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Abstract

We introduce DSAG, a controllable deep neural frame-
work for action-conditioned generation of full body multi-
actor variable duration actions. To compensate for incom-
pletely detailed finger joints in existing large-scale datasets,
we introduce full body dataset variants with detailed fin-
ger joints. To overcome shortcomings in existing genera-
tive approaches, we introduce dedicated representations for
encoding finger joints. We also introduce novel spatiotem-
poral transformation blocks with multi-head self attention
and specialized temporal processing. The design choices
enable generations for a large range in body joint counts
(24 - 52), frame rates (13 - 50), global body movement (in-
place, locomotion) and action categories (12 - 120), across
multiple datasets (NTU-120, HumanAct12, UESTC, Hu-
man3.6M). Our experimental results demonstrate DSAG’s
significant improvements over state-of-the-art, its suitabil-
ity for action-conditioned generation at scale.

1. Introduction

A number of interesting approaches have been proposed
in recent times for controllable synthesis of pose-based hu-
man motion. However, most have focused on generat-
ing fixed duration or single-person actions, often with a
small number (6 60) of action categories [9, 14, 18, 19,
25]. These approaches are generally trained using datasets
sourced via 3D motion capture setups. However, Kinect
sourced 3D action sequences of large-scale datasets [15, 11]

often contain poorly estimated joints and exhibit temporal
incoherence. This affects the quality of action sequences
generated while scaling these models to these datasets. Ob-
taining 3D pose sequences from RGB videos has emerged
as an alternative paradigm which addresses some of the is-
sues mentioned above [6, 19]. Building upon this trend
and seeking to overcome issues mentined above, our work
makes multiple contributions.
• To address the lack of fine-grained joints in the large-

scale NTU-RGBD dataset, we create and employ full
body pose sequences with detailed finger joint repre-
sentations (Sec. 4.1).
• We introduce several crucial improvements to state

of the art approach for large-scale controllable action
generation. Our framework DSAG contains 1) self-
attention modules which improve quality for subtle
motion actions and low frame rate datasets 2) special-
ized temporal processing modules which tackle high
within-class action variance in training data 3) dedi-
cated processing for finger joints at global and local
level for improved realism (Sec. 3).
• DSAG noticeably outperforms existing approaches

across datasets with varying frame rate, global body
movement and action durations (Sec. 5).

Additional details can be found at skeleton.iiit.ac.in/dsag

2. Related Work

Human Motion Synthesis: Among recent deep-learning
based generative approaches, Ping et al. [25] use a stochas-
tically conditioned LSTM along with a novel GCN mod-
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Figure 1: Renderings of action sequences generated by DSAG. Our model generates in-place and locomotory single/multi-actor variable
duration full body sequences. It also scales across datasets containing a large range in frame-rate, joints and actions. The dotted square
shows magnified detail of fingers.

ule to generate 2D skeleton sequences. Action2motion [5]
uses a conditional VAE to generate 3D sequences. The AC-
TOR [19] framework uses a transformer based VAE to out-
put pose parameters of the popular SMPL [16] human mesh
model and generate actions. As with our approach, both
action2motion and ACTOR use a rotation-based pose rep-
resentation which provides stability due to the fixed bone
length. However, training ACTOR is computationally ex-
pensive due to the dense nature of the mesh being opti-
mized. Also, the aforementioned methods generate single
actor sequences for a small number of categories whereas
our approach can generate multi-person actions for large
number of categories

Kinetic-GAN [3] builds upon CS-GCN [24] and em-
ploys a GAN-based latent mapping network to generate sin-
gle actor sequences from a large number of action classes
(94) of NTU-RGBD [15]. Unlike computationally ex-
pensive GCN based methods, MUGL [6] is a lightweight
CNN-only architecture for large-scale, variable duration
and multi-person action generation. Despite its success,
MUGL outputs poor quality generations for full body joint
representations and fails to generalize across datasets. By
incorporating multi-headed self attention in our novel spa-
tiotemporal block (Sec. 3.3.1), DSAG is better equipped at
capturing variable frame rates and intra-class diversity of
different datasets.
Full body pose sequences (with finger joints): Previous
methods [19, 5, 6] do not exhibit realistic finger movement
due to the insufficiently detailed fingers in raw pose rep-
resentations they employ [13, 26, 16]. The introduction
of full body expressive parametric model representations
such as SMPL-X [17], ADAM [12] enable detailed finger
joints. However, these approaches are computationally ex-

pensive. ExPose [2] provides a more efficient alternative,
making it our method of choice for obtaining full body pose
sequences. BABEL [20] contains finger joints. However
the long tailed distribution of samples with respect to action
classes makes it unsuitable for our problem. Existing ap-
proaches report results on coarse body pose models which
lack detailed finger joints and fail to generate sequences
of adequate quality on full body pose sequences. By de-
coupling body and hand components, our approach is more
suited to generate good quality full body pose sequences.

3. Our approach (DSAG)
Problem formulation: We denote an action sequence
associated with a class label c ∈ C as X =
{[X(1), X(2), . . . X(p)]t}, 1 6 p 6 P and 1 6 t 6 T .
Here, P is the maximum possible actors and T is the max-
imum possible temporal action duration. [X(i)]t is the J-
joint pose configuration of i-th person at time step t. Note
that the number of actors (P ) and time steps (t) can vary
within and across action classes. Our objective is to design
a model which stochastically generates a variable duration
action sequence X conditioned on class label c (see Fig. 2).

3.1. Action Sequence Representation

Instead of directly encoding the 3D pose sequence, we
decouple its local and global components [6]. This enables
dedicated representations for pose and locomotion dynam-
ics of the action. To enhance representation quality espe-
cially for actions involving subtle finger movements, we
further decouple the pose tree joints into hand-level joints
(fingers) and rest of the body. In addition, we encode the
number of action timesteps to enable variable-duration ac-
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Figure 2: Architecture of DSAG showing dedicated action sequence components at local level (hand:Xh and body:Xl), global level
(hand:Xg and body:Xw) and action duration t[n]. The local components are encoded using a series of novel ST-blocks (Fig. 3, Sec. 3.3.1).
A series of 1D convolutions with swish [21] activation is used for encoding other components. The decoder components map the latent
representation to the generated class-conditioned action sequence. X1 and X2 represent the actors. The blue and green dots at the torso
of each actor indicate the shared origin of the action sequence’s local component. The red and purple squares represent wrist joints’ 3D
coordinate global trajectories. Refer to Sec. 3 for details.

tion generation. We provide additional details on these
components below.

Local body component (Xl): This is obtained by translat-
ing the root joint of each time step’s kinematic pose tree
to the global origin (Fig. 2). The kinematic pose tree is
represented using joint rotations, which is integrated via
forward kinematics. This avoids problems such as un-
constrained bone length and motion beyond articulation
range. Each joint’s rotation is represented as continuous
6D rotation [27]. We denote local pose sequences com-
prising the action as Xl = {[X(1)

l , X
(2)
l , . . . X

(p)
l ]t} where

[X
(i)
l ]t ∈ RJ×6, i.e. a 6-D rotation representation of J

joints, 1 6 t 6 T . For single-person sequences, the ref-
erence sequence is duplicated P times for consistent pro-
cessing. Also, finger joints are not included within the se-
quences. Instead, they are represented separately.

Global body component (Xg): The global trajectory for
the first actor is comprised of 3D root joint position se-
quence of the action. For other actors, it is represented us-
ing relative displacement of their respective root joints from
the first actor’s counterpart. Let the first actor’s root node
global trajectory be G(1) = [g1, g2, . . .] where gi ∈ R3. Let
the relative displacement sequence for the j-th actor’s root
node (1 < j 6 P ) be D(j) = [d1, d2, . . .] where di ∈ R3.
Thus, the global trajectory for j-th actor’s root node is
G(j) = G(1) +D(j). Note that G(1) and D(j), 1 < j 6 P
together comprise the global component Xg .

Local hand component (Xh): In the raw pose represen-
tation, fingers have more joints (30) than rest of the body

(22). The finger joints tend to have a high degree of spa-
tiotemporal correlation which is often not captured ade-
quately by a monolithic pose representation. Also, finger
joints have a lower degree of freedom compared to body
joints. Therefore, despite the body having a relatively lower
number of joints, gross body dynamics can potentially dom-
inate the action representation, causing finger movements to
be under-represented. To mitigate this effect, we introduce
dedicated representations for hand joints (fingers). Similar
to local body pose, we maintain a local hand pose repre-
sentation Xh. This consists of the wrist rooted finger joint
kinematic tree of each hand translated to global origin. We
denote this component as Xh = {[X(1)

h , X
(2)
h , . . . X

(p)
h ]t}

where [X
(i)
h ]t ∈ R(2×J)×6, i.e. 6-D rotation representation

of J joints of both the hands, 1 6 t 6 T - see Fig. 2.

Global hand component (Xw): Similar to global body
trajectory Xg described previously, we maintain a global
hand trajectory Xw comprising of the 3D wrist joint tra-
jectories. The global 3D positions of two wrist joints (left
wrist and right wrist) of all the actors are concatenated
for each time step to obtain hand trajectory representation
Xw ∈ RT×(2×P )×3.

Temporal Duration (t[n]): The temporal duration of an ac-
tion is represented as a non decreasing sequence. Specifi-
cally, a sequence of length ts is represented as:

t[n] =

{
n

ts−1 if 0 6 n < ts
1 if ts 6 n < T

, where T is the max-

imum possible sequence length. Note that t[n] is a normal-
ized non-decreasing sequence of length T whose values lie
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Figure 3: ST encoding block (see Sec. 3.3.1). Residual convo-
lution (top left, shaded green) is applied to process the spatio-
temporal information. Multi-head self-attention (bottom left, or-
ange) is used to incorporate the global temporal dependency.

in the range [0, 1] (see Fig. 2).

3.2. Conditional Generative Model

Our choice of generative model is an extended version of
VAE known as Gaussian Mixture Variational Encoder (GM-
VAE) [4], where the latent surrogate z is sampled from a
Gaussian mixture model. The action class is used to condi-
tion the generation process (see Fig. 2).

Our approach modifies MUGL [6] which was originally
designed for large-scale, variable duration and multi-person
action generation. MUGL does not generalise across dif-
ferent datasets which contain actions captured at different
frame rates and exhibit high within-class diversity. A chief
reason is that MUGL’s encoder and decoder blocks decou-
ple spatial and temporal components. To mitigate this, we
introduce SpatioTemporal (ST) Blocks (Sec. 3.3.1) which
(i) help represent rapid localized movements involving hand
or leg joints and low frame-rate action sequences better (ii)
help capture subtle movements in joints. MUGL also copes
poorly when additional finger joints are present. Our ST-
Blocks, coupled with our newly introduced dedicated local
and global representations for finger joints, overcome this
shortcoming of MUGL as well. Next, we describe the ar-
chitecture of our model’s encoder and decoder modules.

3.3. Encoder Modules

The encoder modules consist of dedicated architectural
blocks which map each of the action sequence represen-
tation components, e.g. Local body component, Global
body component, Local hand component (Sec. 3.1), to cor-
responding feature representations.

3.3.1 Local Pose Encoders

The Local body component Xl is processed by a series of
ST (spatiotemporal) blocks and then flattened to obtain the
corresponding embedding fl. Similarly, the Local hand
pose sequence Xh is processed by a series of ST blocks and
the flattened to obtain fh.

ST (Spatiotemporal) Block: This block is a novel in-
clusion and provides two key capabilities: tackling large
within-class diversity and enabling precise action represen-
tation for datasets captured at a very low frame rate. The
block consists of three processing stages (Fig. 3). The first
stage is a spatial encoder which takes the action sequence
Xin ∈ RT1×P1×J1×C1 as input. For the sake of simplic-
ity we consider P1 × J1 as a single entity, i.e., consider
J

′

1 = P1×J1. Next, the inputXin ∈ RT1×J
′
1×C1 is mapped

to a more compact, lower dimensional feature representa-
tion Xs ∈ RT1×J2×C2 for each timestep individually, with
J2 < J1 and C2 < C1. Note that the processing focuses
on the spatial components, leaving the timestep dimension
unchanged. The key idea here is to compress each timestep
by removing redundant joint information to representation
an activity.

The second stage is a temporal encoder which processes
Xs ∈ RT1×J2×C2 from previous stage’s output by focusing
on the temporal channel. Xs is transposed and small local
filters of dimension s × 1 are applied at each joint dimen-
sion. Essentially, for each joint component, this procedure
applies the convolution filter within a small temporal neigh-
borhood and captures subtle temporal movements. This is
beneficial for representing very subtle actions (e.g. walk-
ing) and for sequences with very high within-class diver-
sity found in some datasets (e.g. Human3.6M [10]). The
post-convolution result is once again transposed to have the
same channel ordering as Xs. Next, the transposed output
is transformed via a series of 2D convolutions to reduce the
dimensionality along the temporal channel.

The third stage is the Multi-head Temporal Self-attention
(MHTS) block which helps preserve long term global de-
pendencies within the action sequence. The multi-head at-
tentional processing [23] within this block enables efficient
capture of intra and inter timestep correlation. This aspect
is especially crucial for rapid localized movements involv-
ing hand or leg joints (e.g.walking, greeting) and for low
frame-rate action sequences. The MHTS block processes
the feature representations across the temporal dimension
as a feature sequence (Fig. 3) and outputs a richer version
of the sequence Xout ∈ RT4×J2×C2 . In conclusion, the sec-
ond and the third stage of the ST-block learns both the local
and global temporal dependencies to model complex human
motion.
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3.3.2 Global pose and temporal encoders

As with local pose representations, feature representations
fg, fw are obtained corresponding to the global body com-
ponent Xg and global hand component Xh of the action se-
quence (see Fig. 2). However, the processing blocks are
conventional (1D convolutions), reflecting the simpler na-
ture of the global components. Similarly, the variable dura-
tion representation of the action sequence t[n] is subjected
to similar processing to obtain the corresponding represen-
tation fs.

Finally, the component wise representations (local hand
encoding fh, local body component fl, global body trajec-
tory encoding fg , global hand trajectory encoding fw, se-
quence length encoding fs) are concatenated and condition-
ally modulated with action class label c. During training,
the result is transformed via linear layers to generate the pa-
rameters of the variational approximation distribution. A
latent vector z is sampled from a mixture of K gaussian
components and conditionally modulated with class label
c. This representation is transformed via a linear layer to
obtain the conditioned latent vector zc.

3.4. Decoder Modules

Local Decoders: The body decoders contain components
which are symmetrically opposite to the counterparts in the
encoder. Complementary to the ST (spatiotemporal) en-
coder block, the ST decoder block comprises of a multi
head temporal self-attention module, temporal decoder and
spatial decoder block. The local body decoder takes the
conditioned latent representation zc as input and transforms
it via the spatiotemporal decoder blocks to generate the lo-
cal body pose sequence X̃l (see Fig. 2). Similarly, a se-
ries of ST decoder blocks take zc as input to generate the
local hand pose sequence X̃h. The local body pose and
hand pose are concatenated to obtain the full body pose as a
6D rotation representation X̃e ∈ {[X̃(1), X̃(2), . . . X̃(p)]t},
where X̃(i)

t ∈ RJ×6. This representation is transformed
via a forward kinematics module to obtain the full local 3D
joint pose sequence X̃e ∈ {[X̃(1), X̃(2), . . . X̃(p)]t}, where
X̃

(i)
t ∈ RJ×3

Global Trajectory Decoder: This module is responsible
for generating the root trajectory information. It takes the
conditioned latent zc as input and gradually up-samples it
in the temporal dimension. Finally, the generated sequence
is transformed via a linear layer to generate the global tra-
jectory X̃g ∈ RT×J×3. X̃g contains the global root position
of the first person and relative displacements for rest of the
(P − 1) persons. The global trajectory information X̃g is
incorporated into local full pose tree X̃e to obtain the final
generated sequence X̃ . Note that there is no separate global
hand trajectory decoder counterpart. The hand trajectory
encoder merely enriches the action sequence representation

Dataset # Actions # Joints # Sequ- Multi- Loco- FPS Finger
ences person motion joints

NTU-VIBE[6] 120 24 114K 3 3 33 7
NTU-Xpose 104 52 30K 3 3 33 3
HumanAct12[28] 12 24 2K 7 7 13 7
HumanAct12-Xpose[28] 12 52 2K 7 7 13 3
UESTC[11] 40 24 25K 7 7 33 7
Human3.6M[10] 15 32 2K 7 3 50 7

Table 1: A comparative summary of datasets.

with dedicated global wrist movement information during
the encoding process.
Sequence Length Decoder: This decoder transforms zc
into a 1D non-negative sequence S of length T . A cumu-
lative sum sequence is constructed from S to model the
temporal progression. This cumulative sequence is passed
through a sigmoid activation to obtain t̂[n]. The loca-
tion of the first element for which t̂[n] > θs is consid-
ered the length of the sequence t̂s. More precisely, t̂s =
1 + argmin

j
[t[j] > θs], 0 6 j < T where θs is a fixed

threshold.

3.5. Optimization

The loss function for DSAG is a combination of recon-
struction loss and KL-Divergence loss, defined as:

L = (Lrec
local + λglobalLrec

global + λlenLrec
len) + λKLLKL (1)

Here, Lrec
local loss is a combination of losses on local

body component and local hand component, i.e. Lrec
local =

(λhand6D Lhand
6D + λhand3D Lhand

3D ) + (λbody6D L
body
6D + λbody3D L

body
3D ),

where Lhand
6D and Lhand

3D are MAE losses on local hand com-
ponent in 6D rotation space and 3D joint space respectively.
The counterpart losses for local body component are Lbody

6D

and Lbody
3D . Lrec

global is the MAE loss for global body tra-
jectory component. Lrec

len is MAE loss averaged over the
indexed sequence length representation. LKL is the KL-
divergence loss. λKL, λlen, λglobal, λhand6D , λhand3D , λbody6D

and λbody3D are hyperparameters.

4. Experiments
4.1. Datasets (Table 1)

NTU-RGBD-120[15]: This consists of 114,480 24-joint
pose sequences across 120 single and multi-person actions
performed by 106 subjects captured from 32 camera setups.
Since the original skeleton representation in dataset doesn’t
contain dense finger joints and has inconsistent bone length
across the sequence, we obtain 52-joint 3D pose sequences
from RGB video frames using ExPose [2], a state of the art
method for estimating full body pose, including finger artic-
ulation. To create a dataset of sufficient quality for training
generative models, only action sequences where the subject
is facing the camera are considered. Multi-person classes
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involving contact between the subjects are removed. Since
Expose [2] is a frame based method, to mitigate temporal
incoherency, additional refinement is performed by opti-
mizing for temporal smoothness and forcing finger joints to
have a single axis of rotation across each sequence. Finally,
all 94 single person classes and 10 multi-person classes are
considered totalling 30K sequences.

Apart from this dataset, we also use NTU-VIBE
dataset [6]. This dataset contains relatively coarse grained
local pose sequences obtained using VIBE [13], a video-
based pose estimator, on RGB videos from the NTU-RGBD
dataset [15].
HumanAct12[28]: This consists of 1191 sequences across
12 action categories which are mostly performed in-place.
This dataset is challenging due to its relatively lower frame-
rate compared to other datasets. As with NTU dataset, we
use ExPose [2] estimation on the RGB video frames and
refer to the created dataset as HumanAct12-Xpose.
UESTC[11]: This dataset contains 25k 24-joint sequences
from 40 aerobics and exercise actions performed in-place.
For the full body sequences, we use the dataset provided by
Petrovich et al. [19]. We use the official cross-subject split
to separate train and evaluation datasets.
Human3.6M[10]: This dataset consists of 2k 3D human
pose sequences of 32 joints sourced from 5 female and 6
male subjects, 4 different viewpoints and with 15 actions.
Despite the small number of categories, this dataset is chal-
lenging due to very high intra-category diversity in the se-
quences.

We use the available 3D mocap datasets (which lack de-
tailed finger joints) for UESTC and Human3.6M dataset
since RGB video data is not available for full body pose
estimation using ExPose. Additional details regarding the
datasets can be found in Table 1.

4.2. Implementation

The number of ST-Blocks in local encoders and decoders
is set to 2 and the convolutional stride in temporal encoder
component s is set to 3 (Sec. 3.3.1). The number of latent
Gaussian components in GMVAE equals the number of ac-
tion categories in each dataset. We train DSAG using Adam
optimizer with an initial learning rate of 0.015, a learning
rate scheduler with a decay rate of 0.5 and step size 10. For
NTU, UESTC and Human3.6M datasets, we reduce frame-
rate by subsampling the sequence by a factor of 4. During
generation, we apply bicubic interpolation on the timestep
dimension to match the ground truth data’s frame rate. We
omit subsampling for HumanAct12 dataset due to its very
low capture frame rate (Table. 1). While training DSAG
on Human3.6M and UESTC datasets, we remove the local
hand encoder/decoder and wrist joint encoder since these
datasets do not contain a significant number of finger joints.
For HumanAct12 and UESTC, we remove global body tra-

jectory encoder/decoder because these datasets contain only
in-place activities without locomotion. For single person
actions from NTU, we retain only the first person’s gener-
ated sequence. We conduct all experiments on cluster ma-
chines with Intel Xenon E5 2640 v4 and Nvidia GeForce
GTX Ti 11GB GPUs with Ubuntu 16.04 OS, with code
written using python-3.7 and pytorch-0.4.

4.3. Metrics and Evaluation

To quantify the realism and diversity of generated se-
quences, we use five popular generative quality metrics.
The first two – MMD-A and MMD-S – are based on Maxi-
mum Mean Discrepancy [22] and directly computed in 3D
joint space [6, 3]. Empirically, these direct sample space
metrics have been found to correlate better with genera-
tion quality [6]. The other three include Fréchet Inception
Distance (FID) [8], Diversity Score (DS) [5] and Multi-
modality Score (MS) [5]. These metrics use features from
a pretrained skeleton action classifier. As pointed out by
MUGL[6], despite their popularity, these approaches of-
ten correlate poorly with generation quality since the base
classifier used for feature extraction involves pose distort-
ing preprocessing which affects representation quality. To
mitigate this issue, we use CTR-GCN [1], a state-of-the-art
classifier which does not perform any such preprocessing.
We report the absolute difference between the generated and
ground truth DS and MS scores. For all the metrics, smaller
the score, better the generative quality.

To compute performance scores, we uniformly gener-
ate 300 samples per action class for NTU dataset variants
and UESTC. Since Human3.6M and HumanAct-12 datasets
have less samples, we generate same number of samples as
those present in the test set for each class. For comparison
with baseline methods which generate only single person
actions, we train DSAG with replicated single person se-
quences for consistency.

5. Results
We compare DSAG against five representative base-

lines – MUGL [6], ACTOR [19], SA-GCN [25], ac-
tion2motion [5] and VAE-LSTM[7].

The results in Table 2 demonstrate that DSAG outper-
forms state-of-the-art methods across multiple datasets and
quality measures. Comparing the results on Xpose variants
for DSAG and MUGL [6], the benefits of a full body model
and having dedicated representations for local and global
hand components can be clearly seen. This is also evident
from the trends in class-wise FID scores as shown in Fig. 5.
Extending the comparison, the feature enrichment provided
by self-attention module (Sec. 3.3.1) benefits HumanAct12
setting which contains low frame rate sequences. Similarly,
the dedicated temporal module benefits Human3.6M which
contains sequences with high intra-class diversity. These
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NTU-VIBE-Single-Person NTU-Xpose-Single-Person
Model MMD-A MMD-S FID DS MS MMD-A MMD-S FID DS MS

ACTOR[19] 0.87±0.12 0.57±0.09 119.33±15.59 3.19±0.05 1.68±0.11 0.41±0.09 0.30±0.07 131.25±22.26 3.16±0.07 1.04±0.20

MUGL[6] 0.34±0.12 0.17±0.01 152.44±36.61 6.02±0.05 9.85±0.55 0.44±0.08 0.39±0.06 157.29±69.27 4.78±0.05 1.09±0.45

SA-GCN[25] 0.68±0.12 0.43±0.02 179.19±13.29 3.11±0.06 1.58±0.18 0.68±0.06 0.54±0.07 208.82±127.07 6.77±0.10 1.62±0.20

action2motion[5] 0.57±0.11 0.52±0.03 161.12±17.96 2.43±0.03 1.50±0.13 0.57±0.09 0.42±0.09 153.95±22.74 4.18±0.07 0.92±0.20

VAE-LSTM[7] 1.11±0.17 0.54±0.01 127.39±11.82 2.23±0.05 3.23±0.19 0.61±0.21 0.59±0.04 192.37±64.08 5.32±0.51 1.91±0.23

DSAG 0.31±0.14 0.15±0.02 111.58±9.35 2.01±0.07 1.42±0.11 0.23±0.04 0.22±0.03 89.93±19.32 2.28±0.03 0.88±0.22

NTU-VIBE-Multi-Person NTU-Xpose-Multi-Person

MUGL[6] 0.45±0.15 0.36±0.03 145.63±33.28 6.12±0.07 8.54±0.21 0.24±0.03 0.21±0.09 154.79±32.14 6.56±00.09 3.44±0.27

DSAG 0.42±0.17 0.13±0.01 114.53±21.23 3.31±0.02 4.18±0.14 0.15±0.02 0.28±0.03 115.51±26.28 3.20±0.06 2.17±0.34

HumanAct12 HumanAct12-Xpose
Model MMD-A MMD-S FID DS MS MMD-A MMD-S FID DS MS

ACTOR[19] 0.58±0.13 0.22±0.01 89.11±15.05 1.55±0.08 0.19±0.04 0.32±0.10 0.26±0.08 135.26±21.28 2.48±0.05 0.14±0.26

MUGL[6] 0.51±0.12 0.24±0.07 88.98±11.10 1.32±0.04 0.32±0.03 0.41±0.09 0.36±0.04 149.27±56.84 4.11±0.05 0.1.27±0.64

SA-GCN[25] 0.99±0.18 0.25±0.03 105.93±16.33 1.63±0.04 0.34±0.05 0.61±0.10 0.53±0.04 273.62±92.54 5.88±0.16 2.83±0.10

action2motion[5] 0.49±0.14 0.31±0.10 107.40±44.72 0.27±0.04 0.19±0.05 0.44±0.09 0.35±0.06 150.47±23.48 2.44±0.07 0.13±0.03

VAE-LSTM[7] 1.14±0.12 0.50±0.05 114.02±13.18 3.60±0.08 0.14±0.07 0.64±0.09 0.39±0.11 191.28±97.64 4.19±0.13 1.25±0.11

DSAG 0.45±0.02 0.15±0.04 62.51±12.56 0.42±0.06 0.06±0.02 0.23±0.04 0.16±0.04 84.95±8.65 1.83±0.03 0.06±0.04

Human3.6M UESTC
Model MMD-A MMD-S FID DS MS MMD-A MMD-S FID DS MS

ACTOR[19] − − − − − 0.43±0.10 0.32±0.08 91.55±24.37 2.02±0.07 0.63±0.14

MUGL[6] 0.66±0.06 0.39±0.04 355435.23±56273.61 289.32±4.55 33.32±4.55 0.41±0.03 0.39±0.02 84.51±12.78 3.17±0.05 0.21±0.06

SA-GCN[25] 1.47±0.20 1.34±0.06 13881.73±5904.40 41.60±1.30 2.79±0.29 0.59±0.01 0.44±0.01 102.09±20.24 4.43±0.06 0.30±0.08

action2motion[5] 0.57±0.06 0.44±0.03 472879.05±13885.83 175.75±2.10 20.40±0.45 0.37±0.07 0.23±0.05 94.52±21.55 2.32±0.06 0.24±0.12

VAE-LSTM[7] 1.12±0.03 0.80±0.00 11452.63±6973.80 83.82±1.15 6.69±1.19 0.59±0.03 0.48±0.05 95.60±13.76 3.50±0.04 0.24±0.08

DSAG 0.49±0.07 0.24±0.06 518342.21±97481.51 283.18±3.59 29.84±1.18 0.21±0.04 0.19±0.05 77.65±17.17 2.34±0.06 0.12±0.06

Table 2: Model comparison in terms of generative quality scores. See Sec. 5 for details.

Architectural Component Ablation Details MMD-A MMD-S FID DS MS

Use one ST block 0.17±0.04 0.31±0.05 169.24±27.21 6.88±0.03 3.98±0.22

Use three ST blocks 0.16±0.03 0.29±0.05 124.45±27.91 3.15±0.07 3.02±0.41

Spatio-temporal Module Change the order of spatial and temporal block 0.19±0.01 0.31±0.03 129.54±29.21 6.79±0.03 3.24±0.27

Remove self-attention 0.18±0.02 0.29±0.05 156.50±27.04 6.95±0.05 4.29±0.25

Add self-attention before ST Block 0.15±0.04 0.28±0.03 121.95±29.22 3.97±0.03 3.01±0.11

Hand Module Dedicated modules for finger joints absent 0.26±0.05 0.39±0.04 184.82±41.21 6.41±0.09 4.11±0.38

Remove global hand trajectory encoder 0.16±0.03 0.27±0.03 119.36±33.24 3.11±0.04 3.31±0.27

VAE Unimodal Gaussian 0.95±0.07 0.50±0.03 167.26±32.49 6.95±0.05 4.29±0.28

No 3D loss 0.64±0.06 0.39±0.03 179.54±42.09 6.15±0.04 4.11±0.19

Optimization No rotation loss 0.51±0.08 0.37±0.02 186.65±61.32 5.98±0.04 4.53±0.31

No global trajectory loss 0.21±0.02 0.32±0.05 142.61±33.89 4.55±0.03 3.97±0.32

No sequence length loss 0.91±0.05 0.49±0.06 198.22±46.43 6.92±0.08 5.01±0.34

DSAG (multi-person) 0.15±0.02 0.28±0.03 115.51±26.28 3.20±0.06 2.17±0.34

Table 3: Performance scores for DSAG ablative variants.

trends are also reflected in the qualitative comparison pre-
sented in Fig. 4. Since ACTOR [19] requires mesh param-
eters, it cannot be trained on Human3.6M for which only
pose sequences are available. The high intra-class diversity
of Human3.6M poses difficulty in training the action classi-
fier for computing the FID and other feature-based scores,
resulting in unnaturally high values seen in Table 4. Ren-
dered videos, shortcomings of current approach and addi-
tional results can be found in project page.

Latent Embedding Analysis: The availability of multiple
Gaussian latent components enhances modelling capacity
by enabling some components to specialize for action cat-
egories. To characterize the mapping between latent com-
ponents and action classes, we fix the action category and
generate 100 samples per Gaussian component within the
NTU-Xpose-Multi-Person setting. The component with the
least MMD-A score (wrt test data) can be considered to

maximally represent the action category. From the plot in
Fig. 5(b), we see that only a handful of components tend to
maximally represent multiple categories. Most of the com-
ponents specialize for a single category.

Ablations: To examine the impact of design choices (ac-
tion representations , architectural components, loss func-
tions), we computed scores for ablative variants of DSAG
trained on NTU-Xpose-Multi-Person. From the results in
Table 3, we observe that performance degrades in the fol-
lowing settings: (i) too little or too many ST-blocks (ii) ded-
icated representations and modules for wrist rooted joints
are absent (iii) order of spatial and temporal modules within
ST-block is switched (iv) vanilla unimodal Gaussian VAE
is used (v) either of the 3D or rotation loss functions are
removed (vi) the sequence length loss is removed, and gen-
erated sequences are of fixed duration.
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Figure 5: (a) Class-wise FID scores for DSAG and MUGL for all classes of NTU-Xpose-Multi-Person. Inset zoom shows classes for which
finger movement dominates action dynamics. (b) Plot showing distribution of NTU-Xpose-Multi-Person classes in terms of maximally
representative latent Gaussian components (Sec. 5).

6. Conclusion

DSAG is a controllable deep neural framework which
generates full body multi person variable duration action
sequences. Two key design choices enhance DSAG’s scala-
bility - dedicated local and global representations for encod-
ing wrist-rooted joints (fingers) and spatiotemporal trans-
formation blocks with multi-head self attention and spe-
cialized temporal processing. These choices enable DSAG
to accommodate different body joint counts - some with
fine-grained finger joints (24 - 52), a large range in frame
rates (13 - 50 fps), global body movement (in-place, loco-
motion) and action categories (12 - 120), across multiple

datasets (NTU-120, HumanAct12, UESTC, Human3.6m).
The choices also enable improved quality generations, es-
pecially for actions characterized by subtle finger move-
ments. Our experimental results demonstrate superiority of
the proposed framework for action-conditioned fine-grained
human motion synthesis at scale.
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