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Abstract

Remote photoplethysmography can provide non-contact
heart rate (HR) estimation by analyzing the skin color vari-
ations obtained from face videos. These variations are
subtle, imperceptible to human eyes, and easily affected
by noise. Existing deep learning-based rPPG estimators
are incompetent due to three reasons. Firstly, they sup-
press the noise by utilizing information from the whole face
even though different facial regions contain different noise
characteristics. Secondly, local noise characteristics inher-
ently affect the convolutional neural network (CNN) archi-
tectures. Lastly, the CNN sequential architectures fail to
preserve long temporal dependencies. To address these is-
sues, we propose RADIANT, that is, rPPG estimation us-
ing Signal Embeddings and Transformer. Our architecture
utilizes a multi-head attention mechanism that facilitates
feature subspace learning to extract the multiple correla-
tions among the color variations corresponding to the pe-
riodic pulse. Also, its global information processing ability
helps to suppress local noise characteristics. Furthermore,
we propose novel signal embedding to enhance the rPPG
feature representation and suppress noise. We have also
improved the generalization of our architecture by adding
a new training set. To this end, the effectiveness of syn-
thetic temporal signals and data augmentations were ex-
plored. Experiments on extensively utilized rPPG datasets
demonstrate that our architecture outperforms previous
well-known architectures. Code: https://github.com/Deep-
Intelligence-Lab/RADIANT.git

1. Introduction
The heart continuously pumps blood through the cap-

illaries and induces periodic cardiovascular pulse through-
out the body. The number of pulses induced in a minute
is known as heart rate (HR). HR estimation is important to
measure a person’s health [21]. It is a primary indicator
of heart-related problems and mental health states ranging
from stress, depression, anxiety, and excitement [21].

The non-invasive HR estimation techniques comprise of

electrocardiogram (ECG), ballistocardiogram (BCG) and
photoplethysmography (PPG). These techniques require
contact with the skin surface and cause discomfort for con-
tinuous HR estimation [61]. Hence, they offer limited appli-
cability for skin-damaged patients, patients suffering from
severe skin infections, exercise monitoring, and neonates
monitoring [21, 29]. In contrast, remote Photoplethysmog-
raphy (rPPG) is a non-contact HR estimation method uti-
lizing non-contact face videos for estimating cardiovascu-
lar pulse. Since, it avoids any contact between sensors and
skin, it can be used in applications where contact-based
PPG methods cannot be used such as, drowsy driver de-
tection [53], deepfake detection [25, 54], face anti-spoofing
[4, 5], micro-expression recognition [16], micro-expression
spotting [20, 17], lie detection [59] and stress monitoring
[49, 38]. In the ongoing SARS-CoV-2 pandemic rPPG can
be used for automated HR estimation and provide support
to the patients requiring urgent and critical telehealthcare.
It motivates us to propose an accurate rPPG-based HR esti-
mation method.

The rPPG method analyzes the variations in the blood
flow volume in the carotid arteries beneath the facial skin
[21]. These variations induce subtle skin color changes im-
perceptible to the human eyes [34]. However, a video cam-
era is capable of capturing these variations. The face videos
acquired in controlled environments provide relevant rPPG
information, resulting in correct HR estimation. However,
in real scenarios, these videos are influenced by noise due
to facial movements, illumination variations [51], and other
artifacts and thus, result in spurious HR estimation [22].

The rPPG-based HR estimation first requires the extrac-
tion of the relevant face region, known as the region of inter-
est (ROI). Usually, the color variations are analyzed in the
ROI and the corresponding signals are referred to as tempo-
ral signals. The temporal signals are obtained by either av-
eraging pixel values in the face ROI [39], or subtracting the
pixel values from the consecutive video frames [9]. Eventu-
ally, the cardiovascular pulse present in the temporal signals
is extracted using domain-specific knowledge. To this end,
[45] and [2] have employed blind source separation (BSS)
and maximum periodicity criteria for HR estimation [45].
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Unfortunately, their HR estimations are erroneous when the
temporal signals contain periodic noise.

Apart from domain-specific knowledge, rPPG-based HR
estimation can be performed using deep learning. For in-
stance, [9, 43] have utilized Convolutional Neural Network
(CNN) based architectures for rPPG estimation. Further,
AND-rPPG [3] have used temporal convolution network for
pulse estimation. Further, a combination of CNN and se-
quential architecture is used in [39] for rPPG estimation.
Unfortunately, the performance of these architectures can
be affected by slight facial movements persisting in small
facial regions, even for a short duration. Such behaviour is
attributed to the local feature encoding of the CNNs [31].
Moreover, the sequential architectures are incompetent to
provide correct HR estimation as these architectures fail to
model long temporal dependencies [13, 37]. These issues
are alleviated by employing dual-stream Transformer archi-
tecture in [30]. However, the background color variations
used for denoising, fail to provide effective noise represen-
tation [32]. Additionally, many features are required by [30]
when temporal signals are extracted using the difference of
frames. The proper training of the corresponding architec-
tures necessitates large-scale datasets to alleviate the prob-
lem of underfitting [7]. Unfortunately, the datasets avail-
able for training have limited training data, which restricts
the applicability of frame difference-based temporal signal
extraction.

We propose a novel rPPG-based HR estimation method,
RADIANT, that is, betteR rPPG estimAtion methoD using
signal embeddIngs ANd Transformer. We obtain the tem-
poral signals by averaging the skin color variations in ROIs
that provides efficient rPPG feature representation allow-
ing convergence over limited training data. Furthermore,
we utilize the Transformer architecture for estimating pulse
as it can learn global context and effectively mitigate local
noise [56]. Our main contributions are:

(1) Our proposed rPPG architecture utilizes Multilayer per-
ceptron (MLP) for projecting the temporal signals into sig-
nal embeddings and the attention processing ability of the
Transformer architecture. Linear projection using MLP
provides the proper learning of relevant feature represen-
tation for rPPG information while the Transformer archi-
tecture effectively performs denoising and cardiovascular
pulse estimation. (2) To mitigate the problem of limited
training data, we explore the possibility of pre-training our
Transformer architecture using synthetic temporal signals
[39] and data augmentation [42]. Both are performed in a
time-efficient manner, and it is observed that they improve
the performance by allowing domain adaptation. (3) Our
experimental results demonstrate that we obtain state-of-art
results on publicly available datasets.

2. Related Works

2.1. Domain knowledge-based rPPG methods

The rPPG-based HR estimation can be performed by uti-
lizing domain knowledge. Such estimation involves the
following steps: ROI detection, spatial filtering, tempo-
ral signal extraction, and pulse signal estimation. Usually,
color variations are employed to define the temporal signals.
Amongst the RGB colors, the green color channel is shown
to be the aptest for rPPG information extraction in [57]. On
the contrary, a chrominance subspace transformation of the
RGB color signals is used for pulse estimation in [10]. Fur-
ther, BSS is used in [45] for pulse estimation. Eventually,
HR is given by the peak frequency in the Fourier power
spectrum of the pulse signal [3]. The above-discussed meth-
ods are incompetent to distinguish pulse signal and noise
because they utilize handcrafted representations to model
noise, and they lack the appropriate supervision to under-
stand the noise attributes induced by facial movements [61].

2.2. CNN and sequential architectures for rPPG

CNN architectures have been used extensively in rPPG-
based HR estimation because they allow feature subspace
mapping with minimal requirement of domain-specific
knowledge. For instance, [27] feeds the time-frequency rep-
resentation of chrominance signals into the VGG15 [50] for
HR estimation. A depthwise separable CNN architecture
is used in [46] for pulse signal estimation from the Spatio-
temporal feature representation of the color variations. Re-
current Neural Network (RNN) is employed by [40] for
modeling time dependencies between the temporal signals
to estimate HR. ETA-rPPGNet [28] utilizes the time do-
main subnet to address the problem of redundant rPPG in-
formation and noise induced by slight facial deformations.
Moreover, the rPPG methods in [9, 35] have utilized end-to-
end architectures for extracting relevant rPPG information
from face videos. The method in [9] feeds the normalized
frame difference into a CNN for HR estimation. Similarly,
encoder-decoder architecture is employed in [41] for learn-
ing noise and rPPG information. Training these huge ar-
chitectures is challenging, and it tends to underfitting over
small-scale datasets [7]. Temporal difference CNN is used
in [36] for capturing temporal color variations and gener-
ating appropriate signal representation. The importance of
synthetic temporal signal generation in rPPG-based HR es-
timation has been explored in [39]. The synthetic signals
can be efficiently generated for pre-training using periodic
sine curves and random noise.

The CNN or sequential architectures require diverse
datasets in considerable quantities to alleviate underfitting
[7]. Further, they fail to learn global information from the
facial regions and fail to model the long temporal depen-
dency [18] if sequential architectures are employed [40].
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2.3. Attention mechanism and Transformer

The Transformer architecture is proposed in [56] for Nat-
ural Language Translation. It models the complex global
contextual dependencies between the words in a sentence
using multi-head attention mechanism. The huge success
of Transformer architecture due to the appropriate model-
ing enables their applicability in various natural language
processing tasks [11, 14, 15]. The applicability of these ar-
chitectures has been further explored for the image classi-
fication task using the Vision Transformer (ViT) [12], and
performance improvements have been examined in this di-
rection. It proliferates the research in unraveling the effec-
tiveness of the Transformer architectures for computer vi-
sion applications [55, 8]. The rPPG-based HR estimation
is no different. It aims to estimate pulse signals from sev-
eral temporal signals, where each temporal signal contains
mainly the pulse signal corrupted by noise. Thus, the pulse
signal results in a strong correlation between the temporal
signals, which the Transformer architecture can easily learn.
For instance, TransPPG proposed in [30] feeds the temporal
signals extracted from frame differences to the Transformer
architecture for estimating the pulse signal. Similarly, [47]
have utilized the Transformer architecture [56] for estimat-
ing pulse signal from facial video.

Kindly note that these estimated pulse signals can be er-
roneous when the corresponding temporal signals contain
significant noise. Furthermore, these methods require large
parameter learning using limited training data for relevant
pulse signal estimation. This situation results in an under-
fitting problem and thereby degrade the efficacy [7].

3. Proposed method

This section presents our proposed rPPG-based HR es-
timation method, RADIANT. Figure 1 shows the flow dia-
gram of our proposed method. Initially, the face region is
identified and divided into multiple ROIs. Subsequently, the
temporal signals are extracted from these ROIs, and chromi-
nance subspace transformation [10] is applied to alleviate
the effects of motion and luminance. Subsequently, an MLP
layer is applied to project the resultant temporal signals into
signal embeddings. Eventually, the Transformer architec-
ture utilizes the signal embeddings for pulse estimation.

3.1. Video Clip Extraction

For HR estimation, the video is divided into multiple
clips. We have utilized a non-overlapping window over the
video clips with a window of 4 seconds for HR estimation.
Such division overcomes loss of information due to lack of
complete pulse signal in a small time interval [28]. The
mean of the HRs estimated for 5 consecutive video clips is
obtained for obtaining the HR for a 20 second video.

3.2. Temporal Signal Acquisition

3.2.1 ROI Extraction

Our first step is to define a fixed ROI that provides rele-
vant rPPG information from an input video clip. The rele-
vant rPPG information is present in the facial skin regions.
Thus, we employ facial landmark points that outline the
boundaries of the face, including its subparts like eyes, lips,
and nose. These landmark points are extracted using the
CLNF Openface 2.2.0 landmark detector [62] for the first
video frame because computing landmark points for each
video frame is time expensive [18]. It provides 68 landmark
points. Since the regions near the eyes tend to be easily in-
fluenced by facial expressions, we avoid them for defining
the ROI [3]. Similarly, the forehead region is avoided as it
is usually covered with hairs to induce noise in the corre-
sponding temporal signals [61]. We mainly use the region
below the eyes containing the cheeks for obtaining the tem-
poral signals. The desired face region containing relevant
rPPG information is obtained by computing the convex hull
of the landmark points: 1) 2, 3, 4, 5, 6 of the left cheek, 2)
12, 13, 14, 15, 16 of the right cheek, 3) 29 of the nose, and 4)
7, 8, 9, 10, 11 of the chin. It is observed in [3] that the face
boundaries are prone to significant temporal variations from
minimal facial deformations. Thus, we employ the morpho-
logical operation to remove the boundary pixels similar to
[62]. For a better visualization, kindly refer to the supple-
mentary material.

We can extract the temporal signal from the entire face
region, but noise-induced in a small facial region affects the
resultant temporal signal. Thus, it is recommended in [18]
to divide the region into smaller ROIs, extracting temporal
signals from those ROIs, and then consolidate the signals
for pulse estimation. Following this similar path, we di-
vide the obtained facial region into small non-overlapping
square blocks of the same size. Amongst the square blocks,
we consider only those square blocks as ROI whose all the
pixels belong to the skin pixels. The skin pixels are de-
tected using the method described in [44]. We have used
the method described in [22] for choosing the optimum size
of our square blocks while alleviating the effect of scale dif-
ference among different faces.

3.2.2 Temporal Signal Extraction

The temporal signal extraction is performed in two steps:
RGB signal extraction and projection into chrominance sig-
nals. The RGB signals are obtained by averaging the pixel
values of the red, green, and blue channels from the face
ROI. Mathematically, the temporal signal rj , denoting the
red color channel signal for jth ROI is given by:

rj =

(∑
k r

k
j,1

pj,1
,

∑
k r

k
j,2

pj,2
, . . . ,

∑
k r

k
j,f

pj,f

)
(1)
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Figure 1. The flow diagram of our proposed method RADIANT.

where, rkj,i refers to the red color channel intensity of the
kth pixel in the jth ROI of the ith frame. Similarly, the
temporal signals gj and bj are obtained from the green and
blue color channel intensities respectively. The total num-
ber of pixels in jth ROI of ith frame is represented by pj,i
and the total number of frames in the video clip is repre-
sented by f . The obtained RGB signals are then passed
through a bandpass filter to obtain the filtered signals as r̃j ,
b̃j and g̃j . Mathematically:

r̃j = ψbp(rj), g̃j = ψbp(gj), b̃j = ψbp(bj) (2)

where, ψbp(·) is a Butterworth bandpass filter of order 4
[60] that suppresses any signal components that correspond
to frequencies outside the HR range (0.7 Hz to 4.2 Hz) [3].

These RGB signals are then projected into chrominance
signals to minimize the noise artifacts and suppress specu-
lar reflections [10] 1. More details on chrominance trans-
formation are provided in the supplementary material. The
resultant temporal signal is filtered using a detrending filter
to mitigate noise due to illumination variations [21].

3.3. Signal embeddings

3.3.1 Temporal signal selection

Assume that (c1, c2, . . . cm) are the temporal signals ob-
tained from m facial ROIs. Kindly note that different video
clip results in a different number of ROIs. That is, the
value of m depends on the input clip. Usually, deep learn-
ing architectures require fixed-size input. Thus, we select

1Code https://github.com/phuselab/pyVHR

n temporal signals amongst the m extracted temporal sig-
nals. The value of n is selected such that each video clip
contains at least n ROIs. For selecting the temporal signals,
we use the observation that some extracted temporal signals
are affected by noise due to facial movements. For instance,
motion caused due to smiling usually affects the temporal
signals obtained from the regions near the lips while leav-
ing the other ROIs unaffected. Thus, we choose those n
temporal signals that are least affected by facial deforma-
tions. To this end, we leverage the intuition that the face
regions with facial movements will have large skin color
variations, resulting in large standard deviation in the ampli-
tude of the extracted temporal signals. Thus, temporal sig-
nals with less standard deviation will provide better rPPG
information. Hence, we select those top-n temporal sig-
nals which have the higher quality scores, where the quality
score corresponding to temporal signal cj is given by:

qualityj =
1

σ(cj)
(3)

where σ refer to the standard deviation operator.

3.3.2 MLP

Even though the chosen temporal signals are least affected
by noise, they can still result in erroneous HR estimation
because they contain noise. Thus, we project the temporal
signals into signal embeddings (e1, e2, . . . , en) of higher
dimensions using an MLP. This projection allows adequate
representation subspace for learning relevant rPPG features
and performing denoising. Furthermore, we will utilize the
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Transformer architecture for pulse estimation. The archi-
tecture consists of multiple Transformer layers that require
input vectors of the same dimensions d. We want to benefit
from effective weight initialization by pre-training with Im-
ageNet [48] dataset. Hence, we have set the dimensions to
768 as the pre-trained weights require the input of size 768.
We utilize a learnable MLP layer with 768 output nodes
for projecting a temporal signal cj into an embedding ej ,
for j = 1, 2, . . . , n. Kindly note that our projection ensures
that rPPG information in an embedding only depends on the
corresponding temporal signal while remaining unaffected
by other temporal signals. The reason for choosing such a
projection is that when an embedding depends on several
temporal signals, then information from a temporal signal
with higher noise can easily affect the embedding, leading
to the incorrect HR estimation [3]. Finally, inspired by the
use of classification token by the architectures in [12, 11],
we have prepended a learnable embedding e0 ∈ R1×d that
learns the feature representation of the pulse signal.

3.4. Pulse signal estimation

3.4.1 Transformer Architecture

Each signal embedding contains a composition of fea-
tures from pulse signal, other physiological parameters, and
noise. Thus, we need to consolidate and filter the rPPG
information from the signal embeddings for correct pulse
signal estimation. To this end, we employ the Transformer
architecture. The Transformer architecture utilizes the self-
attention mechanism for consolidating feature information
from the input components [31]. The self-attention mecha-
nism learns the contextual dependencies between the signal
embeddings, allowing our architecture to learn the corre-
lations for contributing to rPPG information. Subsequently,
the consolidated rPPG features are transformed using a two-
layer MLP [31]. This combination allows the Transformer
architecture to denoise and consolidates rPPG features for
correct pulse signal estimation.

The self-attention mechanism is the building block of the
Transformer. For each signal embedding ej , it computes a
corresponding latent vector zj which is the weighted sum
of all the signal embeddings. Here, zj is of the same di-
mensions as ej . For obtaining these corresponding weights,
the signal embeddings ej are projected into query (qj ∈
R1×dq ), key (kj ∈ R1×dk) and value (vj ∈ R1×dv ) vec-
tors using learnable weights. Alternatively, the signal em-
bedding matrix E ∈ Rn×d containing all the signal embed-
dings is projected into matrices: Q ∈ Rn×dq , K ∈ Rn×dk

and V ∈ Rn×dv corresponding to the queries, keys and
values, respectively. That is,

Q = E ·WQ, K = E ·WK , and V = E ·WV

WQ ∈ Rd×dq , WK ∈ Rd×dk , WV ∈ Rd×dv
(4)

where, WQ, WK and WV are the learnable weights.
The correlations between the signal embeddings are re-

flected by the attention scores obtained by:

SA = softmax

(
Q ·KT√

dq

)
V (5)

where, the dot product between its query and all the keys
is calculated for a given signal embedding. The resulting
value is scaled by the square root of dq followed by a soft-
max operation. The obtained scores associated with each
embedding transform them into a weighted sum of the fea-
tures from all the signal embeddings.

There are multiple relationships among the signal em-
beddings contributing toward rPPG information. For encap-
sulating such relationships, the multi-headed self-attention
(MSA) mechanism is employed by the Transformer ar-
chitectures, as in natural language processing [11] and
computer vision [12] applications. The MSA mecha-
nism transforms the queries, keys, and values into mul-
tiple learned linear projections, corresponding to multi-
ple heads, h, for modeling multiple relationships. Sub-
sequently, independent self-attention computation is per-
formed in the respective heads using the equation 5 result-
ing in SA0,SA1, . . . ,SAh−1. Kindly note that, here SAi

for i = 0, 1, . . . , h− 1 represents the output from ith head.
Finally, for consolidating the information, the output ob-
tained from each head is concatenated and projected into d
dimensional vectors using a learnable matrix WO. That is,
the matrix containing the latent vectors, Z

′
is given by:

Z
′
= [SA0,SA1, . . . ,SAh−1] ·WO, WO ∈ R(h·dv)×d

(6)
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Figure 2. An illustration of a Transformer layer.

The output Z
′

is then fed to a LayerNorm (LN) layer [1]
followed by a two layer MLP with GELU activation func-
tion [24] for feature transformations. A residual connection
is placed after the MLP output. The architecture of a single
Transformer layer is depicted in Figure 2. Kindly note that
there are multiple Transformer layers and the output from a
Transformer layer l is given by:

Zl =MLP (LN (MSA (Zl−1))) +Zl−1, where
Z0 = [e0, e1, . . . , en]

(7)
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Assume that the output of the last Transformer layer
ZL is (z0, z1, . . . ,zn). Among these vectors, the vectors
(z1, z2, . . . ,zn) contain the refined correlations that con-
tribute to the rPPG information. However, the vector z0

contains the pulse information extracted from the correla-
tions learned by the other latent vectors (z1, z2, . . . ,zn).
We use the mean square error loss function during training
between the estimated pulse and the ground truth. It neces-
sitates that the dimensions of the estimated and ground-truth
pulse signal should be the same. Thus, an MLP head is at-
tached to z0 that transforms it into the pulse signal of the
same dimensions as the ground truth.

3.4.2 Pre-training

Transformers show poor generalization capabilities in the
computer vision domain due to the lack of their induc-
tive bias [12]; thus, pre-training is employed to improve
their generalization. Following this, we employ pre-training
in two stages. The first stage performs the pre-training
over ImageNet dataset [48]. While the second stage uses
synthetic temporal signals generated using the method de-
scribed in [39]. For brevity, the synthetic signals are ob-
tained using sine waves. Since the waves should represent
periodic cardiovascular pulses, their frequencies are set be-
tween 0.7 Hz to 4.2 Hz, corresponding to the normal HR
range. In addition, the generated sine waves are superim-
posed with another sine wave simulating breathing rhythm
with periodicity between 5 beats per minute (BPM) to 20
BPM, random step signals and Gaussian noise. It stimu-
lates the noisy variations. Further details are provided in
supplementary material. After pre-training on the synthetic
dataset, we perform fine-tuning on public rPPG datasets.

3.4.3 Data Augmentation

In the rPPG datasets, most samples contain HR ranges from
60 to 90 BPM, resulting in uneven data distribution. Train-
ing on such dataset will make our architecture biased to-
wards samples containing HR in this range. Addressing
this issue [42] have described a novel data augmentation
method comprising temporal upsampling and downsam-
pling of the video for providing proper HR coverage in the
training dataset. Alternatively, temporal signal interpola-
tion can be employed to obtain the same effect, and such
interpolation prevents the time-consuming steps of process-
ing video frames. Thus, we have utilized this technique to
perform our data augmentation. Specifically, we generate
samples with higher HR ranges by downsampling the tem-
poral signals by 2 and 3 times. Similarly, we generate the
samples with lower HR values by upsampling the temporal
signals twice and thrice. Also, we have discarded the aug-
mented samples, whose HR values lie outside the human
HR range of 40− 240 BPM [3].

3.5. Heart Rate Estimation

The raw pulse signal (y) obtained from the last Trans-
former layer is bandpass filtered for removing any signal
components whose frequencies lie outside the normal HR
range. We have applied the bandpass filter ψbp(·) (described
in 3.2.2) over y to obtain the clean pulse signal ỹ. Subse-
quently, the pulse spectrum (PS[freq]) is obtained by ap-
plying Fast Fourier transform (FFT) over the pulse signal ỹ.
Note that PS[freq] is the amplitude of the pulse spectrum
at frequency freq. For a video clip i, the HR is given by:

hri = argmax
freq

PS [freq]× 60 (8)

kindly note that as stated in section 3.1, the HR for a 20 sec-
onds video is obtained by averaging the HR obtained from
the consecutive 5 short video clips. Hence, the final HR
estimate for a 20 seconds video is given by:

hrvideo = mean(hr1, hr2, hr3, hr4, hr5) (9)

4. Experimental Results
4.1. Dataset and Metrics

We have provided evaluation results for the public
UBFC-rPPG [6] and COHFACE [26] datasets. The UBFC-
rPPG dataset consists of facial videos of 2 minutes from 42
subjects. Videos are recorded in a resolution of 640 × 480
in 8-bit RGB format at the frame rate of 30 frames per sec-
ond. We have split the dataset into training and testing sets
with videos from 28 subjects into training set and 14 sub-
jects into the testing set. The COHFACE dataset contains
face videos of 40 subjects alongwith their physiological in-
formation. Each video is of 1 min recorded at 20 frames per
second. For reporting our evaluation results, we have re-
ported mean absolute error (MAE), standard deviation (σ)
and root mean squared error (RMSE) between the ground
truth HR and estimated HR.

4.2. Choice of Training Parameters

We have used Adam optimizer with a learning rate of
3 × 10−4. We have used a batch size of 32 for pre-training
our architecture using the synthetic temporal signals. How-
ever, for fine-tuning, we have used a batch size of 4. We
have performed pre-training and fine-tuning over 20 and 50
epochs, respectively. We have used the mean squared error
loss function for training our architecture.

4.3. Comparative evaluation

We have provided the comparison of our method, RADI-
ANT, with previous rPPG methods on UBFC-rPPG and CO-
HFACE datasets. Note that we have used publicly available
codes and experimental settings for comparisons. Further-
more, we have used the standard training and testing split
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Table 1. Performance evaluation of RADIANT for Average HR
variation per video. All the values are in BPM and all the met-
rics represent better performance if they have lower values.

UBFC-rPPG COHFACE
σ MAE RMSE σ MAE RMSE

[58] 17.89 15.95 11.65 22.30 20.97 25.98
[45] 12.80 06.95 13.60 13.83 08.89 14.55
[10] 05.21 03.21 06.14 11.61 10.15 12.69
[18] 07.00 06.15 07.92 08.10 08.27 11.31
[19] 06.02 05.08 07.42 07.98 08.97 10.84
[33] 08.00 06.54 09.11 11.52 09.31 12.27
[9] 08.73 06.27 10.82 09.01 08.25 14.71
[52] 05.21 04.90 05.89 09.46 08.10 10.80
[47] 08.18 11.28 13.94 11.24 19.66 22.65
Ours 03.45 02.91 04.52 07.41 08.01 10.12

as described in [52, 26] for a fair comparison. Kindly note
that the InstTrans [47] architecture provides HR estimation
heart rate for 100 video frames. Thus, for obtaining HR
from a video clip of the desired duration, we obtain an av-
erage of the HR estimates for multiple smaller video clips,
each of 100 frames. Table 1 shows our results. It indi-
cates that our method outperforms earlier works consisting
of 2SR [58], ICA [45] and chrominance-rPPG [10] because
they have used BSS for estimating the pulse signal. These
techniques are incapable of denoising because they utilize
handcrafted representations to model noise and the lack of
supervision limits their capability to understand the noise
features induced by facial movements [61].

Similarly, our method provides better performance than
AHRE [18] and Fusion-EL [19] because they have also used
BSS for estimating pulse signals which limit their ability
to extract pulse signal attributes. Additionally, they use
the same constraints for denoising the temporal signals ob-
tained from all the face ROIs. However, different face
regions have local noise sources [3]. This issue is miti-
gated by the signal embeddings employed in our proposed
method since the signal embedding from a particular face
region remains unaffected by other facial regions. For the
same reasons as above, we obtain better performance than
deep learning based approaches Deepphys [9], and HR-
CNN [52] due to better representation modeling of physi-
ological sources. Additionally, the aforementioned CNN-
based architectures are affected by the noise induced for a
short duration due to small facial movements. However,
our Transformer-based architecture is able to mitigate such
issues. This behavior is attributed to the global process-
ing capabilities of Transformers. Our method outperforms
META-rPPG [33] because they use Long Short-Term Mem-
ory (LSTM) network for modeling rPPG information, and
it is observed that LSTM architectures are prone to infor-
mation loss for long sequences [13].

The results indicate that our method outperforms

Table 2. Performance evaluation of our proposed method for dif-
ferent number of ROIs.All the values are in BPM

UBFC-rPPG COHFACE
ROIs σ MAE RMSE σ MAE RMSE
8 07.64 05.45 09.39 09.40 11.33 14.72
10 04.99 04.55 06.75 07.67 09.60 12.29
12 03.45 02.91 04.52 07.41 08.01 10.12
14 04.19 03.05 05.19 07.12 10.14 12.39
16 05.00 03.23 05.96 08.04 10.85 13.73

Transformer-based InstTrans architecture [47] because they
utilize difference of frames for obtaining the temporal sig-
nals and a dual-stream architecture for identifying facial re-
gions with significant rPPG information. Thus, it requires
large-scale datasets for overcoming underfitting [7]. More-
over, it has not utilized pre-training for alleviating the effect
of poor inductive bias of the Transformer architecture [12].
In contrast, our efficient temporal signal embeddings, pre-
training, and data augmentation techniques, followed by the
Transformer-based architecture, allows our method to over-
come these issues and provide correct HR estimation.

4.4. Ablation Study

This subsection provides the impact of training parame-
ters on our proposed architecture, RADIANT and the impor-
tance of different components of our architecture. Initially,
we used different numbers of ROIs for pulse signal estima-
tion in our proposed method, and the results are reported
in Table 2. It can be observed that efficacy first improves
when the number of ROIs increases. Increasing the number
of ROIs increases the number of temporal signals, allow-
ing better feature representation learning for the physiolog-
ical signals. Whereas including more facial ROIs will also
cause an increase in noise components, which will affect
the performance of our architecture. Thus, we obtain op-
timal results for 12 facial ROIs and observe a decrease in
performance when more than 12 ROIs are used.

Table 3. Performance evaluation of the proposed method for dif-
ferent experimental settings. All the values are in BPM and all the
metrics represent better performance if they have lower values.

UBFC-rPPG COHFACE
σ MAE RMSE σ MAE RMSE

Ours 03.45 02.91 04.52 07.41 08.01 10.12
GS 13.74 48.50 50.41 11.26 17.76 21.03
RGB 13.76 46.46 48.45 11.34 27.06 29.34
NP 08.13 07.73 11.22 10.83 13.43 17.26
NS 07.40 06.11 07.98 11.01 13.40 18.61
Conv 07.73 06.25 08.74 11.31 13.82 19.65

Table 3 presents the results for understanding the impor-
tance of different components of our method. These ex-
periments are formed by modifying the proposed method,
RADIANT. The experiments GS and RGB are formed by
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Figure 3. (a) Example of successful HR estimation and (b) example of unsuccessful HR estimation.

replacing the chrominance signals with the green and RGB
channel’s temporal signals, respectively. The results show
that the chrominance signals outperform the other represen-
tations because they suppress the effects of motion and lu-
minance variations [10]. The NP experiment is created by
replacing the mean squared error loss function with the neg-
ative pearson loss function. The results show that our pro-
posed method outperforms NP experiment, indicating that
the mean squared error loss function performs better than
the negative pearson loss function. In the experiment NS,
we have used our architecture without pre-training. The re-
sults demonstrate that we obtain better performance when
our Transformer is pre-trained with synthetic temporal sig-
nals because synthetic signals provide the necessary domain
adaptation capability to our architecture for pulse estima-
tion. Similarly, the experiment Conv is formed by replac-
ing the MLP projection layer by the input Convolutional
layer of kernel (7 × 7), stride (2 × 2) and padding of 3
as used in ResNet-18 [23] input. Utilizing such projection
leads to embeddings of dc dimensions. Thus, we have ap-
plied an additional max pooling layer with kernel and stride
of (1 × dc) so that we obtain signal embeddings of the re-
quired dimensions by the Transformer layer. The results
show that we perform poorly when we utilize information
from nearby temporal signals for signal embeddings using
the Convolutional layer. It happens because the noise from
other temporal signals interferes with the rPPG information.

4.5. Discussion

We depict an example of HR estimation by our proposed
method in Figure 3. The figure compares the predicted and
ground truth pulse for success and failure cases. The first
row represents the estimated pulse and its Fourier power
spectrum, and the second row shows the ground truth. For
the success case in Figure 3 (a), we observe that the es-
timated pulse signal correlates well with the ground truth.
However, we observe a deviation in the estimated pulse sig-
nal from the ground truth signal for certain video frames be-

cause these frames contain slight noise due to facial move-
ments. In contrast, the effect of large facial movements on
the estimated pulse signal can be observed in Figure 3 (b).
Comparison of the quality scores for the respective temporal
signals suggests that it is an important parameter determin-
ing the quality of pulse estimation.

5. Conclusion

The existing deep learning based rPPG approaches have
suffered from underfitting on limited datasets and failed
in modeling long temporal dependencies leading to incor-
rect HR estimation. To mitigate these issues, we have pro-
vided a Transformer-based pulse estimation method, RA-
DIANT. The architecture has benefitted from the attention
processing capabilities of the Transformer that allows mod-
eling of long temporal dependencies and effective denois-
ing for correct pulse estimation. Further, it has utilized an
MLP projection for obtaining the signal embeddings that
provide an adequate subspace for rPPG feature representa-
tion. Our experiments justified the isolation of rPPG in-
formation in the signal embeddings. We have investigated
the possibility of utilizing pre-training and efficient data
augmentation techniques to improve generalization capa-
bilities. The experimental results have demonstrated that
our architecture provides better results when pre-trained on
the synthetic dataset. Also, it indicates that data augmenta-
tion allows our architecture to generalize well over the nor-
mal HR range. Our results on extensively utilized datasets
have shown that our architecture outperforms previous well-
known rPPG methods. In the future, we will be working
on providing an end-to-end HR estimation network by au-
tomating the temporal signal extraction process.
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