
Towards Generating Ultra-High Resolution Talking-Face Videos with Lip
synchronization

Anchit Gupta
IIIT-Hyderabad

Rudrabha Mukhopadhyay
IIIT-Hyderabad

Sindhu Balachandra
IIIT-Hyderabad

Faizan Farooq Khan
IIIT-Hyderabad

Vinay P. Namboodiri
University of Bath

C. V. Jawahar
IIIT-Hyderabad

{anchit.gupta,radrabha.m,sindhu.hegde}@research.iiit.ac.in, faizan.farooq@students.iiit.ac.in,

vpn22@bath.ac.uk, jawahar@iiit.ac.in

96 x 96

O
ri

gi
na

l W
av

2L
ip

768 x 768

Upsampled

768 x 768

Result from our 
pipeline

Current State-of-the-Art

Sharp results in high 
Resolution

Fine details in the 
mouth region like 
teeth

Less artifacts near the 
mouth region

Proposed Pipeline

Original Resolution

Upsampled for Demo 
Purposes

High Resolution 
Results

Figure 1: We propose the first talking-face generation network, which can lip-sync any identity at ultra-high resolutions like
4K. Our model captures fine-grained details of the lip region, including color, texture, and essential features like teeth. While
the current state-of-the-art model Wav2Lip [16] generates faces at 96×96 pixels (left part), our proposed method synthesizes
64 times more pixels, rendering realistic, high-quality results at 768× 768 pixels.

Abstract

Talking-face video generation works have achieved
state-of-the-art results in synthesizing videos with lip syn-
chronization. However, most of the previous works deal
with low-resolution talking-face videos (up to 256×256 pix-
els), thus, generating extremely high-resolution videos still
remains a challenge. We take a giant leap in this work and
propose a novel method to synthesize talking-face videos
at resolutions as high as 4K! Our task presents several key

challenges: (i) Scaling the existing methods to such high
resolutions is resource-constrained, both in terms of com-
pute and the availability of very high-resolution datasets,
(ii) The synthesized videos need to be spatially and tempo-
rally coherent. The sheer number of pixels that the model
needs to generate while maintaining the temporal consis-
tency at the video level makes this task non-trivial and has
never been attempted before in literature. To address these
issues, we propose to train the lip-sync generator in a com-
pact Vector Quantized (VQ) space for the first time. Our
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core idea to encode the faces in a compact 16 × 16 rep-
resentation allows us to model high-resolution videos. In
our framework, we learn the lip movements in the quan-
tized space on the newly collected 4K Talking Faces (4KTF)
dataset. Our approach is speaker agnostic and can handle
various languages and voices. We benchmark our technique
against several competitive works and show that we can
achieve a remarkable 64-times more pixels than the current
state-of-the-art! Our supplementary demo video depicts ad-
ditional qualitative results, comparisons, and several real-
world applications, like professional movie editing enabled
by our model.

1. Introduction
When was the last time we watched a video? For many

of us, it will be well within 24 hours! In fact, for the major-
ity of people, videos are the most common form of enter-
tainment 1. The rise of streaming platforms like YouTube
and Over-The-Top (OTT) media platforms like Netflix has
made video production more accessible to the masses. Such
is the impact that over 200 thousand minutes of videos are
streamed solely on Netflix every day! Video conferencing is
yet another area that has seen a massive influx of users. Ac-
cording to a recent report 2, a video conferencing platform
like Zoom enables over 300 million daily meetings amount-
ing to 3.3 trillion minutes per year! Recently, due to the
COVID-19 pandemic, the need for online lectures is gain-
ing tremendous user attention. News reading, video calling,
vlogs, marketing videos, and often a large part of movie
scenes contain videos of the speaker. These videos are
termed “talking-face videos”. As the overall video content
grows, the critical component of talking-face videos contin-
ues to grow exponentially. Due to the advancement in inter-
net services and camera technology, most of the videos to-
day are captured and streamed in extremely high-resolution.
Resolutions like 3840×2160 (4K) and 7680×4320 (8K) are
considered to be mainstream and an important requirement
for the entertainment industry.

With this growth in international video content, the abil-
ity to consistently dub the generated video content based
on audio is a new multimedia application. Using this tech-
nology, video content can be watched seamlessly in other
languages, as well as avatars can be anonymized for video
conferencing, gaming, and other multimedia applications.
However, the major challenge for audio-based visual dub-
bing has been the lack of scalability of audio-based lip-
synchronization approaches. These either failed to gener-
alize easily to multiple identities or, if suited for numerous
identities, were unable to generalize to high-quality, high-

1https://www.business2community.com/
content-marketing

2https://backlinko.com/zoom-users

resolution visual dubbing. Our work aims to solve this chal-
lenge comprehensively by enabling high-resolution lip-sync
for any identity to a given speech. Before delving into the
details, we start by surveying the major branches of current
approaches for lip-syncing talking-faces to a given speech.

Speaker-Specific Lip-Sync Models Audio-driven talking-
face generation has witnessed tremendous progress in re-
cent years. The first works [12, 19] in this space dealt
with large amounts of data of a specific speaker (e.g., Pres-
ident Obama) and trained deep neural networks to learn
the speaker attributes. These works showed that learn-
ing phoneme-viseme correspondence through a neural net-
work is possible. Follow-up works continued to deal with
speaker-specific approaches [8, 13, 18, 20] with an aim to
reduce the amount of speaker-specific data required for
training. While the initial models were trained with over
20 hours of Obama’s speeches, the latest approaches only
need a few minutes of data per-speaker to generate high-
quality results. The basic idea of all the speaker-specific ap-
proaches is to train two separate modules. The first module
learns correspondence between lip shapes and speech, while
a second renderer module generates the final video. Gener-
ally, this renderer is trained in a speaker-specific fashion.
Although the data for isolated speakers has substantially re-
duced over the years, these models still fail to perform for
unseen speakers, as well as for seen speakers with signifi-
cantly altered appearances. Further, they also fail to handle
dynamic environments like movie scenes consisting of large
head motions and lighting variations.

Speaker-Agnostic Lip-Sync Models To learn the lip
synchronization for in-the-wild speakers, speaker-agnostic
works started gaining importance. These works [2, 11, 16]
train on large datasets like LRS2 [3] containing thousands
of identities to learn speaker-agnostic characteristics. They
can handle unseen identities without requiring additional
fine-tuning on speaker-specific data. They also work for
various languages, poses and voices. The current state-of-
the-art, Wav2Lip [16] is well known for generating lip-sync
for videos of any identity in any language. Wav2Lip uses a
standard encoder-decoder architecture that takes the target
pose and target speech as input and generates a lip-synced
face. A pre-trained lip-sync expert discriminator is used
as a critique that penalizes the network for inaccurate lip
shapes. However, Wav2Lip generates videos with a reso-
lution of 96 × 96 pixels - making it practically unusable
in professional videos that often require 4K resolution. We
summarize the capabilities of the current models and com-
pare them with our proposed method in Table 1.

Please note that we differ from audio-based talking Head
generation works [24, 27, 30], where the aim is to generate
the head movements along with lips from speech. Similarly,
face re-enactment works [17, 23, 28] use a driving video to
transfer the head motion to a source identity. In our case,
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Method Unseen IDs? In-the-wild? High Res.
Synth. Obama [19] × × ✓
ObamaNet [12] × × ✓
Neural Puppetry [20] × × ✓
LipGAN [11] ✓ × ×
Wav2Lip [16] ✓ ✓ ×
Ours ✓ ✓ ✓

Table 1: Comparison of different lip-sync models. Our
model handles the most challenging cases in this space.

we only morph lip movements to be in sync with a target
speech without altering expressions or head motion, thus
we exclude these works in our comparison.

Why not train Wav2Lip in ultra-high resolution? As
Wav2Lip [16] is the current state-of-the-art in lip synchro-
nization, the most straightforward and a natural question
that arises is: “can we directly extend Wav2Lip to gener-
ate and lip-sync ultra-high resolution videos?” There are
two major ways of achieving this: (i) Training Wav2Lip
at higher resolutions (like 4K) and (ii) Using state-of-
the super-resolution (SR) techniques on top of the current
Wav2Lip generations. We observe that using either of these
strategies results in sub-optimal generations. There are sev-
eral key reasons to this. First, the lip-sync expert from
Wav2Lip does not converge on high-resolution data from
datasets like AVSpeech [5] or our proposed 4KTF dataset.
We believe this is directly related to the increased number
of pixels that the network deals with, increasing the over-
all variability. The encoder-decoder structure of Wav2Lip
also faces similar issues and does not generate effective out-
puts. Another major challenge to deal with is the compute
and hardware requirements. Training networks to generate
videos at such high-resolutions runs into hardware issues.
Also, such networks are extremely slow to train and work
with small batch sizes, leading to poor performance.

As an alternative, using SR methods to upsample the
Wav2Lip outputs is also not an ideal solution. The major
reasons being: (i) Although Wav2Lip generates accurate lip
and jaw regions, the resultant videos lack fine-grained facial
features like teeth, lip color and face texture (in the gener-
ated lower-half of the face). These artifacts magnify when
we apply the SR methods to obtain high-quality results; (ii)
Wav2Lip generates videos at a resolution of 96× 96 pixels.
Upsampling these outputs to ultra-high resolutions like 4K
would need video SR methods that can work at high scale-
factors (like 8× and 16×). However, the existing video SR
methods [1, 9] are known to work effectively and generate
high-quality results only at low scale-factors like 4×.

Our Contributions To address the problem of obtaining
ultra-high resolution videos, we modify the existing ap-
proaches in the following way: We obtain a quantized gen-

erative pipeline that decodes ultra-high resolution images.
The intermediate quantized representations in the genera-
tive pipeline are used to learn lip-synchronization using ap-
propriate discriminators in the quantized latent space. Over-
all our generated faces contain 64-times more pixels than
the current 96 × 96 output from Wav2Lip [16]. Our model
works for any in-the-wild unseen identities, languages, and
voices (including synthetic text-to-speech voice). Since the
existing talking-face video datasets are limited in resolu-
tion, we collected a new 4K dataset from publicly avail-
able videos on YouTube. Our dataset spans a total of ≈ 30
hours, covering a diverse set of identities and an extensive
vocabulary (see Figure 2. We train our model to synthesize
high-quality talking-face videos with this dataset in hand.

2. 4K Talking Face Dataset

Previous datasets like MEAD [22], AVspeech [5] and
HDTF [27] have done an incredible job collecting high-
fidelity data but were limited in terms of resolution. We in-
troduce the 4K Talking Face Dataset (4KTF), a new audio-
visual dataset in 4K resolution. Our dataset consists of 140
YouTube high-quality (resolution: 4K) videos, amounting
to ≈ 30 hours. The videos are of varying lengths, rang-
ing from 40 seconds to 40 minutes, with over 2.5 million
frames containing a taking face. The dataset predominantly
contains English language videos and has a vocabulary of
∼ 10, 000 words. The videos are selected from differ-
ent channels, including technical reviews, interviews, pod-
casts, educational content, and movie scenes. This results
in a wide range of topics, a large vocabulary, and differ-
ent speaking styles. Although most of the videos comprise
a single speaker, we use active speaker detection [4] for the
multi-speaker case to discard the segments in which the vis-
ible face and audio are out of sync. In addition, we use the
YouTube transcripts to remove the segments containing in-
appropriate or violent language. We perform face detection
using S3FD [26] to obtain the facial crops. At 4K resolu-
tion, face detection is not only slower but also surprisingly
inaccurate. Therefore we resize the videos by a factor of
4 to perform face detection and then scale the coordinates
back to the original resolution. We use the pre-processed
videos with the face crops for the pipelines described in the
next section. Please also note that the full resolution of the
collected videos is at 4K while the face crops in the videos
are of 768×768 pixel dimensions. Figure 2 shows different
statistics from the dataset, along with some sample frames.
We use this newly collected data to train all the networks.
Since our dataset contains talking-face videos, speech, and
automatically generated text transcripts (not used in this
work), it will also be useful for several other related prob-
lems in the space involving the face, lip movements, speech,
and text! We will release the dataset to aid future research
in the audio-visual field.
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Figure 2: Samples and statistics of our newly collected 4K dataset (videos gathered from YouTube). Our dataset has a nearly
equal male-female ratio, contains varying video lengths and FPS, spans an extensive vocabulary, and contains high-resolution
frames. For more details about the dataset, please refer to our supplementary.

3. Generating Ultra-High Resolution Talking-
Faces

Recent advances in high-resolution image synthesis have
shown that learning compact vector spaces [6] helps in
high-resolution synthesis. Methods like [6] first learn a VQ-
GAN and then use it to generate intermediate quantized em-
beddings to represent the HD images. Downstream tasks
like image-to-image translation, super-resolution, or ran-
dom image generation are done using the quantized embed-
dings, i.e., in the quantized space. The final output from
such downstream tasks is generated using the VQGAN de-
coder to convert resultant embeddings into RGB images.

3.1. Stage-1: Lip-sync Generator

Representing a Face and Head Pose in Quantized
Space: In our work, we take a leaf out of this strategy and
first learn a compact quantized space to represent higher res-
olution faces. We start by training a VQGAN [6], Vf , using
the publicly available implementation3. The VQGAN en-
coder converts an input face image, Fin ∈ RH×W×3 to an
intermediate embedding Eq ∈ RH

16×
W
16×256 through a set

of convolution layers. A learnable codebook of Nc × 256
is used to perform vector quantization on Ein. In our setup,
we choose H = W = 256 and Nc = 1024 as the number
of codebook entries. We obtain the vector quantized output
Eq , which is then passed to a standard VQGAN decoder

3https://github.com/CompVis/taming-transformers

that reconstructs Fin (identical to [6]). Details regarding
the losses and hyperparameters can be found in the same.

Similar to Wav2Lip [16] and LipGAN [11], we aim to
morph the lip movements of the speaker and not change
the target head pose. During training the lip-sync gen-
erator, it is paramount not to leak information regarding
the mouth shape in the ground-truth face while provid-
ing the network with an accurate target head pose. Both
WavLip and LipGAN achieve this by masking the lower
half of the ground-truth face and conditioning the genera-
tor on the speech signal to generate it back. Unfortunately,
we cannot directly use this trick in the quantized space.
Masking the lower half of Eq does not stop the leakage of
mouth information encoded in the top half of the embed-
ding. Thus, we train a separate Pose-VQGAN, Vp, with
only the top half of the face to avoid any unnecessary leak-
age. The encoder of Vp ingests a face image with lower
half masked, Fp ∈ RH×W×3 and outputs a quantized em-
bedding Ep ∈ RH

16×
W
16×256. The decoder then learns to

generate the input Fp back from the quantized embedding.
The network is trained with the losses mentioned in [6].

Once both Vf and Vp are trained to encode full faces and
head poses, the next step is to train the lip-sync generator in
the quantized space. We follow a similar training strategy as
that of Wav2Lip [16]. We first train a lip-sync expert which
acts as a critic in training the lip-sync generator.

Training a lip-sync expert in the quantized space:
Our lip-sync expert uses a similar architecture proposed
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Figure 3: We present our pipeline for generating ultra-high resolution lip-synced videos. We first train Face VQGAN and
Pose VQGAN networks (col-1) to encode the faces and head poses in a compact 16 × 16 dimensional space. We then train
a lip-sync generator in the quantized space and get back the image using the Face VQGAN decoder. (stage-1, col-2). An
optional post-processing network is used to improve the quality of the generated outputs (stage-2, col-3). To better understand
our framework, we also show the overall inference pipeline (col-4).

in Wav2Lip [16], but we train our expert in the quantized
space Vf , rather than the RGB space used in Wav2Lip. The
network majorly contains video and speech encoders. The
video encoder ingests the quantized embeddings of Tf con-
secutive frames and outputs a D−dimensional vector de-
noted by wf . The speech encoder takes in a Ts length mel-
spectrogram obtained from the input speech segment and
generates a D−dimensional vector ws. The final layer of
both the encoders are ReLU activated, to ensure the vectors
only have positive elements. For training the lip-sync ex-
pert, we sample video-speech pairs from the same time step
(in-sync, i.e., positive pairs) and random pairs from differ-
ent time-steps (out-of-sync, i.e., negative pairs). The net-
work is trained using contrastive learning. We calculate the
cosine similarity between ws and wf and back-propagate
a binary cross-entropy loss to train the network. The lip-
sync expert is trained on only 25 Frames-per-Second (FPS)
videos with Tf = 25 frames and Ts = 1 second (100 mel-
spectrogram time-steps).

Architecture of the Generator: Our generator network
comprises three components: (i) face encoder, (ii) speech
encoder, and (iii) face decoder. Both the face and speech
encoders output 256−dimensional embeddings. These are
concatenated to form a 512−dimensional encoding, which
is given as input to the decoder. The encoders and de-
coder contain a stack of 2D convolution layers with residual
blocks, batch normalization layers, and ReLU activation. In
addition, we also add the skip connections between the face
encoder and the face decoder for better gradient flow and
to preserve the crucial facial features. The decoder finally
generates a quantized embedding in the latent space Vf .

Training details: The generator network is trained to

generate accurate lip shapes conditioned on a given speech
segment. To prepare the input to the speech encoder, we
take a short window of Tx = 20 melspectrogram time steps
(200 ms of speech), denoted by Sx. We then take the mid-
dle frame, Fgt, of this speech window and consider it as
the ground truth frame. We pass Fgt through the encoder
of Vf to get the ground truth embedding Egt, and mask
the lower half of Fgt, pass it through Vp, and generate the
pose embedding Egtp. A reference frame, Fr, from a differ-
ent time-step is selected and given to Vf , which generates
the reference quantized embedding Er. We channel-wise
concatenate Egtp and Er, which acts as input to the face
encoder. The speech encoder ingests the input speech mel-
spectrogram Sx. We then concatenate the output of both the
encoders. The decoder uses this concatenated embedding to
predict the output embedding E′

gt. The network is trained
using the L1 loss between E′

gt and Egt. We also compute
the sync loss using our pre-trained lip-sync expert discrimi-
nator which takes the audio-video pair (Sx, Tf ) and detects
if they are in-sync or out-of-sync.

Inference details: We consider a sliding window of
200ms (20 mel time-steps) across the full speech segment
during inference. Each speech window is inferred sepa-
rately through our lip-sync generator. Assuming we have
a video during inference, we take the corresponding video
frame and pass it to Vf , which generates the reference em-
bedding. We also input a masked version of the frame to
Vp, which encodes the pose. Both the reference and the pose
embeddings are channel-wise concatenated and given to the
lip-sync generator along with the melspectogram input. The
decoder finally outputs a lip-synced quantized embedding.

5213



3.2. Stage-2 (Optional): Post-Processing stage 1
output

This is an optional stage to further improve the visual
quality of the generated output from the stage 1. We use
GPEN [25] as the post processing network and found that
we get slightly improved and sharper results. We train
GPEN [25] following the original training procedure and
losses on our newly collected 4KTF dataset. During infer-
ence, we feed a modified face crops to the network: we
replace only the lip region of the original face crops of the
video with the output generated from stage 1 using the lip
landmarks obtained from Mediapipe [14]. The synthesized
outputs are then pasted back into the original video. More
details about the architecture, training and inference pro-
cedures can be found in the supplementary material. This
stage is totally optional and can be replaced with any post-
processing network.

3.3. Watermarking the Final Outputs

Talking-face generation models [10, 16, 17, 23, 29] en-
able a plethora of positive applications. However, there are
potential negative impacts due to the possibility of harm-
ful “deepfakes”. We add an invisible watermark to our
dataset using the invisible watermarking technique [15] 4.
There is no change in the perceptual visual quality of the
image. A randomly generated fixed string is embedded (wa-
termarked) into the image in the frequency space using the
DWT + DCT + SVD transformations. We can decode the
image to get back the fixed string using the inverse of each
transform. We first watermark the whole dataset and then
train the network. It ensures the watermark is inherently
learned by the model and outputs it in each of the generated
face crops, which are finally pasted back into the full frame.
While testing, we first detect each face region present in a
video. We then try to decode the watermark in the detected
facial areas in each frame. If 50% of the total frames contain
the watermark, we assume it to be a match.

4. Experiments
In this section, we evaluate various aspects of the gen-

erated outputs from our method on different datasets. We
also include several visual results from our technique and
compare them with the current state-of-the-art methods.

4.1. Quantitative Evaluations

Metrics: To evaluate the quality of lip-synchronization,
we use “Lip Sync Error - Confidence” (LSE-C) and “Lip
Sync Error - Distance” (LSE-D) metrics introduced in
Wav2Lip [16]. The publicly available pre-trained model
SyncNet [4] is used to calculate the lip-sync errors. More

4https://github.com/ShieldMnt/
invisible-watermark

details about the two metrics can be found in Wav2Lip [16].
In addition to these metrics, we also use the popular Fréchet
Inception Distance (FID) to evaluate the perceptual quality
of the generations at a frame level. Similarly, we use the
Fréchet Video Distance (FVD) [21] proposed to measure
the perceptual quality at the video level. FVD is used to
measure both temporal coherence as well as sharpness at
the frame level. These metrics are calculated using only the
face crops, ensuring the high-resolution background does
not play any role in the calculations.

Baselines: We compare our work with multiple base-
lines. We modify the publicly available codebases of “You
said that?” [2], “LipGAN” [11] and “Wav2Lip” [16] and
train them using the same settings and datasets as our model
(768 × 768 pixel resolution). We make suitable changes in
the architectures to handle the higher resolution input. As
another baseline, we use the publicly available Wav2Lip
model at original resolution (96 × 96) and use the pre-
trained state-of-the-art video super-resolution model “Teco-
GAN” [1] to obtain the super-resolved videos at the target
resolution. We evaluate all the models on 5000 selected
videos from the AVSpeech test-set and the test-set from the
proposed 4K dataset. Please note that the AVSpeech test set
is evaluated at 1080p resolution.

Results: As seen in Table 2, we outperform the compet-
ing methods by a significant margin. Our method produces
lip-synced videos at very high-resolutions (indicated by
LSE metrics). The generated outputs are sharper and highly
temporally coherent compared to the previous works (indi-
cated by FID and FVD metrics). Our method surpasses the
existing baselines in generating high-quality frames with
very few artefacts (also validated in Figure 4 and supple-
mentary video).

Performance on Silent Regions: While Wav2Lip [16]
generates accurate lip-sync in most cases, it struggles with
long silent regions. The original lip movements present in
the video interferes with the generated ones resulting in sig-
nificant quivering of lips. We provide silent audio as input
to all the videos in the test set and compare our results to that
of Wav2Lip in Table 3. A visual demonstration of samples
is also provided in Figure 5. As seen from both the table
and the figure, our model handles silences far better than
Wav2Lip. We hypothesize the reason for this to be learn-
ing lip-sync in the quantized space, which is richer than the
image space that Wav2Lip was trained on.

4.2. Human Evaluations

Since the quality of lip-sync is highly subjective, we per-
form human evaluations on the generated videos. We show
the outputs from different algorithms to 50 users and ask
them to rate the videos on a scale of 1− 5, with 1 being the
lowest rating and 5 being the highest. The users are asked to
rate the following three attributes: (i) Lip sync Quality, (ii)
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AVSpeech [5] 4KTF
Method LSE-C ↑ LSE-D ↓ FID ↓ FVD ↓ LSQ ↑ Shrp. ↑ OE ↑ LSE-C ↑ LSE-D ↓ FID ↓ FVD ↓ LSQ ↑ Shrp. ↑ OE ↑
You-said-that-4K [2] 0.98 10.01 9.12 9.81 2.50 1.32 1.98 1.07 10.47 18.34 9.83 1.32 1.44 1.41
LipGAN-4K [11] 1.09 9.52 7.63 8.52 2.63 1.71 2.31 1.43 8.18 14.21 9.16 1.47 1.42 1.31
Wav2Lip-4K [16] 2.66 9.13 8.01 8.41 3.17 1.65 2.18 3.12 8.74 7.54 7.91 3.52 1.37 2.63
Wav2Lip-orig [16]
+ TecoGAN [1]

4.17 6.33 7.47 7.16 3.26 1.94 2.27 4.03 7.24 7.18 8.86 3.43 1.72 2.14

Ours 7.26 6.21 5.18 6.41 3.72 4.51 4.32 7.10 6.32 6.84 6.66 6.86 4.43 4.62

Table 2: Quantitative comparison of different methods on AVSpeech [5] and our new 4KTF datasets. Our model outperforms
all baselines by a large margin. Using our approach, we can obtain high-quality outputs (indicated by FID and FVD) and ac-
curate lip synchronization (indicated by LSE-C and LSE-D). Note that FVD is scaled by a factor of 100 for better readability.
We also report the human evaluation scores based on: (i) Lip-sync Quality (LSQ), (ii) Sharpness (Shrp.), and (iii) Overall
Experience (OE).

Sharpness and other details of the face, and (iii) Overall Ex-
perience of the video. We report the mean opinion scores in
Table 2. In line with the quantitative evaluation, our method
achieves the highest scores in all these attributes, indicating
the robustness of our approach.

Figure 4 depicts the samples generated from different
models. We can observe that our model generates a highly
detailed lip region compared to the current methods. It ef-
fectively reconstructs fine-grained facial features like teeth,
lip color, lip and jaw texture, and has minimal to no arti-
facts. We find the visual results to corroborate the findings
in our quantitative and human evaluations.

Method LSE-C ↑ LSE-D ↓ FID ↓ FVD ↓
Wav2Lip-orig [16]
+ TecoGAN [1]

1.08 12.73 7.124 10.88

Ours 4.18 8.21 6.79 9.03

Table 3: Our method works well on silent regions of the
video.

5. Ablation Studies
We perform several ablations to verify the effect of our

different components. The scores are reported on the test
set of 4KTF dataset.
Importance of Post Processing Network To assess the im-
portance of the Stage 2 network, we compare the results of
stage 1 and 2 of our pipeline. While the results have decent
lip-sync, the stage 2 results are slightly sharper, as also can
be seen in Table 4.

Method LSE-C ↑ LSE-D ↓ FID ↓ FVD ↓
Ours w/o Stage 2 7.01 6.31 7.12 7.48
Ours 7.10 6.32 6.84 6.66

Table 4: Comparison of stage 1 and 2 results.
Importance of the lip-sync expert We train a lip-sync gen-
erator without using the sync loss and report results in Ta-
ble 5. We also vary the context window size T - we test
with T = 5 and T = 25. We find that the lip-sync expert

trained on longer audio-visual sequences perform better and
is selected for the final version. We also calculate the accu-
racy of the lip-sync expert by creating random audio-visual
pairs that are in-sync and out-of-sync with 50% probability.
Table 5 indicates that the best accuracy is achieved for the
model trained with sync loss using a context window of 25
frames.

Method LSE-C ↑ LSE-D ↓ Acc. ↑
Ours w/o Sync Loss 1.13 11.01 -
Ours with Sync Loss, T=5 3.12 10.38 65.1%
Ours with Sync Loss, T=25 7.10 6.32 91.2%

Table 5: We evaluate the importance of lip-sync expert and
also show the effect of using different context windows.

We find that, a lip-sync expert which is trained with 25
frames is the most accurate forces the generator to produce
most accurate lip shapes.

6. Applications
We believe our model is a perfect fit for several appli-

cations at a time when the amount of multimedia content
around the globe is growing exponentially. Few of the po-
tential applications enabled by our model are as follows.
(i) Movie and television industries: Modern movies are
dubbed and released in tens of languages. Our model can
lip-sync such dubbed movies with ease and improve the
viewing experience. Similarly, other forms of dubbed con-
tent like TV shows, interviews, documentaries, and lectures
can also be precisely lip-synced; (ii) Marketing: Market-
ing videos are essential for reaching out to customers. Gen-
erating realistic marketing videos at scale can reduce the
cost and is sought after by businesses all around the globe.
Instead of recording hundreds of marketing videos for dif-
ferent products, a single video can be lip-synced with vari-
ous audios and languages, thus reducing the cost; (iii) On-
line meetings: Hours of online meetings have given rise
to issues like Zoom Fatigue [7], i.e., getting tired of look-
ing into the camera. Our work can potentially be used to
replace the actual video stream of the speaker with a gen-
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Figure 4: Sample results from different algorithms. Clearly, our model generates far better, sharper, and higher-quality
outputs. Our model captures intricate details like teeth, wrinkles of skin and lip color, which the previous models fail to
generate.
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Figure 5: Performance evaluation on silent speech seg-
ments. While the output from Wav2Lip follows the original
lip movements, our model can generate closed lip shapes in
sync with the silent speech.

erated content that is in sync with the spoken content. Our
model can also generate the video stream in case of a drop
in connection quality; (iv) Animations: Even though our
model is never trained on CGI faces, it still performs well

on animated characters. This allows our model to be used
in gaming and animated movies; and (v) Training: Since
our model generates accurate lip shapes given a speech seg-
ment, it can be used to teach lip-reading to people hard of
hearing and their family members. A wide variety of course
content showing the lip movements corresponding to words
and sentences can be created, enabling large-scale training
of human lip readers.

7. Conclusion

This work presents the first approach in generating ultra-
high resolution talking-face videos. With our approach, it
is now possible to synthesize talking-face videos with ac-
curate lip shapes at very high-resolutions (4K). Our work
revolves around a two-stage framework where we first learn
to lip-sync in a compact vectorized space and then render
the high-resolution face outputs. We generate state-of-the-
art, realistic, high-quality results at such high resolutions
for the first time and mark significant improvements over
the competitive methods. We believe our work will posi-
tively impact several industries, open up new applications
and make movie-making much easier!
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