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Abstract

We present a new weakly-supervised few-shot semantic
segmentation setting and a meta-learning method for tack-
ling the new challenge. Different from existing settings, we
leverage bounding box annotations as weak supervision
signals during the meta-training phase, i.e., more label-
efficient. Bounding box provides a cheaper label represen-
tation than segmentation mask but contains both an object
of interest and a disturbing background. We first show that
meta-training with bounding boxes degrades recent few-shot
semantic segmentation methods, which are typically meta-
trained with full semantic segmentation supervisions. We
postulate that this challenge is originated from the impure
information of bounding box representation. We propose
a pseudo trimap estimator and trimap-attention based pro-
totype learning to extract clearer supervision signals from
bounding boxes. These developments robustify and gener-
alize our method well to noisy support masks at test time.
We empirically show that our method consistently improves
performance. Our method gains 1.4% and 3.6% mean-loU
over the competing one in full and weak test supervision
cases, respectively, in the I1-way 5-shot setting on Pascal-5".

1. Introduction

The semantic segmentation task aims to cluster pixel re-
gions within an image according to semantic similarity. It
is a fundamental visual scene understanding technique in
computer vision and its applications [12]. By virtue of the
advance of convolutional neural networks, the performance
of semantic segmentation has been significantly improved
against hand-crafted designs [23]. Nonetheless, there are
two remaining challenges toward ultimate generic intelli-
gence for scene understanding. First, the neural network is
data-hungry [3]. Furthermore, obtaining high-quality seg-
mentation labeling is far more costly than that of image-level
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annotations.' Second, the standard semantic segmentation
task deals with pre-defined classes only, i.e., a closed-set
problem. However, there are lots of unseen or uncertain
object classes in the real-world scenario, and these may
more critically affect the success of systems subsequent to
the scene understanding. Naively increasing the diversity
of classes with high-quality segmentation labels is not a
workaround and simply impossible due to an unlimited num-
ber of semantic classes in the real world [30].

The advance of few-shot learning (FSL) can deal with
these challenges. FSL strives to train or adapt a model
to target tasks, e.g., classification and segmentation, with
only a few samples. To generalize to the few-shot test with
novel classes, few-shot learners are typically meta-trained
by solving synthesized few-shot test episodes, i.e., episodic
learning [32]. Many few-shot segmentations [8,22,34,36]
also follow the same scheme. In the previous works, an
episode is composed of a support set and query set with
those segmentation annotations. Then, few-shot segmen-
tation methods are trained to segment the query set given
the support set. However, the phrase “a few” might be mis-
leading in the annotation-efficiency perspective. While it
is true that few-shot segmentation requires a few {image,
segmentation mask} pairs during test time, the same level of
large-scale full segmentation annotations are still required
during meta-training to mimic the test time episodes. This
hardly reduces the necessity of costly annotations.

Based on the aforementioned observations, in this work,
we present a new weakly meta-training method for few-
shot semantic segmentation from bounding box annotations,
which has been under-explored before. Recently, different
weakly-supervised few-shot semantic segmentation tasks
have been proposed [27,30,34,39]. They utilize weak labels
during the inference phase, but a large number of segmen-
tation masks are still used during the meta-training stage.
On the contrary, we focus on addressing the overloaded la-

IWhile image-level labeling takes less than a second per image by non-expert
subjects, semantic segmentation labeling takes more than 1.5 hours per
image by trained experts even with an efficient polygon-based annotation
tool [7].

3750



beling cost during meta-training with a large-scale weakly
supervised dataset. The meta-training stage requires a much
higher number of segmentation masks than the inference
stage. Since the segmentation labels are particularly costly
to annotate, replacing the segmentation annotation with the
weak one during meta-training may reduce the significant
amount of annotation cost. This, therefore, enables low-cost
learning than the prior arts in terms of annotation load.

In particular, we leverage bounding boxes as weak su-
pervision during meta-training. In the weakly-supervised
field, the commonly used weak labels are image-level labels.
However, recent research [6] pointed out the ill-posedness
of weak-supervision-based localization problems. Without
localization information, if the class information is more
correlated with background information than the object of in-
terest, neural networks are likely to focus on background in-
formation, consequently leading to failed localization. That
is, image-level labels may not be sufficient for obtaining
sufficient supervision signals, especially in our challenging
few-shot learning setup. On the contrary, bounding boxes
require much less effort for annotating than segmentation
masks, and contain necessary localization information for se-
mantic segmentation [15]; thus, a good compromise between
image-level and segmentation labels. *

However, directly leveraging bounding boxes perturbs
learning few-shot segmentation. We experimentally show
the segmentation performance on novel classes is degraded
in a prototype learning scenario with bounding boxes during
meta-training. We posit the cause of performance degrada-
tion stems from the background pixels included in bounding
boxes. The contaminated information propagates through
both support prototypes and query labels, which results in
worse performances. Hence, we propose the pseudo trimap
estimator and the trimap-attention based prototype learning,
which exclude the uncertain regions within bounding boxes
from learning, to deal with the noise injected by bounding
boxes during meta-training. With extensive experiments,
we found our method consistently enhances the few-shot
semantic segmentation performance in various settings. This
demonstrates our method effectively purifies bounding boxes
and learns more accurate prototypes during meta-training.
Furthermore, since our method suggests a weakly-supervised
meta-training scheme, our model can be adapted to both
fully- and weakly-supervised testing settings.

2. Related Work

Few-shot learning (FSL). FSL aims to learn from few-shot
samples. In order to test meta-learning ability, in FSL we

2 According to [1], average annotation cost per image from Pascal-VOC
dataset is 20, 38.1 and 239.7 seconds for an image-level class, a bounding
box and a full segmentation mask, respectively. That says, using bounding
boxes instead of segmentation masks reduces the labelling cost 6 times.

test on an unseen domain, i.e., train domain and test do-
main are disjoint. While there are several categories of FSL
such as metric-based approach [17, 31, 32], optimization-
based approach [11], and model-based approach [37], we
concentrate on metric-based methods and episodic learning,
a common learning scheme to train metric-based few-shot
learners in this paper. Episodic training reforms the dataset
into episodes and feeds episodes to neural networks iter-
atively. In each episode, the few-shot learner encounters
different support classes and is encouraged to perform a task
on query images based on a support set. By mimicking the
test stage during meta-training, the few-shot learner gets to
have meta-learning ability without overfitting. Matching net-
work [32] and prototypical network [34] facilitate episodic
learning for FSL. Matching network consists of a feature
encoder and a prototype extractor for estimating prototypes,
i.e. class representatives. In the meta-training stage, support
images for each class are fed into the prototype extractor to
create a prototype containing information of all examples,
while query images are guided to be closer to the correspond-
ing prototype on the feature space. In the test time, the class
is predicted as the class with the nearest prototype. Prototyp-
ical network uses a feature encoder to both encode features
and generate prototypes, specifically, as the average of the
features of each class image. Even with a simpler design, it
shows improved performances.

Few-shot semantic segmentation. Few-shot semantic seg-
mentation aims to perform segmentation on unseen domains.
Matching-based methods [21,29, 33, 39, 40] guide neural
networks to predict pixel-to-pixel correspondence between
support and query images so that on novel classes, the pixels
with high correspondence values to support foreground re-
gions are assumed to belong to foreground regions. Due to its
very dense correspondence estimation, however, these meth-
ods typically require heavy computation and consequently
are hard to be applied on multi-way multi-shot settings.

Prototype-based methods are in line with Prototypical
network [31] in FSL literature. In these methods, prototypes
are learned and every pixel is classified based on the distance
between prototypes and its feature. Wang ef al. [34] suggest
PANet, a simpler yet effective prototype learning based on
late-fusion [26]. Yang et al. [36] introduce an expectation-
maximization algorithm to extract multiple prototypes per
class for detailed class representation. Liu et al. [22] develop
a graph attention module and apply the superpixel algorithm
on an unlabelled set to get part-aware prototypes.

Recently, Cermelli ef al. [4] suggest an incremental few-
shot semantic segmentation (iFSS). iFSS deals with the in-
cremental setting in few-shot semantic segmentation, i.e., it
aims to extend a pretrained model with new classes from
few annotated images and without access to old training data.
Since our work does not need additional training on novel
classes, one model trained by our method can perform se-
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Figure 1: Overview of our model. We aim to learn few-shot semantic segmentation from bounding box annotations. In each
train episode, support masks and query labels are all replaced by bounding boxes. We propose a pseudo trimap estimator and a
trimap attention module to get a robust prototype from impure information and exclude uncertain regions in loss calculation.

mantic segmentation on both train classes and novel classes.
Thus, our work can be seen as extended usage of iFSS with
the utilization of bounding box labels during meta-training.

Weakly-supervised few-shot segmentation. = Weakly-
supervised learning (WSL) aims to learn signals from weak
labels. From rough information, it tries to induce strong
signals related to the location of objects. In computer vi-
sion domains, it usually refers to learning localization from
image-level class labels, while bounding boxes, scribbles,
and word embeddings can also work as weak labels.

There are several works which extract initial masks from
bounding boxes by GrabCut [28] and refine from them to en-
able weakly-supervised segmentation from bounding boxes.
For example, Kulharia ef al. [18] predict the per-class atten-
tion map to focus on foreground pixels and refine boundaries.
Ji et al. [16] train the class-wise CNN to better capture the
class-wise shapes across all bounding boxes from the same
class. Adapting those directly to few-shot segmentation is
not straightforward due to the nature of the few-shot liter-
ature, which aims to remove class dependencies to avoid
overfitting to any set of (train) classes and generalize well to
unseen classes. Different than [16, 18], we suggest another
way to make our method cooperate with GrabCut algorithm
(see Table 5). For more details on WSL, refer to [14].

Given the potential of WSL, weakly-supervised few-shot
semantic segmentation tasks have been proposed [27, 30,
34,39]. In these tasks, weak labels including image-level
class labels [27], bounding boxes [34, 39], scribbles [34],
and word embeddings [30] of novel classes are used as su-
pervision during the test stage. However, a large number of
segmentation masks are still used during meta-training. Our
work differs from them in that no segmentation mask is used
during meta-training.

Concurrent to few-shot segmentation and weakly-
supervised segmentation works, partially-supervised in-

stance segmentation (PSIS) has been introduced [2, 10].
Also, in [35], BoxCaseg, a solution for box-supervised class-
agnostic instance segmentation has been proposed. Both
focus on solving instance segmentation by benefiting from
bounding boxes, while they differ from our setting in three
folds: (1) the problem scope; that instance and semantic seg-
mentation have different challenges and therefore, require
different network architectures and performance metrics, (2)
that none of them solely focuses on few-shot settings, and (3)
that they deal with different data regimes from ours, where
we specifically focus on the scarce data regime that just few
weak-supervised data is only available.

Relationship to our setting. To our knowledge, our work is
the first attempt to enhance label efficiency by utilizing only
weak labels during meta-training in the few-shot segmenta-
tion works. Since our method uses weak supervision during
meta-training, we treat the performance when meta-trained
in a fully supervised manner as the upper bound of ours.

Our method consists of an iterative scheme to refine
bounding box labels and generate more accurate prototypes
and update the neural network based on refined labels. While
different iterative schemes have been proposed in [34,36,39],
their motivations are completely different. CANet [39] and
PMM [36] conduct iterative refinement of feature maps and
iterative clustering for part prototype estimation, respec-
tively, but they made no interaction between query and sup-
port sides. PANet [34] is not an iterative method, but it
interacts with prototypes and features of query and support
samples for symmetric regularization in both query and sup-
port branches. Stemming from different motivation, our
refinement scheme is novel compared to the prior few-shot
segmentation methods.
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3. Method

We aim to learn semantic segmentation from a few an-
notated samples at test time. To this end, we meta-train our
segmenter on classes Cyrqi, and evaluate on unseen classes
Ciest. For convenience, we suppose to use two disjoint and
non-overlapping datasets, Dy;qin and Dy.q:, Which have an-
notated samples from Cy;q;,, and Cye 4, respectively.

To learn a few-shot segmenter generalizable to unseen
scenarios, we follow the commonly used episodic-style mini-
batch configuration, i.e., episodic learning [29, 32]. An
episode is synthesized to mimic test-time tasks so that the
few-shot learner can be meta-trained to adapt to new tasks
during test time. A C-way K-shot episode consists of a
support set S and a query set Q as £ = {S, Q}, where the
prior weakly-supervised few-shot methods [29] compose

C
§= U{(Ic,kchkak:{lf" 7K}}7 Q:{(IQ’MQ)}»

c=1

1. ) denotes the k-th support image of class ¢ and M, j
its corresponding label. Each episode defines a few-shot
segmentation task for a certain class combination that targets
to classify every pixel in the query image as a semantic
class ¢ € {0, - -, C'} well using the information given in its
support set, where ¢ = 0 defines the background class.

Our problem setting differs from the previous weakly-
supervised few-shot segmentation work. Previously, full
supervision of segmentation masks are provided as annota-
tions, M. and M,, for meta-training in both support and
query sets. On the contrary, we use cheaper bounding box
annotations as weak supervision signals in both support and
query sets; thus, in our problem, M, j; and M, now con-
tain simple rectangular masks of class-of-interest instead of
free-form segmentation, which makes our setting annotation
efficient but more challenging.

During meta-training, at each step ¢, a training episode
&} win is composed of randomly sampled class combination
Ci C Cirain- Throughout training steps, our model experi-
ences various combinations of classes from Cy;.q;,, SO that
our neural network learns a general example-based segmen-
tation strategy without class dependencies. This learning
strategy is known to encourage preventing overfitting and
yielding better generalization to unseen classes.

During testing, test episodes are composed similarly. A
test episode &7, = {S;, Q,} is sampled from D, at each
test step j. Given the support set S;, segmentation masks of
query images in Q; are inferred in an episodic manner. Our
model is evaluated based on segmentation performance over
these test episodes.

Prototype learning. Our goal is to learn a neural network
that extracts feature maps, where features at each location are
expected to be separated according to the semantic meaning
and to be generalized for new semantic objects. We denote

the convolution neural network-based encoder fg: I — Fr.p,
where Fry € RTXWxd denotes pixel-wise features with
dimension d extracted from an RGB image I € R¥*Wx3,
H and W the spatial dimensions of I. We follow the stan-
dard architecture of semantic segmentation based on fully
convolutional layers [23] and dilated convolutions [5, 38] as
used in [34]. This facilitates obtaining a pixel-wise feature
map with a larger receptive field.

We first compute feature maps for images in the support
and query sets, denoting F. x=FT, .0, Fy=F1, 9, respec-
tively. With this feature map, typical segmentation is im-
plemented by measuring correlations between a feature of
each pixel and a classification weight. In prototype-based
few-shot methods, the classification weight is adaptively
predicted from few-shot examples in the support set, called
prototype [31]. We estimate the mean of a class distribution,
i.e. prototypes for each class in the support set. By learn-
ing prototypes and neural networks to contrast positive and
negative pairs of features and prototypes, the small distance
between a class prototype and a feature is induced to have
high likelihoods of pixel segmentation. Accordingly, we
classify each pixel in a query image to the class with the
nearest prototype from its feature. We use cosine distance as
a distance metric as suggested in [25,34].

3.1. Joint prototype and segmentation refinement

In prior arts, a prototype from a support sample is esti-
mated by averaging the positive features, e.g., global average
pooling [31] or masked average pooling [26, 34]. How-
ever, in our problem setting, we observed that these simple
pooling-based methods are detrimental to the quality of the
learned feature map and prototype both. This quality degra-
dation stems from impure information inside a bounding box;
bounding box representation possesses foreground pixels as
well as background ones. Due to this, prototypes estimated
conventionally become less discriminative, and this leads
to degrading the quality of learned feature maps. This mo-
tivates us to develop an alternating refinement method to
distill segmentation labels and to denoise foreground proto-
types so that robust prototypes and feature maps against the
weak label noise can be learned.

For robust meta-training, we propose an expectation-
maximization [24] like alternating method to refine both
prototypes and segmentation labels. We first estimate an
initial support prototype and predict initial segmentation for
a given query sample using the initial prototypes. Given
these initial estimates of prototype and segmentation, our
refinement is applied to jointly improve prototypes and seg-
mentation predictions of both query and support samples.

Specifically, to mitigate noisy supervision by weak bound-
ing box labels in the alternating framework, we also propose
a pseudo trimap representation and its simple estimation
method. More distinguishably, since both query and support
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labels are noisy in our problem setup, we propose a trimap
attention (T-Attention) block and alternatively apply it to
refine them. More details are as follows.

Pseudo trimap estimator. To take into account the imper-
fectness of bounding box labels in semantic segmentation,
we introduce the pseudo trimap representation and its esti-
mation. The idea is to use only confident regions. While
pixels outside of bounding boxes are inarguably background,
pixels inside bounding boxes are a mixture of foreground
and background. If a pixel within bounding box is inferred
as background (false-negative), it is unsure which is the case:
(A) the prediction is correct and the pixel is background
contained in the bounding box, (B) the prediction is wrong
and the pixel is the groundtruth foreground part.

While (B) does not re-
quire any special care, if
(A) is the case, updating
the model with this criterion
would confuse our model.
Therefore, we exclude uncer-
tain false-negative regions
for loss calculation and prototype estimation. To imple-
ment this, we use the trimap representation T, ;, as shown
in Figure 2, where the white and black regions are con-
fident foreground and background, respectively, and the
gray regions are uncertain regions according to the case
(A). The gray region G, for class c is determined as: G, =
{(h, w)|M (h,w)=c, M (h,w)#c}, where h and w indicate
indices along spatial axes, and the gray region is computed
by the logical subtraction of a predicted segmentation M
from a box mask M of class c. This strategy helps our model
learn robust to label noise.

Figure 2: Trimap example

Trimap attention module (TAM). The proposed trimap
attention module, TAM, refines both prototypes and seg-
mentation predictions of query and support samples. The
module is illustrated in Figure 3, and it consists of the trimap
attention (T-Attention) blocks. The same block is applied re-
currently by alternating the roles of query and support. This
alternation is for improving a target prediction by refining
reference information, where the reference and target can be
respective query and support or vice versa. Additional theo-
retical analysis of TAM is provided in the Supplementary.
The T-Attention block is inputted the target feature and
the reference label, feature and previous segmentation pre-
diction, and outputs the improved target segmentation pre-
diction. As shown in Figure 3, the block consists of two
steps: 1) the reference prototype refinement and 2) the target
segmentation prediction by attention. Since the TAM begins
with T-Attention block applied to the support as the target
with the query information as the reference as depicted in
Figure 3, we describe the process of the T-Attention block
from this case for simplicity, because the inputs of the even
steps are analogous with flipping the query and support roles

as reference and target, respectively.

Given the bounding box label and initial segmentation
prediction of the query, the T-Attention block first estimates
the pseudo trimap 7" € {F,B,G}*W, where F,B and G
denote foreground, background, and gray region indication
labels. The pseudo trimap label bootstraps the weak label
and the previously predicted label, so that it can filter out
uncertain regions. Then, we estimate the prototypes by
masked average pooling [40] with the estimated pseudo
trimap 7'? of the query and the given query feature F;,. The
masked average pooling operation MAP(B, F) € R? is
defined as:

B(h,w)*F(h,w
MAP(B, F) = Sty 2puriit), (1)

where B € {0, 1}#*W is a binary mask and F' € RH*W x4
a feature map. The expected query foreground prototype
of class c is estimated by the MAP operation with respect
to T4, i.e., p = MAP(1[T¢ = F|, F,) and the background
one as pi = MAP(1[T9 = B|, F;), where 1[-] denotes the
indicator function. As an exceptional case, if there is no
foreground intersection in the pseudo trimap 7' between
the expected query foreground region of class ¢ and query
bounding box region of class ¢, we keep this class prototype
as is, i.e., p? = p.. The segmentation predictions of the
support samples are estimated by

M, (h,w) = argmingeqo oy d(Fer(h,w),51), (2)

where d(-, -) is a cosine distance metric. This procedure is
illustrated in Figure 3. The above procedure is applicable
to the odd steps of the T-Attention block, and for the even
steps, we feed the query information as the target with the
support information as the reference, and the rests are anal-
ogous. We demonstrate that our proposed TAM effectively
cancels out background pixels within bounding boxes in the
Supplementary material. Note that our TAM does not add
any additional learnable parameters. In addition, our usage
of the MAP with the pseudo trimap is the extension of the
standard MAP with binary segmentation [34,40] to the weak
annotation case. Our MAP improves the chance to make the
feature space class-wise separable even when images from
unseen domains are encountered.

Initial prototypes and segmentation. The TAM begins
with an initial segmentation map w.r.t. the query. For obtain-
ing the initial segmentation map, we first estimate the initial
prototype p. of all class ¢ € {0, --,C} for the supports.
The initial foreground prototype of class c is computed by
MAP with the support subset {(Ic x, Mcx)}:

Pe= % i MAP(I[M.) = |, F.p), (3

where c = 1,--- ,C. A single background prototype py is
computed over the entire support set S since every image
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Figure 3: [Left] Trimap Attention Module (TAM). TAM is composed of an even number of stacked TABs. Masks are refined by
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contains background pixels.

Po= e S S MAP(L[M, s = 0], Frp). (4)

3.2. Training and inference

Training. During training, we optimize softmax cross-
entropy loss between our prediction and the bounding box
on query image except for the pseudo trimap region G.

exp(—ad(Fq(h,w),pc)
je{o,....c} exp(iad(Fq(h,w),ﬁj) : )

Mq;@(h> w) =

1[My(h,w) = j]log My;(h,w), (6)

>

j€{o0,...,C},

(hyw)€lg\G;
which is defined for one query image. For multiple query
images in an episode, we optimize the averaged softmax
cross-entropy. Here, « is initialized to 20 and updated with
other network parameters by the stochastic gradient descent.”

Inference. In test episodes, our meta-learner is ~evalu-
ated by comparison of the prediction of our model M, and
groundtruth query segmentation label M,. The predicted
segmentation mask M, is obtained by classifying each pixel
into the class of the nearest prototype.
Mq (h,w) = arg min d(F, (h, w), ;) = arg max Mg; (h, w).
J J
@)
Moreover, the theoretical analysis on our method is pro-
vided in the Supplementary.

4. Experiments

We conduct experiments on the Pascal-5? and FSS-1000
datasets. Also, to evaluate the cross-dataset performance,

3PANet fixes « as 20 and reports learning it yields little performance gain.
We found that in our setting, learning « brings improved results for both
baselines. We deal with it in Table 4.

we conduct a similar experiment in the VOC2COCO setting.
Unless mentioned, we follow the standard evaluation setups
used in Wang et al. [34], that is, we try 5 different random
seeds each with 1000 episodes, and report the average of 5
runs for stabilized results. Additional experimental results
based on another choice of the network structure and COCO-
207 dataset are provided in the Supplementary.

4.1. Pascal-5*

Setup. The Pascal-5' dataset is the parsed version of Pascal-
VOC 2012 [9] with SBD [13] augmentation, firstly intro-
duced in [29]. To facilitate the evaluation of few-shot se-
mantic segmentation, Pascal-5° is composed of 4 splits, in
which each split has 5 class labels. Following the few-shot
semantic segmentation literature, the performance is mea-
sured on a split when the other 3 splits are used for training.
For example, performance on Pascal-5° indicates the test
performance on split-O when trained on split-1, -2, and -3.

We automatically generate bounding boxes from segmen-
tation masks. Unlike the bounding box generation during
the test time in PANet, for a more congruent setting to su-
pervised meta-training, we assume bounding boxes of all
instances are given in an image during meta-training. Dur-
ing testing, only the bounding box of one randomly chosen
instance per support image is given as the support mask as
in PANet so that we can compare with PANet directly.

Metrics. We evaluate our model based on mean-IoU and
binary-IoU. Mean-IoU computes the average of Intersection-
over-Union (IoU) on all foreground classes. In the binary-
IoU computation, the semantic segmentation is treated as
pixel-wise binary (foreground-background) classification.
Regarding all foreground classes as one foreground class, the
binary-IoU is computed by averaging IoU on the foreground
class and the background class.

Results. Mean-IoU performances are reported in Table 1
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Method 1-shot 5-shot

split-0  split-1 ~ split-2  split-3 mean | split-0 split-1  split-2  split-3 mean
PANet (U)* | 4230 58.00 51.10 4120 48.10 | 51.80 64.60 59.80 46.50 55.70
Baseline 36.74 51.89 46.63 37.03 43.07 | 4583 57.62 56.06 41.70 50.30
Ours 36.96 5224 49.06 3523 4337 | 4648 58.99 58.19 4297 51.66

Table 1: Mean-IoU on the 1-way 1-shot and 1-way 5-shot setting on Pascal-5°. During the test time, segmentation masks are
leveraged as the support supervision. While PANet trained with mask serve as upper bounds, our method effectively gains
0.30% of mean-IoU and 1.36% mean-IoU from lower bound in 1-shot and 5-shot settings compared to the baseline. * refers to

quoted results from [34].

Method 1-shot 5-shot

split-0  split-1  split-2  split-3 mean | split-0 split-1  split-2  split-3  mean
PANet (U)* - - - - 45.10 - - - - 52.80
Baseline 3425 49.69 44.14 36.17 41.07 | 40.74 5420 50.73 3995 46.40
Ours 3532 51.64 48.00 3477 4243 | 44.19 5788 56.19 41.84 50.02

Table 2: Mean-IoU on the 1-way 1-shot and 1-way 5-shot setting on Pascal-5’. During the test time, bounding boxes are

leveraged as the support supervision. * refers to quoted results from [34].

Method [ I-shot  5-shot Method [ I-shot  5-shot Method [ 1-shot 5-shot
PANet (U)* [ 66.50  70.70 PANet (U) [ 63.21  68.26 PANet (U) | 8240  85.65
Baseline 62.14  66.72 Baseline 59.59  62.62 Baseline 66.70  70.67
Ours 63.02  68.09 Ours 61.95  66.28 Ours 69.75 7213

(a) Binary-IoU, Pascal-5°
Mask label @ Test time

(b) Binary-IoU, Pascal-5"
Box label @ Test time

(c) P-IoU, FSS-1000

Mask label @ Test time

Table 3: Performance comparison on the 1-way 1-shot and 1-way 5-shot settings on Pascal-5¢ and FSS-1000 datasets. During
the test time, segmentation mask (a,c) or box (b) labels are used as the support supervision.

Method | mean-IoU @ Pascal-5" | A
Baseline w/o a-learn 50.30 -
Baseline w/o a-learn + TAM 51.43 +1.13
Baseline + TAM 51.66 +1.36

T Segmentation masks are used as support labels at the test time.
Table 4: Ablation study on the 1-way 5-shot.

and 2. Table 3a and 3b also show binary-IoU performances.
Since Baseline follows the prototype learning procedure
of PANet, the results from PANet can serve as our upper
bound. Under the same random seed, we quote the cor-
responding performance of PANet if results in congruent
settings are reported in [34], or reproduce PANet with fully-
supervised meta-training for capturing the challenge of lever-
aging bounding box annotations during meta-training. Such
upper bounds are denoted as PANet (U). Baseline indicates
the model regarding bounding box annotations as segmenta-
tion masks, i.e., without any consideration for background
noises. Hence, the neural network is guided with noisy
information and therefore has poor generalization ability,
resulting in degraded performances. In each train episode,
it extracts class prototypes from support images and their
bounding box labels and trains a neural network by pixel-
wise cross-entropy loss with query images and their bound-
ing box labels. Note that the network structure of Baseline
and Ours is based on PANet [34].

Specifically, in the 1-way 1-shot and 1-way 5-shot set-
tings, mean-loU was degraded by 5.03% and 5.40% com-

pared to PANet (U). In this challenging setting, we find that
Ours achieves 0.30% and 1.36% compared to Baseline in
the 1-way 1-shot and 5-shot settings. We further evaluate
our method and the baseline in the weakly-supervised test
scenario. Surprisingly, Ours outperforms Baseline by 3.62%
in the 1-way 5-shot setting with weak test supervision. The
performance gap between Baseline and Ours is increased in
harsher settings which shows the robustness of our method.
Qualitative results on FSS-1000 are in the Supplementary.

Combining with classical techniques. We also report the
performances of when classical techniques are combined
with Baseline and Ours in Table 5. An interactive segmenta-
tion algorithm, GrabCut [28] could generate pseudo trimaps
by extracting the probable foreground from bounding boxes.
A post-processing segmentation algorithm, CRF [5] refines
the prediction of neural networks. Hence, each method can
cooperate with either Baseline or Ours to improve few-shot
segmentation performances. However, it is shown that Grab-
Cut sometimes fails to get better pseudo-trimaps, resulting
in the worse performances of GrabCut+QOurs than Ours.

Furthermore, our method combined with both methods
outperforms the corresponding baseline with bounding boxes
as test supervisions. This is in line with the result in Table 2,
demonstrating the effectiveness of our method especially
when no masks are provided from both base and test classes.
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Method Mask@Test Box@QTest
1-shot  5-shot | 1-shot 5-shot
GrabCut+Baseline | 40.18 51.25 | 38.16 48.35
GrabCut+Ours 40.08 5048 | 39.71 49.59
Baseline+CRF 4572 5451 | 43.62 4995
Ours+CRF 4476 5477 | 44.54 53.54

Table 5: Mean-IoU on the 1-way 1-shot and 1-way 5-shot set-
tings on Pascal-5'. Mask@Test and Box@Test denote when
either segmentation masks or bounding boxes are leveraged
as test supervision, respectively.

4.2. FSS-1000

Recently, FSS-1000, the first large-scale object dataset
for few-shot segmentation has been suggested [19]. FSS-
1000 contains 1000 classes, especially many of them have
not been dealt with in other segmentation datasets. Each
category contains 10 {image, segmentation mask} pairs.
FSS-1000 is challenging due to the small number of samples
per label and much more classes. FSS-1000 also contains
synthetic images, which diversify the data distribution.

Setup. InLi et al. [19], a train/test set split was proposed
considering the hierarchy of the dataset. Following the split
configuration, 240 out of 1000 classes are used as test classes
while others are used for meta-training. Bounding box an-
notations are generated from segmentation annotations as
in Pascal-5°. For evaluation, we randomly sample 5000 test
episodes and report the average P-IoU.

Metrics. Asin [19,33], we adopt IoU of positive labels in
a binary mask (P-IoU). P-IoU is in line with binary-IoU as it
assumes a binary classification scenario.

Results. P-IoU performances are reported in Table 3c. Due
to the wider breadth and shallower depth of the dataset,
when segmentation masks are replaced by bounding boxes,
the neural network loses so much information for semantic
segmentation. Our method recovers more than 3% of P-
IoU on unseen classes in the 1-way 1-shot case. This result
implies that our method effectively enables robust meta-
training even in the challenging setting and improves the
meta-learning performance by a large margin. Qualitative
results on FSS-1000 are provided in the Supplementary.

4.3. VOC2COCO Results

Setup. As an extended test for the cross-dataset setup, we
additionally suggest the VOC2COCO setup and measure
the performance on that. The Pascal-VOC 2012 dataset has
20 classes, and the MS-COCO dataset [20] has 80 classes.
MS-COCO is more complicated and challenging than Pascal-
VOC. For example, MS-COCO contains 3.5 categories and
7.7 instances per image, while Pascal-VOC has 1.4 cate-
gories and 2.3 instances per image on average. Also, the
average size of objects of MS-COCO is smaller than that
of Pascal-VOC, which makes it harder to recognize them.

Method 1-shot 5-shot
Mean-IoU  Binary-IoU | Mean-loU Binary-loU
PANet (U) 21.85 58.66 28.11 60.24
Baseline 19.30 55.90 25.15 58.21
Ours 20.78 56.42 25.25 58.47

(a) Mean-IoU and Binary-IoU, VOC2COCO, Mask label @ Test

Method 1-shot 5-shot
Mean-loU  Binary-IoU | Mean-loU Binary-loU
PANet (U) 20.32 56.03 25.60 57.75
Baseline 18.22 53.71 22.99 55.87
Ours 19.81 55.00 23.61 56.73

(b) Mean-IoU and Binary-IoU, VOC2COCO, Box label @ Test

Table 6: Performance comparison on the 1-way 1-shot and
1-way 5-shot settings on VOC2COCO. During the test time,
segmentation mask (a) or box (b) labels are used as the
support supervision.

We utilize all 20 classes of Pascal-VOC for meta-training
and test on 60 classes of the COCO 2017 dataset, where the
test classes are not overlapped with those of the Pascal-VOC
dataset. The meta-training setting and metrics follow Pascal-
5¢, while the bounding box annotations in MS-COCO are
used for the weakly-supervised test.

Results. Mean-IoU and binary-IoU performances are re-
ported in Table 6. Our method achieves better performances
than the baseline on VOC2COCO. It shows that our method
improves few-shot segmentation performances on more real-
istic settings in which test (novel) classes have complicated
samples and a larger domain shift from base classes.

5. Conclusion

This work intends to accomplish more annotation-
efficient segmentation than the current few-shot segmenta-
tion. To this end, we suggest using bounding boxes instead of
segmentation masks during meta-training. With the proposed
pseudo trimap estimator and trimap-attention based proto-
type learning, our model enables weakly-supervised meta-
learning for semantic segmentation robust to label noise. The
favorable performance gain from various settings facilitates
tackling a broader semantic class segmentation.
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