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Abstract

With the prevalence of CMOS cameras in many com-
puter vision applications, there is an increase in the
appearance of rolling shutter (RS) artifacts in captured
videos. However, existing video super-resolution algo-
rithms assume that the motion is globally consistent in each
video frame and no rolling shutter effect is present. The
problem of video super-resolution for video captured using
RS cameras is challenging as the model needs to learn the
row-wise local pixel displacements and the global structure
of the frame for RS correction and super-resolution, simul-
taneously. Different from existing works, we address a more
realistic problem of joint rolling shutter correction and
super-resolution (RS-SR). We introduce a novel architec-
ture, deformable Patch Attention Network (PatchNet), that
utilizes patch-recurrence property along with deformable
receptive fields to learn the global and local structure of
the video. Specifically, PatchNet leverages bi-directional
motion field in the feature space to extract relevant informa-
tion from neighboring patches using attention mechanism,
and deformable fields using deformable convolutions to
extract local pixel-level information for joint rolling shutter
correction and super-resolution. Our work is the first
to tackle the task of RS correction and super-resolution
on the recently released BS-RSCD dataset. Experiments
on the BS-RSCD and FastecRS datasets demonstrate
that our model performs favorably against various state-
of-the-art approaches. Project details are available at
https://akashagupta.com/publication/
wacv23_patchnet/project.html

1. Introduction
CMOS (Complementary Metal–Oxide–Semiconductor)

camera sensors are predominantly used in mobile devices
largely due to their low cost, reduced power consump-
tion and compact light weight design [18]. Motion blur
and rolling shutter (RS) artifacts are often commonplace in
videos captured using rolling shutter CMOS cameras. Vari-
ous factors, including low shutter frequency, long exposure

JCD [49] + EDSR [25] Patch Attention Network

HR Ground TruthLR Input Frame

Figure 1: Patch Attention Network. We show frame on
the left and zoomed in patch on the right. Top Left: In-
put LR rolling shutter frame (resized to HR frame resolu-
tion). Top Right: Global shutter ground truth HR frame.
Bottom Left: Output of combination of state-of-the-art
RSC method (JCD [52]) and SR method (EDSR [28]).
Bottom Right: Predicted image by Patch Attention Net-
work. It can be observed that the PatchNet model gener-
ates superior results as compared to the cascade approach
using state-of-the-art rolling shutter correction and super-
resolution method.

times, and the movement of the device [20, 33] can cause
motion blur and rolling shutter artifacts. RS cameras cap-
ture each frame by sequentially scanning pixels row by row
as opposed to the global shutter (GS) cameras that capture
all the frame pixels at once. This causes rolling shutter arti-
facts such as skew, wobble or smear if the camera or object
is moving during video capture. Subsequently, as the sensor
gets higher in resolution, the potential for rolling shutter ar-
tifacts increases due to increase in readout time of pixels in
a row [49]. With increasing popularity of CMOS cameras
in various computer vision applications [40, 31, 39, 14],
which require high-quality high-resolution imaging, it calls
for jointly addressing the task of rolling shutter rectification
and spatial super-resolution.

Early works [35, 36] studied the problem of multi-image
super-resolution for images captured from rolling shutter
cameras. In [35], authors assume that one of the images
is free from rolling shutter distortion, and use this image
as reference to estimate the row-wise motion of the other
images for task of super-resolution. In contrast, an ap-
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proach to recover high-resolution (HR) image when all the
images, captured using burst mode, have rolling shutter ar-
tifacts is presented by the authors in [36]. However, these
multi-image based approaches rely on geometric constraints
from multiple views formulating a computationally expen-
sive optimization problem for 6 DoF camera motions.

Availability of large-scale datasets [38, 19, 47, 29, 41, 1]
have greatly facilitated the research in learning based video
restoration techniques. Existing video super-resolution
(VSR) approaches [23, 21, 47, 42, 4, 44] assume that the
camera is global shutter and there are no rolling shutter ar-
tifacts. Consequently, the lack of realistic high-resolution
datasets with RS effect has restricted the development of
learning-based RS correction. Recently, with prevalence of
CMOS sensors, rolling shutter correction has received re-
newed research interest [52, 30]. Authors in [30] proposed
a synthetic dataset (FastecRS) for rolling shutter correction
by sequentially copying a row of pixels from GS images
to obtain RS images. However, it is challenging to obtain
rolling shutter (RS) distorted image and its corresponding
global shutter image.

Addressing this issue, a realistic dataset for rolling shut-
ter correction and deblurring (RSCD) was proposed in [52]
which includes the GS images and their corresponding RS
images for learning based approaches. This new dataset
opens avenue for further research towards a realistic and
more challenging video enhancement problem such as joint
rolling shutter correction and super-resolution. Authors
in [52] also propose a joint correction and deblurring model
(JCD) to rectify the rolling shutter correction along with
deblurring by utilizing deformable convolutional attention
layers. The deformable convolution layers can easily learn
geometric variations in object scale, pose, viewpoint and
deformations due to their flexible kernel operation as op-
posed to the fixed kernel operations (size and stride) in tra-
ditional convolutional layers. The deformable attention in
JCD relies on flow features to learn the displacement field
to correct the rolling shutter effect and deblur simultane-
ously. However, deformable convolution can only obtain
local pixel-level information and does not take into account
the global information available in neighbouring patches.

Motivation. We introduce a novel architecture Patch At-
tention Network (PatchNet) to utilize global as well as local
information to jointly rectify rolling shutter (RS) artifacts
and generate high-resolution frames from a low-resolution
video acquired using RS camera. Specifically, we leverage
the patch recurrence property in the feature space to exploit
the information available in neighbouring patches for the
task of rolling shutter correction and super-resolution. Our
approach is motivated by the observation that small image
patches tend to recur in a captured frames [32, 11, 54, 22]
and using the combination of patch-level features can span a
superior space for super-resolution as compared to bi-linear

interpolation or convolution operations alone [9]. Convo-
lution layers have a fixed kernel size so they cannot lever-
age the information beyond their receptive field [9]. Unlike
convolutional layers, which cannot extract the information
beyond their receptive field [9], Patch Attention Network re-
lies on deformable convolutions and attention mechanism to
extract pixel-level and patch-level information to generate
high-resolution global shutter frames. The attention mech-
anism utilizes bi-directional motion field to extract corre-
lated information from neighbouring patches. Since Patch
Attention Network is jointly learning for rolling shutter cor-
rection and super-resolution, with the help of deformable
fields and correlated neighbouring patches, it is able to gen-
erate superior results as shown in Figure 1.

Contributions. The key contributions of our proposed
framework are summarized as follows.
• We introduce a novel framework PatchNet, Patch Atten-

tion Network, designed to recover high-resolution global
shutter frames form low-resolution rolling shutter video.
Unlike prior related work, we jointly optimize our model
for rolling shutter correction and super-resolution in the
feature space.

• This is the first work to leverage the combination of local
information, using deformable convolution, and motion
field driven global patch-level information from neigh-
bouring patches to recover a high-resolution GS video.

• Our framework demonstrates consistently effective re-
sults on two datasets, BS-RSCD [52] and FastecRS [30]
with better performance over state-of-the-art approaches
due to the joint optimization framework and patch recur-
rence property, thereby also producing finer visual results.

2. Related Work
In this section, we review some recent methods pertain-

ing to video super-resolution, rolling shutter correction, and
later discuss different attention mechanisms in vision tasks.
We show characteristic comparison of our approach against
prior works in RS correction and super-resolution Table 1.
Video Super-Resolution. Several learning-based ap-
proaches have been proposed for video super-resolution
[23, 21, 47, 16] for video with no rolling shutter distortions.
A deep learning based approach is presented in [23], where
the network is trained using the information in the spatial
and temporal dimensions of videos for super-resolution. For
fast video super-resolution, a draft-ensemble approach is
proposed in [27]. The authors in [42, 4] incorporate op-
tical flow estimation models to explicitly account for the
motion between neighboring frames. However, accurate
flow is difficult to obtain given occlusion and large mo-
tions. To account for the motion information, a computa-
tionally lighter flow estimation module (TOFlow) is pro-
posed in [47]. DUF [21] overcomes the problem of esti-
mating accurate optical flow by implicit motion compen-
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sation using their proposed dynamic upsampling filter net-
work. Pyramid, Cascading and Deformable convolution
(PCD) alignment and the Temporal and Spatial Attention
(TSA) modules are proposed in EDVR [44] to incorporate
implicit motion compensation. Though these approaches
leverage optical flow with deformable convolution, they do
not leverage the internal patch recurrence across space and
time for super-resolution.

Rolling Shutter Correction. Classical works rely on mo-
tion estimation to rectify a rolling shutter image. For in-
stance, block matching based approach to estimate global
and local motion is presented in [26]. Another ap-
proach [13] parameterised the camera motion as a contin-
uous curve and estimated the curve parameters by mini-
mizing non-linear least squares over inter-frame correspon-
dences obtained from a KLT tracker. Extension of the
work [13] using inertial measurement is proposed in [24].
Their framework calibrates gyroscope and camera outputs
from a single video capture to effectively correct rolling
shutter artifacts and to stabilize the video. Authors in [37]
utilize prominent curves from the RS image to decipher
the varying row-wise motion. They enforce line desirabil-
ity costs for camera motion estimation as lines can be ren-
dered as curves due to the row-wise scanning in rolling
shutter cameras. For two consecutive RS images, one ap-
proach [53] proposes to estimate depth-map and motion,
by solving Structure-for-Motion (SfM) problem from dense
correspondence, to rectify rolling shutter effect. The prob-
lem of occlusion aware rolling shutter correction problem
for 3D scene is addressed using multiple consecutive frames
by authors in [43]. They model 3D geometry as a layer of
planar scenes. First the depth, camera motion, latent layer
mask and latent layer intensities are estimated jointly. Then
an image formation model is designed using the estimated
values to recover the global shutter image. Recently, a con-
figuration with two cameras with different rolling shutter
directions is utilized to undo the rolling shutter effect and
recover GS image [2].

More recently, an end-to-end deep learning approach for
rolling shutter correction is presented in Deep Unrolling
Network [30] trained using synthetic datasets (FastecRS)
obtained by sequentially copying a row of pixels from GS
images to obtain corresponding RS images. Though these
approaches show impressive performance, one major short-
coming is that they have limited performance for the data in
realistic setting. It is challenging to obtain RS distorted im-
age and corresponding GS image. Another realistic dataset
for joint rolling shutter correction and deblurring (RSCD)
is presented in [52]. The dataset is captured using a beam-
splitter acquisition system. An RS camera and a GS camera
are physically aligned to capture RS distorted blur video
as well as GS sharp video pairs, simultaneously. Both of
these methods leverage optical flow to address the issue

of rolling shutter correction. Joint Rolling Shutter Correc-
tion and Deblurring [52] (JCD) utilizes bi-directional op-
tical flow as compared to Deep Unrolling Network [30].
Additionally, JCD leverages deformable convolution for hi-
erarchical features for task of joint rolling shutter correc-
tion and deblurring. Deformable convolution [9] greatly en-
hances capability of modeling geometric transformation at
pixel level. This property of deformable convolution layers
makes it suitable for RS correction problem. However, for
any super-resolution modeling, local (pixel-level) as well as
global (patch-level) geometric transformation is necessary.
In this work, we leverage the global information, available
in the neighbouring patches using our Patch Attention Net-
work, along with the local pixel-level information using de-
formable convolutions for the task of joint rolling shutter
correction and super-resolution.

Attention Modelling. Attention mechanism has garnered
a lot of research interest in computer vision tasks due to
their learnable guidance ability. Various adaptations of at-
tention mechanism have shown promising results in ob-
ject recognition [3, 6], image generation [48] and image
super-resolution [51]. Recently, different attention mod-
els are proposed for video deblurring [46], video super-
resolution [15] and video interpolation [8]. In [8], atten-
tion is applied channel-wise on concatenated down-shuffled
frames for video interpolation. Authors in [15] explore
attention in latent space for the task of video deblurring
and interpolation. A patch-wise attention network (Patch-
work) is presented in [6] for object detection and segmen-
tation. Patchwork processes only a portion of the fea-
tures for further processing thereby reducing the compu-
tational cost and achieving superior performance. Trans-
former based attention at block-level is also utilized in
[5] to generate high-resolution video. The spatio-temporal
convolutional self-attention is leveraged followed by bi-
directional optical-flow based feed-forward network for fea-
ture learning and then a reconstruction model is used for

Table 1: Characteristic comparison of prior works in
rolling shutter correction (RSC) and super-resolution
(SR). Different from the state-of-the-art approaches, Patch-
Net demonstrates patch-level attention in latent space to ex-
ploit internal patch recurrence and global information along
with pixel-level attention using deformable convolution.

Methods Task Attention
RSC? SR? Pixel? Patch?

DUN [30] X 7 7 7

VSR-T [5] 7 X 7 X
JCD [52] X 7 X 7

PatchNet X X X X
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Figure 2: Overview of the proposed approach. Given a low-resolution input video frames Vi−1,Vi and Vi+1, we extract the
feature representation X corresponding to frame Vi using the encoder network E and the flow features Fp and Ff with respect
to the past frame Vi−1 and future frame Vi+1, respectively. Patch Attention Network M utilizes deformable convolution
and patch-level attention to obtain high-resolution features Z that can recover global shutter image (see sec. 3.2). The high-
resolution feature Z is then used by the decoder network G to produce high-resolution global shutter frames Si.

super-resolution. Unlike this approach, which only tackles
video super-resolution, our patch-level attention is guided
by the flow-features and utilizes deformable convolution
to address rolling shutter correction in addition to video
super-resolution. Our approach specifically performs super-
resolution first in the feature space and then employs gener-
ator model to obtain HR-GS video.

3. Approach
Problem Statement. Given a low-resolution rolling shut-
ter (LR-RS) video, our goal is to rectify the rolling shut-
ter artifacts and generate a high-resolution global shutter
(HR-GS) image. We propose to recover a high-resolution
global shutter video by modelling attention in the feature
space at patch-level. Our hypothesis is that the neighbour-
ing patches in the latent space can help project more infor-
mative patches for the task of rolling shutter correction and
super-resolution. The combination of neighbouring patches
along with their respective optical flow representations can
help synthesize patches in a larger space as compared to
bi-linear interpolation or convolutional layers which has a
fixed geometric structure due to the fixed kernel shape.

Notations. Let the low-resolution rolling shutter video be
denoted by VLR =

[
V1, V2, · · · , VN

]
, with N number

of frames, where Vt ∈ RHI×WI×3 and t denotes the time
step. Let E be the feature encoder for the ith frame, Fp and
Ff be the branches corresponding to the optical flow of cur-
rent frame (Vi) with respect to previous frame (Vi−1) and
future frames (Vi+1), respectively. The output of each net-
work E , Fp and Ff is a feature at different scales extracted
from different layers of the network. Let the encoder rep-
resentation of the the ith frame (Vi) be denoted by X such
that X ∈ RH×W×C . Similarly, let the optical flow features

obtained from the forward and backward flow networks Fp

and Ff , be denoted by Ff and Fp.
We aim to generate a high-resolution global shutter

video denoted by VHR =
[
S1, S2, · · · , SL

]
, where St ∈

RaHI×aWI×3 using the Patch Attention Network M as
shown in Figure 2. Patch Attention Network leverages the
encoder features X, the optical flow features Ff and Fp by
unfolding them into P × P patches and finding correla-
tion between encoder features patches by utilizing motion
fields from forward flow and backward flow patches. To
leverage the patch-recurrence property, we need to obtain
correlated neighbouring patches for each input patch-level
feature. This can be achieved by representing the problem
of finding correlated patches as mapping a query to a set
of key-value pairs in a retrieval problem [12]. In key-value
based retrieval problem, key acts as an unique identifier for
different values and query is matched with various keys to
obtain respective values. In our case, we assume that that
backward flow acts as the key representation (K) for differ-
ent patch values (V) of encoder features, and utilize the for-
ward flow as query (Q) to retrieve correlated encoder fea-
tures value (V). The resultant informative patch representa-
tion is Z which is obtained using key-query attention sim-
ilarity computed with the help of its neighbouring patches.
This representation is utilized by the reconstruction model
G to generate HR global shutter video.

3.1. Feature Extraction
The encoder E is a trainable convolutional neural net-

work which projects the current RS-LR input frame (Vi)
into a latent space such that X = E(Vi), where X ∈
RH×W×C . The forward flow network (Ff ) takes the cur-
rent frame (Vi) and the future frame (Vi+1) to generate for-
ward warped feature, whereas the backward flow network
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Figure 3: Overview of Patch Attention Network. Given the encoder feature X and the motion features Fp and Ff , we first
utilize the deformable attention network D [52] to incorporate motion information at pixel-level and unfold it into P × P
patches to obtain the patch-level encoder feature X̃. Similarly, the motion features Fp and Ff are unfolded into patches of
size P × P , represented by F̃p and F̃f , respectively. The patch-level flow features F̃p and the patch-level encoder feature
X̃ form input to the key-value networks Wk and Wv , respectively. The patch-level flow feature F̃f acts as query input to
Wq to find the correlated features (X̂) from the key-value pair F̃p and X̃. Finally, a super-resolution layer is used to generate
high-resolution features at patch-level Z̃, followed by folding operation to obtain the high-resolution features Z, which is
used to generate high-resolution global shutter frames using generator G as shown in Figure 2.

(Fp) generates the backward warped feature using the cur-
rent frame (Vi) and the past frame (Vi−1). The forward and
backward warped features are given by equations below.

Ff = Ff (Vi+1,Vi) (1)
Fp = Fp(Vi,Vi−1) (2)

The frame representation generated by the encoder E and
the forward and backward warped flow features generated
by Ff and Fp are then used by the Patch Attention Network
M to generate features that can rectify rolling shutter effect
and are utilized to synthesize high-resolution frame.

3.2. Patch Attention Network
We aim to obtain enhanced features to generate a high-

resolution global shutter image. In order to effectively in-
tegrate the information from the flow features (Fp,Ff ) and
encoder feature X, we propose a patch-level attention based
module Patch Attention Network (PatchNet). The Patch-
Net moduleM utilizes deformable convolution and patch-
level attention to extract correlated information from neigh-
bouring patches. Then a super-resolution model S is uti-
lized to produce high-resolution features. Figure 3 presents
the overview of the patch attention used in the PatchNet.
First, we employ a deformable convolution attention mod-
ule D to incorporate the bi-directional motion information
at pixel-level. The deformable attention module fuses the
bi-directional motion information with the encoder feature
and then applies unfolding operation to extract P × P

patches resulting in the feature X̃ of shape P × P × L× C
using the unfolding operation, where L is the total number
of patches such that L = H ∗W/P ∗P . The output feature
X̃ is given by the equation 3.

X̃ = D(X,Fp,Ff ) (3)

Similar to the unfolding operation in module D, we also
divide bi-directional flow features in P × P patches. The
patch-level feature representations of the forward flow fea-
ture and the backward flow feature are represented by F̃f

and F̃p, respectively. To extract patch-level information, we
use three convolutional networks Wq , Wk and Wv to cap-
ture patch-level information with help of bi-directional flow
features. We then generate the query, key and value using
the patch-level encoder features and bi-directional flow fea-
tures. Since, we want to generate high-resolution patches of
the patch-level encoder feature (X̃), we assume the patch-
level backward flow feature Fp and the patch-level encoder
feature X̃ forms key-value pair. Hence, we use the network
Wv to compute the value representation (V) using X̃ and
the network Wk to compute the key representation (K) us-
ing F̃p. We extract the query representation (Q) using the
network Wq with the forward flow features F̃f as input.
The query, key and value representation are computed us-
ing the equations below.

Q = Wq

(
F̃f

)
, K = Wk

(
F̃p

)
, V = Wv

(
X̃
)

(4)
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The patch-level attention is computed by first calculat-
ing the attention maps σ(QTK), where σ is a ReLU acti-
vation function. Then the weighted patch-level features are
extracted by multiplying the attention maps with the value
representation V . The feature obtained after this operation
is denoted by X̂ and given by the following equation.

X̂ = σ
(
QTK

)
V (5)

We then utilize a super-resolution layer S to obtain high-
resolution patch-representation Z̃ using the equation 6.

Z̃ = S
(
X̂
)
= S

(
σ
(
QTK

)
V
)

(6)

Then, unfolding operation is applied to the high-resolution
patch features Z̃ to obtain high-resolution reconstruction
features, Z. These high-resolution reconstruction features
are then utilized to recover the high-resolution global shut-
ter frame Si corresponding to the low-resolution rolling
shutter frame Vi

3.3. GS-HR Video Generation
Our task is to recover the global shutter frame and per-

form super-resolution from a given low-resolution rolling
shutter frame Vi. To this end, we employ a generative
neural network G that transforms the high-resolution fea-
tures obtained from the PatchNet to high-resolution global
shutter frame. The aggregated reconstruction features Z is
a high-resolution features obtained using PatchNet which
are then utilized to generate high-resolution global shutter
frame (Si) corresponding to Vi using the generator model
G, such that Si = G(Z) .

3.4. Loss Function
Our objective function is composed of Charbonnier loss

(Lc) [7] as it helps to preserve edges, perceptual loss (Lp)
for the predicted results VHR to improve perceptual quality
and a total variational loss (Lv) applied to the estimated dis-
placement fields to smooth the forward and backward warp-
ing processes in bi-directional flow networks. The total loss
function (L) is given by:

L = λcLc + λpLp + λvLv (7)

where, λc, λp and λv are the regularization weights for the
loss terms Lc,Lp, and Lv , respectively.

4. Experimental Setup and Results
In this section, we first introduce the benchmark datasets,

evaluation metrics and provide implementation details.
Then extensive experiments are shown to demonstrate the
effectiveness of our proposed approach in recovering high
resolution global shutter videos from low-resolution rolling
shutter frames.

4.1. Datasets and Evaluation Metrics
We evaluate the performance of our approach using pub-

licly available BS-RSCD [52] and synthetic Fastec-RS [30]
datasets which have been used in prior rolling shutter cor-
rection works.

BS-RSCD Dataset. BS-RSCD [52] is a dynamic urban
environment dataset which includes both ego-motion and
object-motion. There are total of 80 short video sequences
with 50 frames each in this dataset. The training set in-
cludes 50 video sequences (2500 image pairs), the valida-
tion set includes 15 sequences with 750 image pairs and the
test set contains 750 image pairs. This dataset is composed
of RS frames along with their corresponding GS frames.
All frames in video sequence are of 640 × 480 resolution.
We down-sample the RS frames, in the dataset to 320×240
to generate low-resolution RS frames for training in all our
experiments.

Fastec-RS Dataset. The Fastec-RS dataset [30] is a syn-
thetic dataset captured using a professional Fastec TS51
high speed global shutter camera. Total of 76 image se-
quence are captured at 2400 fps with a resolution of 640
× 480 pixels in mainly urban environment. Each sequence
synthesizes 34 rolling shutter images to obtain 2584 image
pairs. To synthesize the rolling shutter image, pixels in each
row are copied sequentially from the captured GS images
and down-sampled to the RS frames at 320 × 240 resolu-
tion to generate a low-resolution rolling shutter frames.

Evaluation Metrics. For quantitative evaluation,
we compare three metrics that evaluate different as-
pects of output image quality: Peak Signal-to-Noise Ra-
tio (PSNR) [17], Structural Similarity Index Measure
(SSIM) [45] and Learned Perceptual Metric (LPIPS) [50].

Implementation Details. Our framework is imple-
mented in PyTorch [34]. All the experiments are trained
for 400 epochs with a batch size of 8. We use ADAM [25]
optimizer with initial learning rate of 0.0001 with cosine
annealing scheduler. The loss weights λc, λp and λv are set
to 10, 1 and 0.1 , respectively. The deformable convolution
attention layer is adopted from JCD approach [52] with de-
formable groups as 8. For details on network architecture,
please refer the supplemental material.

4.2. Qualitative Results
We compare our work with combination of state-of-

the-art rolling shutter correction (JCD [52]) and super-
resolution works such as bi-linear interpolation and
EDSR [28] . Figure 4(a) and Figure 4(b) show some ex-
amples of our proposed PatchNet against various base-
lines. For combination of bi-linear interpolation and JCD
approach, it can be noticed that the quality of output image
is poor. It is due to the fact that the bi-linear interpolation is
not learnable when compared to other approaches and hence
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Input LR Image Input Patch Ground TruthJCD + Bilinear JCD + EDSR PatchNet

(a) First column consists of two consecutive low-resolution rolling shutter input frames. Second column and last column are the
input and ground-truth crop of the input frame region marked in gold. As opposed to JCD [52] + bi-linear interpolation, JCD [52]
+ EDSR [28] and PatchNet performs better as they utilize learnable module for super-resolution. PatchNet produces visually
sharper results as it can extract available information from neighbouring patches as opposed to JCD [52] + EDSR [28].

Input LR Image Input Patch Ground TruthJCD + Bilinear JCD + EDSR PatchNet

(b) First column consists of the low-resolution rolling shutter input frame for two videos. Second column and last column are the
input and ground-truth crop of the input frame region marked in gold. As opposed to JCD [52] + bi-linear interpolation, JCD [52]
+ EDSR [28] and PatchNet performs better as it utilizes patch-recurrence property along with deformable convolution. PatchNet
produces visually sharper results as it learns RS correction and SR jointly.

Figure 4: Qualitative results on BS-RSCD. Consecutive frames of a video is shown in (a) and two different videos in (b).

cannot learn the pixel displacement for super-resolution
task. From Figure 4(a), it can be observed that our ap-
proach is able to produce sharp frames with fine details in
text using consecutive frames of a video. Other approaches
tackle the problem of rolling shutter correction and super-
resolution separately and hence cannot exploit the infor-
mation available completely when compared it PatchNet.
Also, as our approach is extracting information by lever-
aging the neighbouring patch information in feature space,
along with deformable attention, it produces visually more
appealing videos. Additional results on frames from two
other videos are shown in Figure 4(b). It can be observed
that the combination of JCD and EDSR generates blurry re-
sults as super-resolution is performed after rolling shutter
correction. Our approach overcomes this issue by jointly

learning rolling shutter correction and super-resolution in
feature space, thereby producing high quality visual frames.
Please refer to supplemental materials for some video ex-
amples generated using PatchNet.

4.3. Quantitative Results
We compare our proposed approach, with patch size

of 8 for patch-attention, against different combinations of
the state-of-the-art approaches for rolling shutter correction
and super-resolution. Quantitative results comparison with
these baselines are shown in Table 2.
• BS-RSCD dataset. For the task of joint rolling shut-
ter correction and super-resolution in BS-RSCD dataset,
the proposed method achieves improvement of 2.32dB in
average PSNR when compared with the best combination
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Table 2: Quantitative results comparison of PatchNet with the state-of-the-art baselines. We compare our approach with
various combination of RSC model followed by an SR model. We demonstrate that PatchNet is able to generate HR global
frames, with LR input, compared to approaches which only perform RSC with HR input (highlighted in red).

Methods BS-RSCD FastecRS
RSC SR PSNR ↑ SSIM ↑ LPIPS↓ PSNR ↑ SSIM ↑ LPIPS ↓

JCD [52] with LR Input

Bi-linear Interpolation 22.74 0.581 0.463 23.87 0.655 0.339
Transposed Convolution 24.15 0.628 0.328 24.12 0.632 0.262

SAN [10] 24.37 0.633 0.305 24.07 0.643 0.281
EDSR [28] 24.94 0.650 0.263 24.67 0.713 0.187

DUN [30] with LR Input

Bi-linear Interpolation 21.64 0.552 0.489 25.34 0.792 0.185
Transposed Convolution 24.02 0.602 0.342 25.88 0.801 0.179

SAN [10] 24.16 0.621 0.322 26.10 0.807 0.165
EDSR [28] 24.58 0.634 0.286 26.43 0.810 0.147

JCD [52] with HR Input 26.42 0.757 0.122 24.84 0.778 0.107
DUN [30] with HR Input 25.14 0.729 0.159 27.00 0.825 0.108
PatchNet with LR Input 27.38 0.793 0.144 27.12 0.811 0.103

Table 3: Impact of patch-size on performance of Patch-
Net on BS-RSCD dataset. It can be observed that the per-
formance of the proposed PatchNet improves with increase
in patch-size with best results for 8× 8 patch size.

Patch Size PSNR ↑ SSIM ↑ LPIPS ↓
2× 2 25.29 0.734 0.165
4× 4 27.24 0.778 0.157
8× 8 27.38 0.793 0.144

of RS correction and super-resolution approaches (JCD +
EDSR). It can also be observed that PatchNet, which takes
LR rolling shutter video input, even outperforms JCD and
Deep Unrolling Net methods which only perform RS cor-
rection using high-resolution input by a margin of 0.98dB
and 2.24dB, respectively. It can be attributed to the patch
information used for the task of joint learning.
• Fastec-RS dataset. Similar trends can be observed for
the performance of our proposed approach on the syn-
thetic Fastec-RS dataset. The state-of-the-art rolling shut-
ter correction approach, JCD, which works better on RSCD
dataset, doesn’t outperform Deep Unrolling Network [30]
even though JCD relies on deformable attention. It could
be due to the use of bi-directional motion estimation used
in JCD which may not be best to model rolling shutter ef-
fect in synthetic dataset. Compared to these methods, our
approach uses lower resolution input and still outperforms
them by generating high-resolution global shutter frames.
It is due to the use of patch-level attention utilized by the
PatchNet along with the deformable attention, which help
learn the motion model better even in the Fastec-RS dataset.

4.4. Ablation Analysis
For the ablation, we study on impact of patch-size on per-

formance of PatchNet and present our findings in Table 3
using BS-RSCD dataset. The performance with patch size
2 × 2 is poor as it is not able to extract global information
from neighbouring patches as the size is too small. We ob-

served the performance of model with patch sizes 8× 8 and
4 × 4 shows a significant improvement over the baselines
(∼2dB gain). We see that the performance increases with
size of the patch size. However, the performance for the
patch size 8×8 is only slightly higher than that of 4×4. This
suggest that our model can perform well even with patch
size of 4× 4 without significant drop in the performance.

5. Conclusion
We present Patch Attention Network (PatchNet) to

recover high-resolution global shutter frames from low-
resolution rolling shutter video. The proposed approach
employs patch-level attention in feature space to ex-
tract global information from neighbouring patches us-
ing the key-query similarity and local information us-
ing deformable convolution. Specifically, the patch at-
tention module obtains correlation maps between neigh-
bouring patches for simultaneous rolling shutter correction
and super-resolution. Our main contribution over exist-
ing approaches is in learning the rolling shutter correction
and super-resolution jointly, which have been treated sep-
arately in the past and leveraging patch-recurrence prop-
erty through attention mechanism. Experiments on stan-
dard datasets show the efficacy of our proposed approach
over state-of-the-art methods.
Limitations and Future work. Until recently, the research
in RS correction and Super-Resolution was limited due to
unavailability of a realistic supervised dataset. With the BS-
RSCD [52] dataset, where images are captured using spe-
cific camera configuration, our model is suitable for images
captured in similar camera settings. One direction would be
to develop models agnostic to camera configuration by in-
corporating specific settings, such as readout and exposure
time, while training the model. Incorporating camera con-
figuration requires additional supervision, along with data
acquisition, and calls for methods to address this problem
in semi-supervised, unsupervised or self-supervised setups.
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