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Abstract

We present a new weakly-supervised few-shot semantic

segmentation setting and a meta-learning method for tack-

ling the new challenge. Different from existing settings, we

leverage bounding box annotations as weak supervision

signals during the meta-training phase, i.e., more label-

efficient. Bounding box provides a cheaper label represen-

tation than segmentation mask but contains both an object

of interest and a disturbing background. We first show that

meta-training with bounding boxes degrades recent few-shot

semantic segmentation methods, which are typically meta-

trained with full semantic segmentation supervisions. We

postulate that this challenge is originated from the impure

information of bounding box representation. We propose

a pseudo trimap estimator and trimap-attention based pro-

totype learning to extract clearer supervision signals from

bounding boxes. These developments robustify and gener-

alize our method well to noisy support masks at test time.

We empirically show that our method consistently improves

performance. Our method gains 1.4% and 3.6% mean-IoU

over the competing one in full and weak test supervision

cases, respectively, in the 1-way 5-shot setting on Pascal-5i.

1. Introduction

The semantic segmentation task aims to cluster pixel re-

gions within an image according to semantic similarity. It

is a fundamental visual scene understanding technique in

computer vision and its applications [12]. By virtue of the

advance of convolutional neural networks, the performance

of semantic segmentation has been significantly improved

against hand-crafted designs [23]. Nonetheless, there are

two remaining challenges toward ultimate generic intelli-

gence for scene understanding. First, the neural network is

data-hungry [3]. Furthermore, obtaining high-quality seg-

mentation labeling is far more costly than that of image-level

*This work has been done when she was a visiting researcher at
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annotations.1 Second, the standard semantic segmentation

task deals with pre-defined classes only, i.e., a closed-set

problem. However, there are lots of unseen or uncertain

object classes in the real-world scenario, and these may

more critically affect the success of systems subsequent to

the scene understanding. Naı̈vely increasing the diversity

of classes with high-quality segmentation labels is not a

workaround and simply impossible due to an unlimited num-

ber of semantic classes in the real world [30].

The advance of few-shot learning (FSL) can deal with

these challenges. FSL strives to train or adapt a model

to target tasks, e.g., classification and segmentation, with

only a few samples. To generalize to the few-shot test with

novel classes, few-shot learners are typically meta-trained

by solving synthesized few-shot test episodes, i.e., episodic

learning [32]. Many few-shot segmentations [8, 22, 34, 36]

also follow the same scheme. In the previous works, an

episode is composed of a support set and query set with

those segmentation annotations. Then, few-shot segmen-

tation methods are trained to segment the query set given

the support set. However, the phrase “a few” might be mis-

leading in the annotation-efficiency perspective. While it

is true that few-shot segmentation requires a few {image,

segmentation mask} pairs during test time, the same level of

large-scale full segmentation annotations are still required

during meta-training to mimic the test time episodes. This

hardly reduces the necessity of costly annotations.

Based on the aforementioned observations, in this work,

we present a new weakly meta-training method for few-

shot semantic segmentation from bounding box annotations,

which has been under-explored before. Recently, different

weakly-supervised few-shot semantic segmentation tasks

have been proposed [27,30,34,39]. They utilize weak labels

during the inference phase, but a large number of segmen-

tation masks are still used during the meta-training stage.

On the contrary, we focus on addressing the overloaded la-

1While image-level labeling takes less than a second per image by non-expert

subjects, semantic segmentation labeling takes more than 1.5 hours per

image by trained experts even with an efficient polygon-based annotation

tool [7].
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beling cost during meta-training with a large-scale weakly

supervised dataset. The meta-training stage requires a much

higher number of segmentation masks than the inference

stage. Since the segmentation labels are particularly costly

to annotate, replacing the segmentation annotation with the

weak one during meta-training may reduce the significant

amount of annotation cost. This, therefore, enables low-cost

learning than the prior arts in terms of annotation load.

In particular, we leverage bounding boxes as weak su-

pervision during meta-training. In the weakly-supervised

field, the commonly used weak labels are image-level labels.

However, recent research [6] pointed out the ill-posedness

of weak-supervision-based localization problems. Without

localization information, if the class information is more

correlated with background information than the object of in-

terest, neural networks are likely to focus on background in-

formation, consequently leading to failed localization. That

is, image-level labels may not be sufficient for obtaining

sufficient supervision signals, especially in our challenging

few-shot learning setup. On the contrary, bounding boxes

require much less effort for annotating than segmentation

masks, and contain necessary localization information for se-

mantic segmentation [15]; thus, a good compromise between

image-level and segmentation labels. 2

However, directly leveraging bounding boxes perturbs

learning few-shot segmentation. We experimentally show

the segmentation performance on novel classes is degraded

in a prototype learning scenario with bounding boxes during

meta-training. We posit the cause of performance degrada-

tion stems from the background pixels included in bounding

boxes. The contaminated information propagates through

both support prototypes and query labels, which results in

worse performances. Hence, we propose the pseudo trimap

estimator and the trimap-attention based prototype learning,

which exclude the uncertain regions within bounding boxes

from learning, to deal with the noise injected by bounding

boxes during meta-training. With extensive experiments,

we found our method consistently enhances the few-shot

semantic segmentation performance in various settings. This

demonstrates our method effectively purifies bounding boxes

and learns more accurate prototypes during meta-training.

Furthermore, since our method suggests a weakly-supervised

meta-training scheme, our model can be adapted to both

fully- and weakly-supervised testing settings.

2. Related Work

Few-shot learning (FSL). FSL aims to learn from few-shot

samples. In order to test meta-learning ability, in FSL we

2According to [1], average annotation cost per image from Pascal-VOC

dataset is 20, 38.1 and 239.7 seconds for an image-level class, a bounding

box and a full segmentation mask, respectively. That says, using bounding

boxes instead of segmentation masks reduces the labelling cost 6 times.

test on an unseen domain, i.e., train domain and test do-

main are disjoint. While there are several categories of FSL

such as metric-based approach [17, 31, 32], optimization-

based approach [11], and model-based approach [37], we

concentrate on metric-based methods and episodic learning,

a common learning scheme to train metric-based few-shot

learners in this paper. Episodic training reforms the dataset

into episodes and feeds episodes to neural networks iter-

atively. In each episode, the few-shot learner encounters

different support classes and is encouraged to perform a task

on query images based on a support set. By mimicking the

test stage during meta-training, the few-shot learner gets to

have meta-learning ability without overfitting. Matching net-

work [32] and prototypical network [34] facilitate episodic

learning for FSL. Matching network consists of a feature

encoder and a prototype extractor for estimating prototypes,

i.e. class representatives. In the meta-training stage, support

images for each class are fed into the prototype extractor to

create a prototype containing information of all examples,

while query images are guided to be closer to the correspond-

ing prototype on the feature space. In the test time, the class

is predicted as the class with the nearest prototype. Prototyp-

ical network uses a feature encoder to both encode features

and generate prototypes, specifically, as the average of the

features of each class image. Even with a simpler design, it

shows improved performances.

Few-shot semantic segmentation. Few-shot semantic seg-

mentation aims to perform segmentation on unseen domains.

Matching-based methods [21, 29, 33, 39, 40] guide neural

networks to predict pixel-to-pixel correspondence between

support and query images so that on novel classes, the pixels

with high correspondence values to support foreground re-

gions are assumed to belong to foreground regions. Due to its

very dense correspondence estimation, however, these meth-

ods typically require heavy computation and consequently

are hard to be applied on multi-way multi-shot settings.

Prototype-based methods are in line with Prototypical

network [31] in FSL literature. In these methods, prototypes

are learned and every pixel is classified based on the distance

between prototypes and its feature. Wang et al. [34] suggest

PANet, a simpler yet effective prototype learning based on

late-fusion [26]. Yang et al. [36] introduce an expectation-

maximization algorithm to extract multiple prototypes per

class for detailed class representation. Liu et al. [22] develop

a graph attention module and apply the superpixel algorithm

on an unlabelled set to get part-aware prototypes.

Recently, Cermelli et al. [4] suggest an incremental few-

shot semantic segmentation (iFSS). iFSS deals with the in-

cremental setting in few-shot semantic segmentation, i.e., it

aims to extend a pretrained model with new classes from

few annotated images and without access to old training data.

Since our work does not need additional training on novel

classes, one model trained by our method can perform se-

3751



Trimap

Attention 

Module

Query

Shared weight

Query

Label

C
ro

s
s
-e

n
tro

p
y
 lo

s
s

Pseudo 

Trimap

Estimator

Support set

Argmax

Attention

Background region

Foreground region

Unknown region

Figure 1: Overview of our model. We aim to learn few-shot semantic segmentation from bounding box annotations. In each

train episode, support masks and query labels are all replaced by bounding boxes. We propose a pseudo trimap estimator and a

trimap attention module to get a robust prototype from impure information and exclude uncertain regions in loss calculation.

mantic segmentation on both train classes and novel classes.

Thus, our work can be seen as extended usage of iFSS with

the utilization of bounding box labels during meta-training.

Weakly-supervised few-shot segmentation. Weakly-

supervised learning (WSL) aims to learn signals from weak

labels. From rough information, it tries to induce strong

signals related to the location of objects. In computer vi-

sion domains, it usually refers to learning localization from

image-level class labels, while bounding boxes, scribbles,

and word embeddings can also work as weak labels.

There are several works which extract initial masks from

bounding boxes by GrabCut [28] and refine from them to en-

able weakly-supervised segmentation from bounding boxes.

For example, Kulharia et al. [18] predict the per-class atten-

tion map to focus on foreground pixels and refine boundaries.

Ji et al. [16] train the class-wise CNN to better capture the

class-wise shapes across all bounding boxes from the same

class. Adapting those directly to few-shot segmentation is

not straightforward due to the nature of the few-shot liter-

ature, which aims to remove class dependencies to avoid

overfitting to any set of (train) classes and generalize well to

unseen classes. Different than [16, 18], we suggest another

way to make our method cooperate with GrabCut algorithm

(see Table 5). For more details on WSL, refer to [14].

Given the potential of WSL, weakly-supervised few-shot

semantic segmentation tasks have been proposed [27, 30,

34, 39]. In these tasks, weak labels including image-level

class labels [27], bounding boxes [34, 39], scribbles [34],

and word embeddings [30] of novel classes are used as su-

pervision during the test stage. However, a large number of

segmentation masks are still used during meta-training. Our

work differs from them in that no segmentation mask is used

during meta-training.

Concurrent to few-shot segmentation and weakly-

supervised segmentation works, partially-supervised in-

stance segmentation (PSIS) has been introduced [2, 10].

Also, in [35], BoxCaseg, a solution for box-supervised class-

agnostic instance segmentation has been proposed. Both

focus on solving instance segmentation by benefiting from

bounding boxes, while they differ from our setting in three

folds: (1) the problem scope; that instance and semantic seg-

mentation have different challenges and therefore, require

different network architectures and performance metrics, (2)

that none of them solely focuses on few-shot settings, and (3)

that they deal with different data regimes from ours, where

we specifically focus on the scarce data regime that just few

weak-supervised data is only available.

Relationship to our setting. To our knowledge, our work is

the first attempt to enhance label efficiency by utilizing only

weak labels during meta-training in the few-shot segmenta-

tion works. Since our method uses weak supervision during

meta-training, we treat the performance when meta-trained

in a fully supervised manner as the upper bound of ours.

Our method consists of an iterative scheme to refine

bounding box labels and generate more accurate prototypes

and update the neural network based on refined labels. While

different iterative schemes have been proposed in [34,36,39],

their motivations are completely different. CANet [39] and

PMM [36] conduct iterative refinement of feature maps and

iterative clustering for part prototype estimation, respec-

tively, but they made no interaction between query and sup-

port sides. PANet [34] is not an iterative method, but it

interacts with prototypes and features of query and support

samples for symmetric regularization in both query and sup-

port branches. Stemming from different motivation, our

refinement scheme is novel compared to the prior few-shot

segmentation methods.
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3. Method

We aim to learn semantic segmentation from a few an-

notated samples at test time. To this end, we meta-train our

segmenter on classes Ctrain and evaluate on unseen classes

Ctest. For convenience, we suppose to use two disjoint and

non-overlapping datasets, Dtrain and Dtest, which have an-

notated samples from Ctrain and Ctest, respectively.

To learn a few-shot segmenter generalizable to unseen

scenarios, we follow the commonly used episodic-style mini-

batch configuration, i.e., episodic learning [29, 32]. An

episode is synthesized to mimic test-time tasks so that the

few-shot learner can be meta-trained to adapt to new tasks

during test time. A C-way K-shot episode consists of a

support set S and a query set Q as E = {S,Q}, where the

prior weakly-supervised few-shot methods [29] compose

S =

C⋃

c=1

{ (Ic,k,Mc,k) | k = {1, · · · ,K}} , Q = { (Iq,Mq) },

Ic,k denotes the k-th support image of class c and Mc,k

its corresponding label. Each episode defines a few-shot

segmentation task for a certain class combination that targets

to classify every pixel in the query image as a semantic

class c ∈ {0, · · · , C} well using the information given in its

support set, where c = 0 defines the background class.

Our problem setting differs from the previous weakly-

supervised few-shot segmentation work. Previously, full

supervision of segmentation masks are provided as annota-

tions, Mc,k and Mq, for meta-training in both support and

query sets. On the contrary, we use cheaper bounding box

annotations as weak supervision signals in both support and

query sets; thus, in our problem, Mc,k and Mq now con-

tain simple rectangular masks of class-of-interest instead of

free-form segmentation, which makes our setting annotation

efficient but more challenging.

During meta-training, at each step i, a training episode

E i
train is composed of randomly sampled class combination

Ci ⊂ Ctrain. Throughout training steps, our model experi-

ences various combinations of classes from Ctrain so that

our neural network learns a general example-based segmen-

tation strategy without class dependencies. This learning

strategy is known to encourage preventing overfitting and

yielding better generalization to unseen classes.

During testing, test episodes are composed similarly. A

test episode Ej
test = {Sj ,Qj} is sampled from Dtest at each

test step j. Given the support set Sj , segmentation masks of

query images in Qj are inferred in an episodic manner. Our

model is evaluated based on segmentation performance over

these test episodes.

Prototype learning. Our goal is to learn a neural network

that extracts feature maps, where features at each location are

expected to be separated according to the semantic meaning

and to be generalized for new semantic objects. We denote

the convolution neural network-based encoder fθ: I → FI;θ,

where FI;θ ∈ R
H×W×d denotes pixel-wise features with

dimension d extracted from an RGB image I ∈ R
H×W×3,

H and W the spatial dimensions of I . We follow the stan-

dard architecture of semantic segmentation based on fully

convolutional layers [23] and dilated convolutions [5, 38] as

used in [34]. This facilitates obtaining a pixel-wise feature

map with a larger receptive field.

We first compute feature maps for images in the support

and query sets, denoting Fc,k=FIc,k;θ, Fq=FIq ;θ, respec-

tively. With this feature map, typical segmentation is im-

plemented by measuring correlations between a feature of

each pixel and a classification weight. In prototype-based

few-shot methods, the classification weight is adaptively

predicted from few-shot examples in the support set, called

prototype [31]. We estimate the mean of a class distribution,

i.e. prototypes for each class in the support set. By learn-

ing prototypes and neural networks to contrast positive and

negative pairs of features and prototypes, the small distance

between a class prototype and a feature is induced to have

high likelihoods of pixel segmentation. Accordingly, we

classify each pixel in a query image to the class with the

nearest prototype from its feature. We use cosine distance as

a distance metric as suggested in [25, 34].

3.1. Joint prototype and segmentation refinement

In prior arts, a prototype from a support sample is esti-

mated by averaging the positive features, e.g., global average

pooling [31] or masked average pooling [26, 34]. How-

ever, in our problem setting, we observed that these simple

pooling-based methods are detrimental to the quality of the

learned feature map and prototype both. This quality degra-

dation stems from impure information inside a bounding box;

bounding box representation possesses foreground pixels as

well as background ones. Due to this, prototypes estimated

conventionally become less discriminative, and this leads

to degrading the quality of learned feature maps. This mo-

tivates us to develop an alternating refinement method to

distill segmentation labels and to denoise foreground proto-

types so that robust prototypes and feature maps against the

weak label noise can be learned.

For robust meta-training, we propose an expectation-

maximization [24] like alternating method to refine both

prototypes and segmentation labels. We first estimate an

initial support prototype and predict initial segmentation for

a given query sample using the initial prototypes. Given

these initial estimates of prototype and segmentation, our

refinement is applied to jointly improve prototypes and seg-

mentation predictions of both query and support samples.

Specifically, to mitigate noisy supervision by weak bound-

ing box labels in the alternating framework, we also propose

a pseudo trimap representation and its simple estimation

method. More distinguishably, since both query and support
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labels are noisy in our problem setup, we propose a trimap

attention (T-Attention) block and alternatively apply it to

refine them. More details are as follows.

Pseudo trimap estimator. To take into account the imper-

fectness of bounding box labels in semantic segmentation,

we introduce the pseudo trimap representation and its esti-

mation. The idea is to use only confident regions. While

pixels outside of bounding boxes are inarguably background,

pixels inside bounding boxes are a mixture of foreground

and background. If a pixel within bounding box is inferred

as background (false-negative), it is unsure which is the case:

(A) the prediction is correct and the pixel is background

contained in the bounding box, (B) the prediction is wrong

and the pixel is the groundtruth foreground part.

Figure 2: Trimap example

While (B) does not re-

quire any special care, if

(A) is the case, updating

the model with this criterion

would confuse our model.

Therefore, we exclude uncer-

tain false-negative regions

for loss calculation and prototype estimation. To imple-

ment this, we use the trimap representation Tc,k as shown

in Figure 2, where the white and black regions are con-

fident foreground and background, respectively, and the

gray regions are uncertain regions according to the case

(A). The gray region Gc for class c is determined as: Gc =
{(h,w)|M(h,w)=c, M̂(h,w) ̸=c}, where h and w indicate

indices along spatial axes, and the gray region is computed

by the logical subtraction of a predicted segmentation M̂

from a box mask M of class c. This strategy helps our model

learn robust to label noise.

Trimap attention module (TAM). The proposed trimap

attention module, TAM, refines both prototypes and seg-

mentation predictions of query and support samples. The

module is illustrated in Figure 3, and it consists of the trimap

attention (T-Attention) blocks. The same block is applied re-

currently by alternating the roles of query and support. This

alternation is for improving a target prediction by refining

reference information, where the reference and target can be

respective query and support or vice versa. Additional theo-

retical analysis of TAM is provided in the Supplementary.

The T-Attention block is inputted the target feature and

the reference label, feature and previous segmentation pre-

diction, and outputs the improved target segmentation pre-

diction. As shown in Figure 3, the block consists of two

steps: 1) the reference prototype refinement and 2) the target

segmentation prediction by attention. Since the TAM begins

with T-Attention block applied to the support as the target

with the query information as the reference as depicted in

Figure 3, we describe the process of the T-Attention block

from this case for simplicity, because the inputs of the even

steps are analogous with flipping the query and support roles

as reference and target, respectively.

Given the bounding box label and initial segmentation

prediction of the query, the T-Attention block first estimates

the pseudo trimap T ∈ {F, B, G}H×W , where F, B and G

denote foreground, background, and gray region indication

labels. The pseudo trimap label bootstraps the weak label

and the previously predicted label, so that it can filter out

uncertain regions. Then, we estimate the prototypes by

masked average pooling [40] with the estimated pseudo

trimap T q of the query and the given query feature Fq . The

masked average pooling operation MAP(B,F ) ∈ R
d is

defined as:

MAP(B,F ) =
∑

h,w B(h,w)∗F (h,w)
∑

h,w B(h,w) , (1)

where B ∈ {0, 1}H×W is a binary mask and F ∈ R
H×W×d

a feature map. The expected query foreground prototype

of class c is estimated by the MAP operation with respect

to T q
c , i.e., p̃qc = MAP(1[T q

c = F], Fq) and the background

one as p̃
q
0 = MAP(1[T q

c = B], Fq), where 1[·] denotes the

indicator function. As an exceptional case, if there is no

foreground intersection in the pseudo trimap T between

the expected query foreground region of class c and query

bounding box region of class c, we keep this class prototype

as is, i.e., p̃qc = pc. The segmentation predictions of the

support samples are estimated by

M̂c,k(h,w) = argminj∈{0,...,C} d(Fc,k(h,w), p̃
q
j), (2)

where d(·, ·) is a cosine distance metric. This procedure is

illustrated in Figure 3. The above procedure is applicable

to the odd steps of the T-Attention block, and for the even

steps, we feed the query information as the target with the

support information as the reference, and the rests are anal-

ogous. We demonstrate that our proposed TAM effectively

cancels out background pixels within bounding boxes in the

Supplementary material. Note that our TAM does not add

any additional learnable parameters. In addition, our usage

of the MAP with the pseudo trimap is the extension of the

standard MAP with binary segmentation [34,40] to the weak

annotation case. Our MAP improves the chance to make the

feature space class-wise separable even when images from

unseen domains are encountered.

Initial prototypes and segmentation. The TAM begins

with an initial segmentation map w.r.t. the query. For obtain-

ing the initial segmentation map, we first estimate the initial

prototype pc of all class c ∈ {0, · · · , C} for the supports.

The initial foreground prototype of class c is computed by

MAP with the support subset {(Ic,k,Mc,k)}:

pc =
1
K

∑K

k=1 MAP(1[Mc,k = c], Fc,k), (3)

where c = 1, · · · , C. A single background prototype p0 is

computed over the entire support set S since every image
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contains background pixels.

p0 = 1
CK

∑C

c=1

∑K

k=1 MAP(1[Mc,k = 0], Fc,k). (4)

3.2. Training and inference

Training. During training, we optimize softmax cross-

entropy loss between our prediction and the bounding box

on query image except for the pseudo trimap region G.

M̃q;c(h,w) =
exp(−αd(Fq(h,w),p̃c)∑

j∈{0,...,C} exp(−αd(Fq(h,w),p̃j)
. (5)

L = −
∑

j∈{0,...,C},
(h,w)∈Iq\Gj

1[Mq(h,w) = j] log M̃q;j(h,w), (6)

which is defined for one query image. For multiple query

images in an episode, we optimize the averaged softmax

cross-entropy. Here, α is initialized to 20 and updated with

other network parameters by the stochastic gradient descent.3

Inference. In test episodes, our meta-learner is evalu-

ated by comparison of the prediction of our model M̃q and

groundtruth query segmentation label Mq. The predicted

segmentation mask M̂q is obtained by classifying each pixel

into the class of the nearest prototype.

M̂q(h,w) = argmin
j

d(Fq(h,w), p̃j) = argmax
j

M̃q;j(h,w).

(7)

Moreover, the theoretical analysis on our method is pro-

vided in the Supplementary.

4. Experiments

We conduct experiments on the Pascal-5i and FSS-1000

datasets. Also, to evaluate the cross-dataset performance,

3PANet fixes α as 20 and reports learning it yields little performance gain.

We found that in our setting, learning α brings improved results for both

baselines. We deal with it in Table 4.

we conduct a similar experiment in the VOC2COCO setting.

Unless mentioned, we follow the standard evaluation setups

used in Wang et al. [34], that is, we try 5 different random

seeds each with 1000 episodes, and report the average of 5

runs for stabilized results. Additional experimental results

based on another choice of the network structure and COCO-

20i dataset are provided in the Supplementary.

4.1. Pascal­5i

Setup. The Pascal-5i dataset is the parsed version of Pascal-

VOC 2012 [9] with SBD [13] augmentation, firstly intro-

duced in [29]. To facilitate the evaluation of few-shot se-

mantic segmentation, Pascal-5i is composed of 4 splits, in

which each split has 5 class labels. Following the few-shot

semantic segmentation literature, the performance is mea-

sured on a split when the other 3 splits are used for training.

For example, performance on Pascal-50 indicates the test

performance on split-0 when trained on split-1, -2, and -3.

We automatically generate bounding boxes from segmen-

tation masks. Unlike the bounding box generation during

the test time in PANet, for a more congruent setting to su-

pervised meta-training, we assume bounding boxes of all

instances are given in an image during meta-training. Dur-

ing testing, only the bounding box of one randomly chosen

instance per support image is given as the support mask as

in PANet so that we can compare with PANet directly.

Metrics. We evaluate our model based on mean-IoU and

binary-IoU. Mean-IoU computes the average of Intersection-

over-Union (IoU) on all foreground classes. In the binary-

IoU computation, the semantic segmentation is treated as

pixel-wise binary (foreground-background) classification.

Regarding all foreground classes as one foreground class, the

binary-IoU is computed by averaging IoU on the foreground

class and the background class.

Results. Mean-IoU performances are reported in Table 1
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Method
1-shot 5-shot

split-0 split-1 split-2 split-3 mean split-0 split-1 split-2 split-3 mean

PANet (U)* 42.30 58.00 51.10 41.20 48.10 51.80 64.60 59.80 46.50 55.70

Baseline 36.74 51.89 46.63 37.03 43.07 45.83 57.62 56.06 41.70 50.30

Ours 36.96 52.24 49.06 35.23 43.37 46.48 58.99 58.19 42.97 51.66

Table 1: Mean-IoU on the 1-way 1-shot and 1-way 5-shot setting on Pascal-5i. During the test time, segmentation masks are

leveraged as the support supervision. While PANet trained with mask serve as upper bounds, our method effectively gains

0.30% of mean-IoU and 1.36% mean-IoU from lower bound in 1-shot and 5-shot settings compared to the baseline. * refers to

quoted results from [34].

Method
1-shot 5-shot

split-0 split-1 split-2 split-3 mean split-0 split-1 split-2 split-3 mean

PANet (U)* - - - - 45.10 - - - - 52.80

Baseline 34.25 49.69 44.14 36.17 41.07 40.74 54.20 50.73 39.95 46.40

Ours 35.32 51.64 48.00 34.77 42.43 44.19 57.88 56.19 41.84 50.02

Table 2: Mean-IoU on the 1-way 1-shot and 1-way 5-shot setting on Pascal-5i. During the test time, bounding boxes are

leveraged as the support supervision. * refers to quoted results from [34].

Method 1-shot 5-shot

PANet (U)* 66.50 70.70

Baseline 62.14 66.72

Ours 63.02 68.09

(a) Binary-IoU, Pascal-5i

Mask label @ Test time

Method 1-shot 5-shot

PANet (U) 63.21 68.26

Baseline 59.59 62.62

Ours 61.95 66.28

(b) Binary-IoU, Pascal-5i

Box label @ Test time

Method 1-shot 5-shot

PANet (U) 82.40 85.65

Baseline 66.70 70.67

Ours 69.75 72.13

(c) P-IoU, FSS-1000

Mask label @ Test time

Table 3: Performance comparison on the 1-way 1-shot and 1-way 5-shot settings on Pascal-5i and FSS-1000 datasets. During

the test time, segmentation mask (a,c) or box (b) labels are used as the support supervision.

Method mean-IoU @ Pascal-5i ∆

Baseline w/o α-learn 50.30 -

Baseline w/o α-learn + TAM 51.43 +1.13

Baseline + TAM 51.66 +1.36

† Segmentation masks are used as support labels at the test time.

Table 4: Ablation study on the 1-way 5-shot.

and 2. Table 3a and 3b also show binary-IoU performances.

Since Baseline follows the prototype learning procedure

of PANet, the results from PANet can serve as our upper

bound. Under the same random seed, we quote the cor-

responding performance of PANet if results in congruent

settings are reported in [34], or reproduce PANet with fully-

supervised meta-training for capturing the challenge of lever-

aging bounding box annotations during meta-training. Such

upper bounds are denoted as PANet (U). Baseline indicates

the model regarding bounding box annotations as segmenta-

tion masks, i.e., without any consideration for background

noises. Hence, the neural network is guided with noisy

information and therefore has poor generalization ability,

resulting in degraded performances. In each train episode,

it extracts class prototypes from support images and their

bounding box labels and trains a neural network by pixel-

wise cross-entropy loss with query images and their bound-

ing box labels. Note that the network structure of Baseline

and Ours is based on PANet [34].

Specifically, in the 1-way 1-shot and 1-way 5-shot set-

tings, mean-IoU was degraded by 5.03% and 5.40% com-

pared to PANet (U). In this challenging setting, we find that

Ours achieves 0.30% and 1.36% compared to Baseline in

the 1-way 1-shot and 5-shot settings. We further evaluate

our method and the baseline in the weakly-supervised test

scenario. Surprisingly, Ours outperforms Baseline by 3.62%

in the 1-way 5-shot setting with weak test supervision. The

performance gap between Baseline and Ours is increased in

harsher settings which shows the robustness of our method.

Qualitative results on FSS-1000 are in the Supplementary.

Combining with classical techniques. We also report the

performances of when classical techniques are combined

with Baseline and Ours in Table 5. An interactive segmenta-

tion algorithm, GrabCut [28] could generate pseudo trimaps

by extracting the probable foreground from bounding boxes.

A post-processing segmentation algorithm, CRF [5] refines

the prediction of neural networks. Hence, each method can

cooperate with either Baseline or Ours to improve few-shot

segmentation performances. However, it is shown that Grab-

Cut sometimes fails to get better pseudo-trimaps, resulting

in the worse performances of GrabCut+Ours than Ours.

Furthermore, our method combined with both methods

outperforms the corresponding baseline with bounding boxes

as test supervisions. This is in line with the result in Table 2,

demonstrating the effectiveness of our method especially

when no masks are provided from both base and test classes.
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Method
Mask@Test Box@Test

1-shot 5-shot 1-shot 5-shot

GrabCut+Baseline 40.18 51.25 38.16 48.35

GrabCut+Ours 40.08 50.48 39.71 49.59

Baseline+CRF 45.72 54.51 43.62 49.95

Ours+CRF 44.76 54.77 44.54 53.54

Table 5: Mean-IoU on the 1-way 1-shot and 1-way 5-shot set-

tings on Pascal-5i. Mask@Test and Box@Test denote when

either segmentation masks or bounding boxes are leveraged

as test supervision, respectively.

4.2. FSS­1000

Recently, FSS-1000, the first large-scale object dataset

for few-shot segmentation has been suggested [19]. FSS-

1000 contains 1000 classes, especially many of them have

not been dealt with in other segmentation datasets. Each

category contains 10 {image, segmentation mask} pairs.

FSS-1000 is challenging due to the small number of samples

per label and much more classes. FSS-1000 also contains

synthetic images, which diversify the data distribution.

Setup. In Li et al. [19], a train/test set split was proposed

considering the hierarchy of the dataset. Following the split

configuration, 240 out of 1000 classes are used as test classes

while others are used for meta-training. Bounding box an-

notations are generated from segmentation annotations as

in Pascal-5i. For evaluation, we randomly sample 5000 test

episodes and report the average P-IoU.

Metrics. As in [19, 33], we adopt IoU of positive labels in

a binary mask (P-IoU). P-IoU is in line with binary-IoU as it

assumes a binary classification scenario.

Results. P-IoU performances are reported in Table 3c. Due

to the wider breadth and shallower depth of the dataset,

when segmentation masks are replaced by bounding boxes,

the neural network loses so much information for semantic

segmentation. Our method recovers more than 3% of P-

IoU on unseen classes in the 1-way 1-shot case. This result

implies that our method effectively enables robust meta-

training even in the challenging setting and improves the

meta-learning performance by a large margin. Qualitative

results on FSS-1000 are provided in the Supplementary.

4.3. VOC2COCO Results

Setup. As an extended test for the cross-dataset setup, we

additionally suggest the VOC2COCO setup and measure

the performance on that. The Pascal-VOC 2012 dataset has

20 classes, and the MS-COCO dataset [20] has 80 classes.

MS-COCO is more complicated and challenging than Pascal-

VOC. For example, MS-COCO contains 3.5 categories and

7.7 instances per image, while Pascal-VOC has 1.4 cate-

gories and 2.3 instances per image on average. Also, the

average size of objects of MS-COCO is smaller than that

of Pascal-VOC, which makes it harder to recognize them.

Method
1-shot 5-shot

Mean-IoU Binary-IoU Mean-IoU Binary-IoU

PANet (U) 21.85 58.66 28.11 60.24

Baseline 19.30 55.90 25.15 58.21

Ours 20.78 56.42 25.25 58.47

(a) Mean-IoU and Binary-IoU, VOC2COCO, Mask label @ Test

Method
1-shot 5-shot

Mean-IoU Binary-IoU Mean-IoU Binary-IoU

PANet (U) 20.32 56.03 25.60 57.75

Baseline 18.22 53.71 22.99 55.87

Ours 19.81 55.00 23.61 56.73

(b) Mean-IoU and Binary-IoU, VOC2COCO, Box label @ Test

Table 6: Performance comparison on the 1-way 1-shot and

1-way 5-shot settings on VOC2COCO. During the test time,

segmentation mask (a) or box (b) labels are used as the

support supervision.

We utilize all 20 classes of Pascal-VOC for meta-training

and test on 60 classes of the COCO 2017 dataset, where the

test classes are not overlapped with those of the Pascal-VOC

dataset. The meta-training setting and metrics follow Pascal-

5i, while the bounding box annotations in MS-COCO are

used for the weakly-supervised test.

Results. Mean-IoU and binary-IoU performances are re-

ported in Table 6. Our method achieves better performances

than the baseline on VOC2COCO. It shows that our method

improves few-shot segmentation performances on more real-

istic settings in which test (novel) classes have complicated

samples and a larger domain shift from base classes.

5. Conclusion

This work intends to accomplish more annotation-

efficient segmentation than the current few-shot segmenta-

tion. To this end, we suggest using bounding boxes instead of

segmentation masks during meta-training. With the proposed

pseudo trimap estimator and trimap-attention based proto-

type learning, our model enables weakly-supervised meta-

learning for semantic segmentation robust to label noise. The

favorable performance gain from various settings facilitates

tackling a broader semantic class segmentation.
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coste. Tadam: Task dependent adaptive metric for improved

few-shot learning. In NeurIPS, volume 31. Curran Associates,

Inc., 2018.

[26] Kate Rakelly, Evan Shelhamer, Trevor Darrell, Alexei A.

Efros, and Sergey Levine. Few-shot segmentation propagation

with guided networks. arXiv, page arXiv:1806.07373, May

2018.

[27] Hasnain Raza, Mahdyar Ravanbakhsh, Tassilo Klein, and

Moin Nabi. Weakly supervised one shot segmentation. In

ICCVW, pages 1401–1406, 2019.

[28] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.

“GrabCut”: Interactive foreground extraction using iterated

graph cuts. In ACM SIGGRAPH, page 309–314, 2004.

[29] Amirreza Shaban, Shray Bansal, Zhen Liu, Irfan Essa, and

Byron Boots. One-shot learning for semantic segmentation.

In BMVC, 2017.

[30] Mennatullah Siam, Naren Doraiswamy, Boris N. Oreshkin,

Hengshuai Yao, and Martin Jägersand. Weakly supervised
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