-and-place rate of 88% (see two re-
sults in Figures 1 and 6). Considering the learning results
in Table 3, we attribute the performance difference of the
standard configuration over its ablative counterparts to hav-
ing the most few-shot examples in clutter, which improves
task performance for that particular setting. Nonetheless,
the standard configuration uses less than a minute of anno-

Table 4. Pick-and-Place Results with the Tool and Food Sets from
the VOSVS Benchmark. All results use a single RGB camera.

Annotation Success Rate (%)
Method Prior TFOD VS DE Grasp

VOSVS Benchmark for Tool and Food Sets
VOSVS [16] Yes No 100 50 N/A
ClickBot No Yes 100 75 N/A

Tool and Food Sets with Pick-and-Place Added
ClickBot without TFOD Yes No 92 75 50
ClickBot with Prior Yes Yes 100 100 75
ClickBot No Yes 100 100 75

Tool and Food Sets with Pick-and-Place in Clutter
ClickBot without TFOD Yes No 75 67 58
ClickBot with Prior Yes Yes 100 100 69
ClickBot No Yes 100 100 88

tation per object, which is approximately the same amount
of time required to annotate a single segmentation mask and
much less than the time required to generate a 3D model.

Across all tasks and setting in Table 4, using TFOD im-
proves performance. Both ClickBot configurations using
TFOD were perfect for VS and DE regardless of clutter.
As in Section 5.3, ClickBot primarily requests annotation
for tasks that require improvement, particularly when us-
ing prior annotation, which focuses most new annotation on
grasping. Notably, Grasp-focused annotation can also im-
prove detection performance in other tasks, such as DE.

5.5. Pick-and-Place with Dynamic Locations

We perform qualitative experiments to evaluate Click-
Bot’s mobile manipulation with dynamic placement loca-
tions. For dynamic placement, ClickBot performs a sec-
ond Find Task using a new set of placement class labels
(e.g., Bin or Person). Once a placement location is detected,
ClickBot releases the grasped object at that location.

We also use these experiments to demonstrate the modu-
larity of ClickBot tasks. Using detection with HSR’s RGBD
head camera, ClickBot now creates a map for grasp and
placement objects during the Find Task. This map effec-
tively replaces the Depth Task while all other tasks remain.

Results. For our first dynamic pick-and-place experiment,
we scatter cups for grasping and bins for placement across
the floor. ClickBot learns to grasp a cup after two few-shot
examples and learns to place it in a bin after two more (we

567



Figure 6. Experimental Results. For pick-and-place in clutter (top), ClickBot uses motion and detection to estimate the spring clamp’s
depth (left) and active detection-based grasping to place it in a bin (right). In dynamic pick-and-place (bottom), ClickBot uses detection
with its head camera to map and grasp scattered objects (left) and then similarly discovers a suitable placement location (right).

Table 5. Task-Focused Few-Shot Object Detection Benchmark
evaluation uses MS-COCO AP metrics and k few-shot examples.

Method k AP AP50 AP75 APs APm APl
1 14.1 19.9 17.2 0.0 32.9 22.8

ClickBot 2 18.3 24.3 22.5 0.0 32.1 27.7
4 35.0 46.0 42.0 1.7 57.4 39.0

show this result in Figure 6, bottom). We attribute four-shot
dynamic pick-and-place to removing the Depth Task, which
offsets annotation on the new placement-based Find Task.

For our second experiment, ClickBot learns to retrieve
thrown cups and return them to a moving person using eight
more few-shot examples (see Figure 2 right).

As a final demonstration, ClickBot places scattered cups
in specific bins that match colors. As an added challenge,
we move the bins after each placement. ClickBot places all
nine cups in their correct bin at a rate of 124.6 picks-per-
hour. To our knowledge, there is no precedent for this rate
of vision-based mobile robot manipulation in the literature.

5.6. Task-Focused Few-Shot Detection Benchmark

ClickBot’s performance will improve with future few-
shot object detection methods. Thus, we are introduc-
ing the Task-Focused Few-Shot Object Detection (TFOD)
Benchmark to help guide innovation. The TFOD Bench-
mark is configurable for k = 1, 2, 4 annotated bounding
boxes across 12 YCB [6] object classes, and our test set
includes challenging examples in cluttered settings. The
TFOD Benchmark makes robot-collected data and corre-
sponding annotations publicly available for research, which
enables object detection researchers to evaluate their meth-
ods in this new task-focused setting for robot manipulation.

Results. We provide baseline TFOD results in Table 5,
which averages our fine-tuning approach (Section 5.1)
across ten consecutive trials (per-object baseline results in
supplementary material). We see opportunity for future ob-
ject detection innovation across all settings, especially for
small objects (APs) and one- or two-shot detection.

6. Conclusions

We develop a new method of mobile manipulation based
on object detection. To our knowledge, our robot is the first
to manipulate objects using detection alone. Furthermore,
our robot collects data as it performs tasks and, if it rec-
ognizes a detection error, automatically selects a new few-
shot example for annotation to improve performance. In
this way, our robot avoids many vision-based errors while
adapting to changing objects, tasks, and environments.

We evaluate our approach using a variety of experiments.
First, our robot learns a novel visual servo controller from
detection in 13.3 s. Furthermore, we show in repeat trials
that our visual servo formulation learns faster and more reli-
ably than alternative approaches. Using learned visual con-
trol with detection-based depth estimation, our robot also
achieves state-of-the-art results on an existing visual servo
control and depth estimation benchmark. Next, our robot
learns to grasp objects in clutter using a single RGB camera
with as few as four few-shot examples, achieving an overall
pick-and-place rate of 88%. This result is on par or better
than recent state-of-the-art methods [42, 46, 55, 66], which
all use an RGBD camera in a fixed workspace. Notably,
we can optionally configure our approach for an RGBD in-
put, which our robot uses to clean up scattered objects with
moving placement locations at over 120 picks-per-hour.

In conclusion, our experiments show that our RGB-
based approach to mobile manipulation works if few-shot
annotation is acceptable to learn new objects and settings.
In addition, our approach can supplement RGBD-based ap-
proaches or substitute when full 3D sensing is unavailable.

In future work, we will expand our approach to accom-
modate new challenging tasks (e.g., manipulation across
multiple cluttered rooms). Future innovations in object de-
tection will help us achieve these results. Thus, we are re-
leasing a new object detection benchmark that enables fu-
ture detection work to evaluate and improve performance in
a challenging robotics setting. We also plan to release future
additions for this benchmark in new application areas.

568



References
[1] Pooya Abolghasemi, Amir Mazaheri, Mubarak Shah, and

Ladislau Boloni. Pay attention! - robustifying a deep vi-
suomotor policy through task-focused visual attention. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019.

[2] Ashutosh Agarwal, Anay Majee, Anbumani Subramanian,
and Chetan Arora. Attention guided cosine margin to over-
come class-imbalance in few-shot road object detection. In
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV) Workshops, 2022.

[3] Saif Alabachi, Gita Sukthankar, and Rahul Sukthankar. Cus-
tomizing object detectors for indoor robots. In IEEE Inter-
national Conference on Robotics and Automation (ICRA),
2019.

[4] Jeannette Bohg, Karol Hausman, Bharath Sankaran, Oliver
Brock, Danica Kragic, Stefan Schaal, and Gaurav S.
Sukhatme. Interactive perception: Leveraging action in per-
ception and perception in action. IEEE Transactions on
Robotics (TRO), 2017.

[5] C. G. Broyden. A class of methods for solving nonlin-
ear simultaneous equations. Mathematics of Computation,
19(92):577–593, 1965.

[6] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel,
and A. M. Dollar. Benchmarking in manipulation research:
Using the yale-cmu-berkeley object and model set. IEEE
Robotics Automation Magazine, 2015.

[7] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European Confer-
ence on Computer Vision (ECCV), 2020.

[8] F. Chaumette and S. Hutchinson. Visual servo control. i. ba-
sic approaches. IEEE Robotics Automation Magazine, 2006.

[9] F. Chaumette and S. Hutchinson. Visual servo control. ii.
advanced approaches [tutorial]. IEEE Robotics Automation
Magazine, 2007.

[10] Hao Chen, Yali Wang, Guoyou Wang, and Yu Qiao. Lstd: A
low-shot transfer detector for object detection. AAAI Confer-
ence on Artificial Intelligence (AAAI), 2018.

[11] X. Deng, Y. Xiang, A. Mousavian, C. Eppner, T. Bretl, and
D. Fox. Self-supervised 6d object pose estimation for robot
manipulation. In IEEE International Conference on Robotics
and Automation (ICRA), 2020.

[12] Guoguang Du, Kai Wang, Shiguo Lian, and Kaiyong Zhao.
Vision-based robotic grasping from object localization, ob-
ject pose estimation to grasp estimation for parallel grippers:
a review. Artificial Intelligence Review, 2021.

[13] Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christo-
pher K. I. Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes challenge: A retrospective. In-
ternational Journal of Computer Vision (IJCV), 2015.

[14] Zhibo Fan, Yuchen Ma, Zeming Li, and Jian Sun. Gen-
eralized few-shot object detection without forgetting. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021.

[15] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh
r-cnn. In IEEE/CVF International Conference on Computer
Vision (ICCV), 2019.

[16] Brent Griffin, Victoria Florence, and Jason J. Corso. Video
object segmentation-based visual servo control and object
depth estimation on a mobile robot. In IEEE Winter Con-
ference on Applications of Computer Vision (WACV), 2020.

[17] Brent A. Griffin and Jason J. Corso. Depth from camera
motion and object detection. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021.

[18] N. Guenard, T. Hamel, and R. Mahony. A practical visual
servo control for an unmanned aerial vehicle. IEEE Trans-
actions on Robotics (TRO), 2008.

[19] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A
dataset for large vocabulary instance segmentation. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[20] Guangxing Han, Yicheng He, Shiyuan Huang, Jiawei Ma,
and Shih-Fu Chang. Query adaptive few-shot object de-
tection with heterogeneous graph convolutional networks.
In IEEE/CVF International Conference on Computer Vision
(ICCV), 2021.

[21] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. In IEEE International Conference on
Computer Vision (ICCV), 2017.

[22] K. Hosoda and M. Asada. Versatile visual servoing with-
out knowledge of true jacobian. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 1994.

[23] Hanzhe Hu, Shuai Bai, Aoxue Li, Jinshi Cui, and Liwei
Wang. Dense relation distillation with context-aware aggre-
gation for few-shot object detection. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2021.

[24] S. Hutchinson, G. D. Hager, and P. I. Corke. A tutorial on
visual servo control. IEEE Transactions on Robotics and
Automation (TRO), 1996.

[25] M. Jagersand, O. Fuentes, and R. Nelson. Experimental eval-
uation of uncalibrated visual servoing for precision manipu-
lation. In International Conference on Robotics and Automa-
tion (ICRA), 1997.

[26] Suyog Dutt Jain and Kristen Grauman. Predicting suffi-
cient annotation strength for interactive foreground segmen-
tation. In IEEE International Conference on Computer Vi-
sion (ICCV), 2013.

[27] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry
Kalashnikov, Alex Irpan, Julian Ibarz, Sergey Levine, Raia
Hadsell, and Konstantinos Bousmalis. Sim-to-real via sim-
to-sim: Data-efficient robotic grasping via randomized-to-
canonical adaptation networks. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019.

[28] Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi
Feng, and Trevor Darrell. Few-shot object detection via fea-
ture reweighting. In IEEE/CVF International Conference on
Computer Vision (ICCV), 2019.

[29] Leonid Karlinsky, Joseph Shtok, Sivan Harary, Eli Schwartz,
Amit Aides, Rogerio Feris, Raja Giryes, and Alex M. Bron-
stein. Repmet: Representative-based metric learning for

569



classification and few-shot object detection. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2019.

[30] Suseong Kim, Hoseong Seo, Seungwon Choi, and H. Jin
Kim. Vision-guided aerial manipulation using a multirotor
with a robotic arm. IEEE/ASME Transactions on Mecha-
tronics, 2016.

[31] Thomas Lampe and Martin Riedmiller. Acquiring visual ser-
voing reaching and grasping skills using neural reinforce-
ment learning. In International Joint Conference on Neural
Networks (IJCNN), 2013.

[32] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz,
and Deirdre Quillen. Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data col-
lection. The International Journal of Robotics Research
(IJRR), 2018.

[33] Aoxue Li and Zhenguo Li. Transformation invariant few-
shot object detection. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2021.

[34] Bohao Li, Boyu Yang, Chang Liu, Feng Liu, Rongrong Ji,
and Qixiang Ye. Beyond max-margin: Class margin equilib-
rium for few-shot object detection. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2021.

[35] Yiting Li, Haiyue Zhu, Yu Cheng, Wenxin Wang, Chek Sing
Teo, Cheng Xiang, Prahlad Vadakkepat, and Tong Heng Lee.
Few-shot object detection via classification refinement and
distractor retreatment. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2021.

[36] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European Conference on Computer Vision (ECCV), 2014.

[37] Vincenzo Lomonaco and Davide Maltoni. Core50: a new
dataset and benchmark for continuous object recognition. In
Proceedings of the 1st Annual Conference on Robot Learn-
ing (CoRL), 2017.

[38] Alessandro De Luca, Giuseppe Oriolo, and Paolo Robuffo
Giordano. Feature depth observation for image-based visual
servoing: Theory and experiments. The International Jour-
nal of Robotics Research (IJRR), 2008.

[39] Pat Marion, Peter R. Florence, Lucas Manuelli, and Russ
Tedrake. Label fusion: A pipeline for generating ground
truth labels for real rgbd data of cluttered scenes. In IEEE In-
ternational Conference on Robotics and Automation (ICRA),
2018.

[40] G. L. Mariottini, G. Oriolo, and D. Prattichizzo. Image-based
visual servoing for nonholonomic mobile robots using epipo-
lar geometry. IEEE Transactions on Robotics (TRO), 2007.

[41] A. McFadyen, M. Jabeur, and P. Corke. Image-based visual
servoing with unknown point feature correspondence. IEEE
Robotics and Automation Letters (RA-L), 2017.

[42] Douglas Morrison, Peter Corke, and Jürgen Leitner. Learn-
ing robust, real-time, reactive robotic grasping. The Interna-
tional Journal of Robotics Research (IJRR), 2020.

[43] A. Opelt, A. Pinz, and A. Zisserman. Incremental learn-
ing of object detectors using a visual shape alphabet. In
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2006.

[44] Anton Osokin, Denis Sumin, and Vasily Lomakin. Os2d:
One-stage one-shot object detection by matching anchor fea-
tures. In European Conference on Computer Vision (ECCV),
2020.

[45] Kiru Park, Timothy Patten, and Markus Vincze. Pix2pose:
Pixel-wise coordinate regression of objects for 6d pose es-
timation. In IEEE/CVF International Conference on Com-
puter Vision (ICCV), 2019.

[46] Ole-Magnus Pedersen, Ekrem Misimi, and François
Chaumette. Grasping unknown objects by coupling deep re-
inforcement learning, generative adversarial networks, and
visual servoing. In IEEE International Conference on
Robotics and Automation (ICRA), 2020.

[47] Juan-Manuel Perez-Rua, Xiatian Zhu, Timothy M.
Hospedales, and Tao Xiang. Incremental few-shot ob-
ject detection. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

[48] Lerrel Pinto and Abhinav Gupta. Supersizing self-
supervision: Learning to grasp from 50k tries and 700 robot
hours. In IEEE International Conference on Robotics and
Automation (ICRA), 2016.

[49] Limeng Qiao, Yuxuan Zhao, Zhiyuan Li, Xi Qiu, Jianan Wu,
and Chi Zhang. Defrcn: Decoupled faster r-cnn for few-shot
object detection. In IEEE/CVF International Conference on
Computer Vision (ICCV), 2021.

[50] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[51] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in Neural Information Pro-
cessing Systems 28 (NIPS), 2015.

[52] Mohammad Reza Loghmani, Barbara Caputo, and Markus
Vincze. Recognizing objects in-the-wild: Where do we
stand? In IEEE International Conference on Robotics and
Automation (ICRA), 2018.

[53] Krishna Shankar, Joel W. Burdick, and Nicolas H. Hudson.
A quadratic programming approach to quasi-static whole-
body manipulation. In Algorithmic Foundations of Robotics
XI, 2015.

[54] Bo Sun, Banghuai Li, Shengcai Cai, Ye Yuan, and Chi
Zhang. Fsce: Few-shot object detection via contrastive pro-
posal encoding. In IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2021.

[55] Mohit Vohra, Ravi Prakash, and Laxmidhar Behera. Real-
time grasp pose estimation for novel objects in densely clut-
tered environment. In IEEE International Conference on
Robot and Human Interactive Communication (RO-MAN),
2019.

[56] Xin Wang, Thomas Huang, Joseph Gonzalez, Trevor Darrell,
and Fisher Yu. Frustratingly simple few-shot object detec-
tion. In In International Conference on Machine Learning
(ICML), 2020.

[57] Y. Wang, H. Lang, and C. W. de Silva. A hybrid visual servo
controller for robust grasping by wheeled mobile robots.
IEEE/ASME Transactions on Mechatronics, 2010.

570



[58] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Meta-
learning to detect rare objects. In IEEE/CVF International
Conference on Computer Vision (ICCV), 2019.

[59] L. Weiss, A. Sanderson, and C. Neuman. Dynamic sensor-
based control of robots with visual feedback. IEEE Journal
on Robotics and Automation, 1987.

[60] Aming Wu, Yahong Han, Linchao Zhu, and Yi Yang.
Universal-prototype enhancing for few-shot object detection.
In IEEE/CVF International Conference on Computer Vision
(ICCV), 2021.

[61] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019.

[62] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. Posecnn: A convolutional neural network for 6d
object pose estimation in cluttered scenes. In Proceedings of
Robotics: Science and Systems (RSS), 2018.

[63] Yang Xiao and Renaud Marlet. Few-shot object detection
and viewpoint estimation for objects in the wild. In European
Conference on Computer Vision (ECCV), 2020.

[64] Takashi Yamamoto, Koji Terada, Akiyoshi Ochiai, Fuminori
Saito, Yoshiaki Asahara, and Kazuto Murase. Development
of human support robot as the research platform of a domes-
tic mobile manipulator. ROBOMECH Journal, 2019.

[65] Xiaopeng Yan, Ziliang Chen, Anni Xu, Xiaoxi Wang, Xi-
aodan Liang, and Liang Lin. Meta r-cnn: Towards general
solver for instance-level low-shot learning. In IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), 2019.

[66] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez,
and Thomas Funkhouser. Tossingbot: Learning to throw ar-
bitrary objects with residual physics. IEEE Transactions on
Robotics (TRO), 2020.

[67] Gongjie Zhang, Kaiwen Cui, Rongliang Wu, Shijian Lu,
and Yonghong Tian. Pnpdet: Efficient few-shot detec-
tion without forgetting via plug-and-play sub-networks. In
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), 2021.

[68] Weilin Zhang and Yu-Xiong Wang. Hallucination improves
few-shot object detection. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021.

[69] Chenchen Zhu, Fangyi Chen, Uzair Ahmed, Zhiqiang Shen,
and Marios Savvides. Semantic relation reasoning for shot-
stable few-shot object detection. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2021.

[70] Rui Zhu, Xingyi Yang, Yannick Hold-Geoffroy, Federico
Perazzi, Jonathan Eisenmann, Kalyan Sunkavalli, and Man-
mohan Chandraker. Single view metrology in the wild. In
European Conference on Computer Vision (ECCV), 2020.

[71] Yiming Zuo, Weichao Qiu, Lingxi Xie, Fangwei Zhong,
Yizhou Wang, and Alan L. Yuille. Craves: Controlling
robotic arm with a vision-based economic system. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019.

571


