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Abstract

Multi-camera tracking systems are gaining popularity in

applications that demand high-quality tracking results, such

as frictionless checkout. In cluttered and crowded envi-

ronments, monocular multi-object tracking (MOT) systems

often fail due to occlusions. Multiple highly overlapped

cameras are capable of recovering partial 3D information.

When used properly, 3D data can significantly alleviate the

occlusion issue. However, training a multi-camera tracker

demands a large-scale multi-camera tracking dataset with

diverse camera settings and backgrounds. These require-

ments make the collection of multi-camera tracking dataset

challenging and expensive. The cost of creating such a

dataset has limited the availability and scale of datasets

in this domain. Instead, we appeal to an auto-annotation

system to reduce the cost, which uses overlapped and cal-

ibrated depth and RGB cameras to build a 3D tracker and

automatically generates the 3D tracking results. The re-

sults are manually checked and corrected to ensure the label

quality, which is much cheaper than solely manual annota-

tion. Next, the 3D tracking results are projected to each

calibrated RGB camera view to create 2D tracking results.

In this way, we collect and annotate a large-scale densely

labeled multi-camera tracking dataset from five different en-

vironments. We have conducted extensive experiments us-

ing two real-time multi-camera trackers and a person re-

identification (ReID) model under different settings. This

dataset provides a reliable benchmark for multi-camera,

multi-object tracking systems in cluttered and crowded en-

vironments. We expect this benchmark to encourage more

research attempts in this domain. Our dataset will be pub-

licly released upon the acceptance of this work.

1. Introduction

Multiple object tracking (MOT) [7, 31] is one of the

fundamental research problems in computer vision. As
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Figure 1: The auto-annotation system consists of multiple

calibrated depth sensors and RGB cameras to build a 3D

tracker, which generates pseudo ground-truth 3D tracking

results. The tracking results are manually corrected and pro-

jected to each RGB camera view as tracking labels.

more efficient and powerful deep neural networks are con-

tinuously being developed, the accuracy of MOT systems

has been substantially improved in recent years. However,

monocular MOT systems still make tracking errors in clut-

tered and crowded environments, where occlusions of the

tracked objects often occur. Thus, such systems may be in-

adequate for applications that require highly accurate and

consistent tracking results, such as frictionless checkout in

retail stores or autonomous driving.

Recently, multi-camera systems have been widely de-

ployed in these applications [1]. The overlapped and cal-

ibrated cameras can considerably remedy the occlusion

issue. As a result, multi-camera tracking systems have

achieved much higher accuracy than single-camera track-

ing systems [48]. However, only a few small multi-camera

datasets are publicly available due to data collection and an-

notation challenges. The lack of high-quality training and

evaluation data makes it difficult to further improve current

multi-camera tracking systems.

In this paper, we collect and annotate a large-scale

multi-camera multi-object tracking dataset, which consists

of full-body bounding boxes and consistent tracking IDs

across all RGB camera views as well as the shared top-

down view. The labels are annotated by an auto-annotation

system, which utilizes depth sensors to construct a high-

performance 3D tracker. Figure 1 illustrates the overview
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of our system. It consists of multiple calibrated depth sen-

sors and RGB cameras. We follow the design in [44], where

the 3D tracker works on the projected top-down view of the

3D space constructed from depth sensors. We train a per-

son detector on the projected top-down view and follow the

tracking-by-detection framework [3] to build the 3D tracker.

The 3D tracker produces consistent and accurate tracking

results on the projected top-down view. We further ask hu-

man annotators to correct the 3D tracking errors, such as

ID switches and false-positive tracks. The corrected per-

frame 3D tracking results are projected to all synchronized

RGB streams using the camera parameters. Our experi-

ments show that the auto-annotation system can produce

high-quality tracking annotations (100% IDF1 and 99.9%

MOTA) and reduce the labor cost to 1/800 of the traditional

annotation methods.

We set up five challenging environments in our lab. With

the help of the auto-annotation system, we construct the

largest multi-camera multiple people tracking dataset so

far. The dataset is densely annotated, e.g., per-frame full-

body bounding boxes and person identities are available.

We evaluate two state-of-the-art real-time multi-camera per-

son trackers [45, 48] and a person re-identification (ReID)

model [50] on our dataset under various settings. Our ex-

periments demonstrate that the detectors, trackers, and Re-

ID models trained on publicly available datasets, such as

MS-COCO [29] or MSMT [40], do not perform well in

these challenging environments because of viewpoint dif-

ferences and domain gaps. However, adapting the models

using the training split of the data can significantly improve

the accuracy. We expect the availability of such large-scale

multi-camera multiple people tracking dataset will encour-

age more participants in this research topic. This dataset

is also valuable for the evaluation of other tasks, such as

multi-view people detection [20, 28] and monocular mul-

tiple people tracking [7]. To summarize, our contributions

are as follows:

• We construct the largest densely annotated multi-

camera multiple people tracking dataset to encourage

more research on this topic.

• We propose an auto-annotation system to produce

high-quality tracking labels for multi-camera environ-

ments in a fast and cost-efficient way.

• We conduct extensive experiments to reveal the chal-

lenges and characteristics of our dataset.

2. Related work

Approaches Multi-camera multi-object tracking has been

extensively studied in computer vision community. Pre-

viously, different graph-based approaches have been pro-

posed to solve the data associations across different frames

and cameras [5, 46, 18, 35, 38, 11, 41, 12, 17]. Re-

cent approaches [33, 43, 37, 22] attempt to apply deep

ReID features for the data association. Extra efforts are

needed to handle cross-camera appearance changes [23,

21]. These methods can be applied to environments with

non-overlapping cameras, but they cannot explicitly utilize

the camera parameters for cross-camera association and 3D

space localization.

Other approaches adopt camera calibration for track-

lets merging and cross-camera association. Probabilistic

occupancy map (POM) [15] is one of the early represen-

tative studies. POM provides a robust estimation of the

ground-plane occupancy, which is the key to building a

high-performance tracker in crowded environments. Also,

homography [13] is employed to merge head segments from

all camera views to build a head tracker. Later, deep occlu-

sion [4] extends this idea by utilizing Convolutional Neural

Network (CNN) and Conditional Random Field (CRF) to

reason the occlusions.

Recently, 3D pose estimation and 3D person detection

methods are utilized for multi-camera people tracking [48].

3D pose can be estimated [36, 10] by merging 2D skele-

ton estimations from multiple 2D camera views, using a 3D

regression network or graph matching. Meanwhile, multi-

view person detection approaches [20, 28, 34, 19] utilize

camera calibration to merge multiple 2D detections or fea-

tures to generate more reliable 3D person detection results.

These approaches heavily depend on the quality of the 2D

person detection or 2D pose estimation. These 3D poses

and detections can be utilized for 3D trackers.

Datasets Several multi-camera tracking datasets with

highly overlapping cameras, have been adopted in multi-

target multi-camera tracking research. Among them,

PETS2009 [14], Laboratory [15], Terrace [15], Passage-

way [15], USC Campus [25] and CamNet [47] have been

collected by low-resolution cameras and only have a small

number of frames and person identities (IDs). EPFL-

RLC [9], CAMPUS [42] and SALSA [2] are released more

recently. However, EPFL-RLC only has 300 annotated

frames, and CAMPUS comes without 3D ground truth.

WILDTRACK dataset [8] consists of high-quality annota-

Dataset #
of

Env
s

C
am

er
as

FPS O
ve

rla
p

C
al

ib GT
(frames)

Length

(minutes)

USC Campus[25] 1 3 30 No No 135,000 25

CamNet[47] 6 8 25 Yes No 360,000 30

DukeMTMC[32] 1 8 60 No Yes 2,448,000 85

SALSA[2] 1 4 15 Yes Yes ∼1,200 60

WILDTRACK[8] 1 7 60 Yes Yes ∼7×9,518 60

MMPTRACK (ours) 5 23 15 Yes Yes ∼2,979,900 576

Table 1: Representative multi-camera person tracking

datasets. FPS stands for frame per second.
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tions of both camera-view and 3D ground truth, as well

as more person identities. However, the annotations are

sparse and limited to 400 frames. DukeMTMC [32] is re-

leased with over 2 million frames and more than 2700 iden-

tities. However, there are almost no overlaps among differ-

ent cameras. Table 1 compares our dataset (MMPTRACK)

with several existing datasets. MMPTRACK is captured

with a large number of calibrated overlapped cameras in

indoor environments, which aligns better with the applica-

tions such as frictionless checkout. MMPTRACK is much

larger than the existing data both in terms of the video

length and the number of annotated frames. The videos

are labelled frame-wise with full-body bounding boxes and

consistent person identities cross all cameras.

3. Dataset collection

3.1. Dataset statistics

The statistics of the collected dataset are summarized in

Table 2. Our dataset is recorded with 15 frames per second

(FPS) in five diverse and challenging environments. Over-

all, we collect about 9.6 hours of videos, with over half a

million frame-wise annotations for each camera view. This

is by far the largest publicly available multi-camera multiple

people tracking (MMPTRACK) dataset.

Envs Retail Lobby Industry Cafe Office Total

# of cameras 6 4 4 4 5 23

Train (min) 84 65 52 14 46 261

Validation (min) 43 32 31 28 19 153

Test (min) 45 32 32 31 22 162

Total (min) 172 129 115 73 87 576

Table 2: Statistics of Multi-camera Multiple People Track-

ing (MMPTRACK) dataset.

Figure 2 shows examples of tracking labels of each cam-

era view from two different environments. Although both

environments are crowded and cluttered, our ground truth

exhibits high-quality full-body bounding boxes and consis-

tent person IDs across all camera views.

3.2. Environment setup

We set up 5 different environments in our lab, i.e., Cafe

Shop, Industry, Lobby, Office and Retail. We install Azure

Kinect cameras in every environment with fixed positions

and view angles. Figure 3 shows the field-of-view overlaps

among different cameras on the ground plane within each

environment. Azure Kinects can record RGB and depth

streams simultaneously. Their RGB streams are used as

the default RGB cameras for our dataset (see Figure 1)1.

1Other RGB cameras can also be used for data collection as long as

calibrated with existing Azure Kinect cameras.

Depth and RGB streams are recorded synchronized within

and across Azure Kinects.

3.3. Camera calibration

Intrinsic parameters We obtain Azure Kinect intrinsic pa-

rameters directly from its SDK. We denote intrinsic param-

eters as I .

Extrinsic parameters In our settings, one camera has over-

lapping field of view with at least another camera. We use

ArUco markers from OpenCV library2 as reference points

in the world coordinate system. We build a connected bi-

partite graph, where cameras and ArUco markers are ver-

tices. If ArUco marker mi is within the view of camera cj ,

we will add an edge eij between them. Figure 4 shows an

example of the connected bipartite graph for calibration of

the Industry environment. Let P =
⋃

Pi be the set of de-

tected corner points of all markers (Pi is the corners from

i-th marker). Then, the set of extrinsic parameters E are

obtained by optimizing

E∗ = argmax
E,M

|P |
∑

i=1

C
∑

c=1

✶
c
i∥p

c
i − Ic ∗ Ec ∗mi∥

2, (1)

where ∥ · ∥ denotes Euclidean distance, ✶c
i is an indicator

function, whose value equals to 1 only if point pi is vis-

ible in camera view c, M = {mi, i = 1, · · · , |P |} de-

notes the markers’ corner points in world coordinate sys-

tem. The graph optimization approach proposed in [26] is

implemented to solve Eq. (1).

3.4. Dataset collection

Our dataset is recorded in four half-day sessions. In each

session, we hired seven different subjects to participate.

Each subject can act improvisationally as long as their ac-

tion fits the environment setting. For instance, in Retail en-

vironment, they are free to perform any shopping behaviors,

e.g., pushing shopping carts, holding baskets, and standing

in a queue for checkout; while in Cafe environment, they

can sit together, drinking , chatting, etc. Following such

instructions, the collected dataset covers a wide variety of

people’s behaviors. In total, we have 28 subjects, with dif-

ferent ages, genders, and ethnicities, which provides enough

fairness and diversity to our dataset.

3.5. 3D auto­annotation system

Our 3D auto-annotation system utilizes depth streams to

perform high quality 3D person tracking. The workflow of

the system is described in Algorithm 1. We build our 3D

tracker using data released in [44], which does not have any

overlap with the current dataset in terms of environment or

2https://docs.opencv.org/4.x/d5/dae/tutorial_

aruco_detection.html
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Figure 2: Examples of the images and tracking annotations of our dataset. Left and Right images are from Industry and

Lobby environments, respectively.

Cafe Shop Industry Lobby Office Retail

Figure 3: Overlaps among camera views of each environ-

ment on the ground plane. Each red dot represents the lo-

cation of a camera. The X and Y axes represent the size

of each environment in terms of pixels (each pixel unit is

20mm).

Figure 4: Bipartite graph from cameras and ArUco markers

when calibrating cameras in Industry environment.

subject. The top-down view image is constructed from the

merged 3D point cloud. This design avoids environment-

dependent factors, such as lighting, camera angles, etc.

Therefore, the 3D tracker can be easily generalized and ap-

plied to different environments.

Algorithm 1 Workflow of RGBD Auto-annotation System

Input: Synchronized RGB and depth steams and camera parameters C

Output: Full-body person bounding boxes and IDs in each camera view

procedure AUTO-ANNOTATION

B ← list() ▷ Person bounding boxes

while All Streams not end do

R← set() ▷ Synchronized RGB images

D ← set() ▷ Synchronized Depth images

for stream in Streams do

r, d← stream.read()
add(r, R)

add(d, D)

end for

P ← PointCloudGen(R, D, C)

Td ← TopdownViewGen(P ) ▷ Top-down view of the scene

B ← PersonDetector(Td)

Tr ← 3DTracker(B, P ) ▷ 3D Tracklets

Bc ← Projection(Tr , C) ▷ Camera-view bounding boxes

append(Bc, B)

end while

return B

end procedure

Point cloud reconstruction We reconstruct the point

cloud of the whole scene from calibrated and synchronized

depth cameras. Given the intrinsic parameters I and extrin-

sic parameters E, the point cloud P is calculated as follows:

P =

C
⋃

c=1

⋃

i

⋃

j

(Ec)−1 ∗ (Ic)−1 ∗
[

i, j, dci,j
]T

(2)

where i and j index over all valid locations and dcij denotes

camera c’s depth measurement at location (i, j).
Top-down view projection We discretize the point cloud

P into a binary voxel set V. Each voxel Vi,j,k covers a cube

with a volume of 20mm × 20mm × 20mm . Vi,j,k = 1 if

and only if there exists at least one point Pi′,j′,k′ , such that

it locates inside the cube covered by Vi,j,k.

We set the world-coordinate system’s X and Y axes par-

allel to the ground plane and the Z axis vertical to the

ground. The top-down view image Td can be obtained by

projecting V onto the X-Y ground plane. More specifically,

its value at position (m,n) is computed as:

Td(m,n) = argmax
z,V (m,n,z)=1

Vm,n,z, (3)

which can be perceived as the height of filled voxels within

each cube Vm,n,(·).

Top-down view person detection We design a simple

two-stage top-down person detector. Recall that pixel val-

ues of Td (Eq. (3)) represent the height of each location.

Therefore, in the proposal generation stage, we extract all

local maxima from the top-down view image Td. For each

candidate at (i, j), we crop a 50×50 square region centered

around it. The cropped image region is fed into a Convo-

lutional Neural Network (a variant of ResNet-18), which

serves as a person classifier in the second stage.

3D tracker The inputs of our tracker are top-down view

detection boxes with corresponding detection scores and

cropped point clouds. At the beginning frame, we ini-

tialize a tracklet when the detection score of a bounding

box is above a threshold. For the following frames, we

construct the cost matrix based on spatial and appearance

(color histogram) distance between each tracklet and the de-

tected bounding boxes. Association results are obtained by
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Envs IDF1↑ MOTA↑ FP↓ FN↓ IDs↓

Cafe 100 100 0 0 0

Industry 100 100 0 0 0

Lobby 100 100 0 0 0

Office 100 100 0 0 0

Retail 100 99.9 0 4 0

Table 3: Performance of our 3D tracker on one testing se-

quence.

employing Hungarian Matching algorithm. For each un-

matched detection bounding box, we generate a new candi-

date tracklet.

Camera-view projection The height h of each tracked

person can be estimated from the local maxima of its top-

down bounding box. We fit a cube with a size of 100cm ×
100cm × h centered at each top-down tracked person. The

3D bounding box (cube) is projected to each camera view.

The 2D full-body bounding box in each view is the tightest

rectangle that encloses the projected 3D bounding box in

this view. In this way, we propagate the tracking results

from 3D space to all RGB cameras.

3.6. Annotation and quality control

The 3D tracker may still introduce errors occasionally.

We manually fix all tracking errors before propagating the

results to each RGB camera view. The most common er-

rors in our 3D tracker are tracklet ID switch and false-

positive person detection. We request annotators to cor-

rect ID switches and remove false-positive tracklets from

3D tracking results. Notice this process is relatively cost-

efficient because no bounding box labeling is required, and

all the corrections are performed at the tracklet level.

Based on our experiments, each annotator can label

around 600 frames (including boxes and IDs) per day for

videos with around 5 to 6 persons inside. Manually label-

ing all the videos in our dataset costs 414 labeller days if

annotating every 10 frames and interpolating the tracking

labels to remaining frames. In comparison, we only need

one labeller work less than 5 hours to correct all the errors

of our 3D tracker.

To test the quality of the auto-generated ground truth,

we sample 1, 000 continuous frames from each environment

and manually label each frame. Table 3 summarizes the

evaluation results of our corrected auto-generated ground

truth against manual labels. Only four human-labeled boxes

mismatch the ground truth of our dataset, which is tolerable

given that humans can also make errors.

4. Benchmarks

In this section, we discuss the evaluation metrics, evalu-

ated approaches and experimental results on both tracking

and ReID tasks.

4.1. Evaluation metrics

For tracking task evaluation, we follow the widely

adopted MOT metrics [7]. We report the false positive (FP)

and false negative (FN) detections, which are also consid-

ered in multiple object tracking accuracy (MOTA). MOTA

further deals with identity switches (IDs) and is extensively

used in benchmarking different trackers. Besides, we also

report IDF1, which measures the ID consistency between

the predicted trajectories and the ground truth using ID pre-

cision and ID recall. IDF1 can assess the trackers’ ability on

tracklet association. We report all performance metrics on

the top-down view for multi-camera tracking models. We

follow the settings in [8], where a radius of one meter is

used as the distance threshold when matching detections

and ground truth.

For the ReID task, we adopt the widely used Rank-1 ac-

curacy (R-1) and mean Average Precision (mAP) [50] to

compare the model’s performance under different settings.

4.2. Baselines trackers

We evaluate two state-of-the-art online real-time multi-

camera trackers on our datasets. We focus on evaluating

online real-time trackers because they can better reflect the

core detection and tracking performance, and we can better

observe the challenges in our dataset in these evaluations.

End-to-end deep multi-camera tracker (DMCT) In

this baseline, we employ the end-to-end approach (DMCT)

proposed in [45]. This approach estimates the ground point

heatmap of each candidate at each camera view, projects

the ground point heatmaps from all camera views to the

ground plane, and fuses all the heatmaps into a ground-

plane heatmap. Similar to [45], we train a variant of Cor-

nerNet [27] with pixel-wise Focal Loss [27] as our ground-

point estimation model. The tracker works on the fused

ground-plane heatmap.

Given the fused ground-plane heatmap H , two differ-

ent approaches are utilized to obtain top-down person de-

tections. The first approach is rule-based. It directly ap-

plies Gaussian blur to H and extracts local maxima as per-

son detections for tracking. In this approach, the heatmaps

{H1, H2, · · · , HC} from C camera views are projected to

the ground plane using homographies between the ground

plane and all camera views. For each location in fused top-

down heatmap H , its value is the maximum over all camera

view’s projected heatmap.

The second approach trains a YOLOV5 [24] detector as

top-down person detector. The second approach is more ex-

pensive than the first approach, but it is much cheaper than

the sequence-based deep glimpse network in [45]. In this

approach, we first find the local maxima at each camera-

view heatmap Hi as candidate points. These points are

projected to the ground plane, and each point generates a

Gaussian distribution around it to reduce noise. We keep
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Figure 5: Examples of the fused ground-plane images as inputs to person detector. The bounding boxes are the ground truth.

the maximum value from all Gaussian distributions for each

location in the projected top-down image. Figure 5 shows

examples of fused ground-plane heatmaps from the five en-

vironments. Although the five environments are configured

with different RGB camera settings and backgrounds, their

top-down heatmaps look similar. Our experimental results

show that the top-down detector can easily generalize across

different environments.

We also label another external dataset using images from

OpenImage3. Specifically, we sample a subset of OpenIm-

age containing persons (about 600, 000 images), then man-

ually label the ground point of each person in these images.

In our experiments, we also study the impact of adding ex-

ternal data when training our person ground point detector

on tracking performance.

The variants of DMCT approach include: DMCT trains

the ground-point estimation model on the training split of

MMPTRACK and the rule-based approach for top-down

person detection; DMCT-TD uses the same ground-point

estimation model with DMCT and the deep learning-based

top-down person detector; DMCT-Ext uses the same rule-

based top-down person detection with DMCT, and it trains

ground-point estimation model with both training split of

MMPTRACK and the extra manually labeled OpenImage

dataset; DMCT-Ext-TD uses the same ground-point esti-

mation model with DMCT-Ext, and the deep learning-based

top-down person detector.

Tracking by 3D skeletons (VoxelTrack) This baseline

performs tracking with estimated 3D body joints, which

contain more spatial information than the single ground

point. It is built on top of a state-of-the-art 3D pose esti-

mation method VoxelPose [36]. It requires neither camera-

view 2D pose estimation nor cross-camera pose association

as in previous works, which is error-prone. Instead, all hard

decisions are postponed and made in the 3D space after

fusing 2D visual features from all views, which effectively

avoids error accumulation. In addition, the fused represen-

tation is robust to occlusion. A joint occluded in one camera

view may be visible in other camera views.

We follow a standard pipeline [49] for tracking the 3D

poses. We initialize every estimated 3D pose as a tracklet.

For the following frames, we use the Hungarian algorithm

to assign the 3D poses to the existing tracklets, where the

3https://storage.googleapis.com/openimages/web/

index.html

matching cost is the sum of the Euclidean distance for all

the 3D joints. We reject the assignment if the spatial dis-

tance between the tracklet and the 3D pose is too large. An

unmatched 3D pose will be assigned as a new tracklet. An

existing tracklet will be removed if it is not matched to any

3D poses for more than 30 frames.

Following the settings of [36], the 2D heatmap esti-

mation model is trained on the COCO dataset. Since

MMPTRACK lacks 3D pose labels, we fine-tune the 3D

model using synthetic data instead of real data. Calibra-

tion parameters of MMPTRACK are employed to generate

pseudo-3D human poses.

4.3. Baseline ReID models

We evaluate a person re-identification (ReID) model pro-

posed in FastReID [16] on the MMPTRACK dataset to test

model robustness. We study the challenges of learning dis-

criminative ReID features in a cluttered and crowded en-

vironment under multiple cameras. Our baseline model is

built upon a commonly used baseline model [30]. We fur-

ther incorporate Non-local block [39], GeM pooling [6] and

a series of training strategies (see details in [16]).

We uniformly sample the MMPTRACK dataset every 32

frames. For testing, we divide each sampled sequence into

two halves. We use the cropped persons in the first half as

the query set and those in the second half as the gallery set.

Although there are only a small number of person identities

in this dataset, the diverse camera angles sampled cluttered

background and various person actions make ReID a chal-

lenging task on our dataset.

We evaluate three training configurations of the above

model on the testing split of MMPTRACK. Specifically, for

the Generalization setting, we directly evaluate the model

trained with the person ReID dataset MSMT [40]. For the

Adaptation setting, we perform supervised fine-tuning of

the previous model with cropped persons on the training

split of MMPTRACK. For the Supervised setting, we train

the person ReID model from scratch using only the cropped

persons in the training split of MMPTRACK.

4.4. Benchmark results and discussions

4.4.1 Tracking performance on MMPTRACK

We evaluate the two real-time baseline trackers on the col-

lected MMPTRACK dataset.
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Method IDF1↑ MOTA↑ FP↓ FN↓ IDs↓

VoxelTrack 55.2 79.6 43,776 110,239 4,365

DMCT 60.2 91.5 34,450 41,920 2,158

DMCT-TD 74.8 93.6 15,080 42,854 620

DMCT-Ext 61.1 92.5 30,789 36,631 1,953

DMCT-Ext-TD 77.5 94.8 19,235 28,505 567

Table 4: Tracking performance on validation split.

Method IDF1↑ MOTA↑ FP↓ FN↓ IDs↓

VoxelTrack 50.8 76.8 49,881 142,380 4,922

DMCT 56.0 88.8 39,715 52,559 2,677

DMCT-TD 68.1 93.2 16,023 40,606 935

DMCT-Ext 56.6 89.0 42,413 48,039 3,013

DMCT-Ext-TD 74.1 94.6 7,005 38,296 641

Table 5: Tracking performance on testing split.

Table 4 and Table 5 include the results of different base-

line trackers on the validation and testing splits of our

dataset respectively. The results suggest that the top-down

person detector trained with a deep learning model can sig-

nificantly boost the performance of baseline DMCT, espe-

cially for IDF1 and IDs. With an extra of 600, 000 images

from OpenImage, DMCT-Ext shows slight improvements

over DMCT in terms of IDF1 and MOTA. DMCT-Ext-

TD improves IDF1 by 2.7 over DMCT-TD. However, the

MOTA only increases 1.1. Compared with VoxelTrack,

which is only virtually fine-tuned on MMPTRACK, all vari-

ants of DMCT perform better. We believe the performance

gap is due to the large domain differences of our dataset

and other public datasets such as MS-COCO, on which the

VoxelTrack is trained. Since we can easily generate a large-

scale multi-camera multi-object tracking dataset for an en-

vironment using our auto-annotation system, we can train

a model that adapts to a given environment with improved

accuracy. However, the accuracy of the baseline methods is

still not high enough to meet the requirements of demand-

ing applications, particularly for IDF1. Further research is

needed in this domain.

Ablation studies We study the impact of different train-

ing splits on our baselines’ performance. Since Voxel-

Track can only be virtually fine-tuned on our dataset, we

only cover the ablation study results of different variants of

DMCT. We attempt to study the impact of environment-

specific data. In particular, we train the ground point esti-

mation models and the top-down detectors with and without

each environment-specific data. Then, we report the perfor-

mance in each environment individually.

Table 6 shows the tracking evaluation metrics without

the top-down detector. Generally, without each environ-

ment’s data, the tracking performance drops significantly.

This is particularly true in terms of the IDF1 metric. Also,

external training data can improve the tracker’s performance

for most environments when environment-specific data is

absent. However, with environment-specific data, external

data leads to a limited performance gain.

Table 7 further studies DMCT’s performance when

equipped with a deep learning-based top-down detector. A

tracker with a deep learning-based top-down detector has

better generability. Without external data, models trained

with environment-specific data show better performance in

Industry and Retail in terms of IDF1. However, models

trained without environment-specific data even show better

IDF1 in Cafe, Lobby and Office. Also, when extra OpenIm-

age data is utilized to train a ground point estimation model,

the performance gain is limited, and in some environments,

even worse than the results without the external data. It

is generally believed that a pre-trained model on external

data may provide good initialization when training the deep

model. However, the domain gap between MMPTRACK

and OpenImage makes the pre-training step insignificant.

Instead, the large-scale in-domain MMPTRACK dataset

can train a model with better performance. Meanwhile,

compared with Table 6, the results in Table 7 also suggests

that the deep-learning-based top-down detector reduces the

performance gap caused by external ground-point data.

4.4.2 ReID performance on MMPTRACK

We report the results of the ReID model with the three dif-

ferent settings discussed in Section 4.3. The MSMT ReID

dataset, which is employed to pretrain our Generalization

and Adaptation model, consists of more than 4, 000 indoor

and outdoor person identities. The evaluation results are

summarized in Table 8. Even though our training dataset

consists of only 14 different person identities, training from

scratch still outperforms the Generalization model. Notice

that the person identities do not overlap in training and test-

ing split. This shows that our large-scale dataset can help

learn discriminative ReID features. Also, the fine-tuned

model (Adaptation) is superior to the model trained from

scratch (Supervised). Meanwhile, the performance of all

models varies across different environments. All models

perform poorly in Retail environment due to its cluttered

background. In general, the experiment shows that Re-ID

is very challenging in cluttered and crowded environments

in multi-camera settings. Our large-scale dataset can help

learn a more discriminative Re-ID feature that is adapted to

a given environment. However, the performance is still far

from satisfactory in a challenging environment. We believe

that more identities are needed to learn more discriminative

Re-ID features in these challenging environments.

5. Conclusion

In deep learning, high-quality labelled data is key to

many tasks. This is particularly the case for multi-camera

multiple people tracking, where trackers’ performances are

profoundly impacted by environment settings. In this work,
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Method
w/Env
Data

Env
Without external data With external data

IDF1↑ MOTA↑ FP↓ FN↓ IDs↓ IDF1↑ MOTA↑ FP↓ FN↓ IDs↓

DMCT ✗ Cafe 39.4 87.7 12,012 7,589 1,158 56.9 91.8 6,792 6,382 701

DMCT ✓ Cafe 64.2 95.9 2,691 4,063 162 61.3 96.0 2,104 4,409 297

DMCT ✗ Industry 34.2 78.4 18,486 20,548 1,637 42.7 82.7 11,700 19,858 962

DMCT ✓ Industry 61.7 90.5 9,107 8,431 306 64.5 91.2 9,188 7,155 233

DMCT ✗ Lobby 47.1 86.4 13,774 12,223 1,136 50.6 89.6 12,574 7,425 720

DMCT ✓ Lobby 69.4 94.5 3,343 7,361 318 69.2 95.1 2,445 7,007 247

DMCT ✗ Office 50.0 89.0 3,287 8,577 591 40.0 85.8 2,849 12,569 735

DMCT ✓ Office 68.0 93.7 1,514 5,625 67 66.8 93.9 1,454 5,304 127

DMCT ✗ Retail 27.7 60.7 79,443 15,788 3,170 30.4 70.7 50,713 20,060 2,667

DMCT ✓ Retail 45.7 85.8 17,795 16,440 1,305 49.4 88.3 15,598 12,756 1,049

Table 6: Tracking performance of each environment on validation split. Detection model trained with and without domain-

specific data are compared. Without any environment-specific data, trackers’ performance drops significantly.

Method
w/Env
Data

Env
Without external data With external data

IDF1↑ MOTA↑ FP↓ FN↓ IDs↓ IDF1↑ MOTA↑ FP↓ FN↓ IDs↓

DMCT-TD ✗ Cafe 77.4 95.7 503 6,635 39 76.0 96.8 488 4,885 36

DMCT-TD ✓ Cafe 76.4 96.9 740 4,385 62 74.8 97.1 742 4,119 53

DMCT-TD ✗ Industry 73.8 87.7 7,400 15,661 62 74.2 90.0 7,714 11,039 67

DMCT-TD ✓ Industry 79.0 91.1 7,692 8,947 64 79.4 92.6 8,021 5,812 47

DMCT-TD ✗ Lobby 88.4 96.4 520 6,587 83 82.4 97.2 115 5,419 54

DMCT-TD ✓ Lobby 85.7 96.2 31 7,520 49 86.8 97.3 145 5,303 25

DMCT-TD ✗ Office 85.2 93.7 714 6,420 43 85.9 97.6 884 1770 38

DMCT-TD ✓ Office 81.3 97.4 787 2,182 42 89.0 98.0 994 1,237 47

DMCT-TD ✗ Retail 56.4 87.7 8,622 21,549 592 57.8 85.9 13258 21397 747

DMCT-TD ✓ Retail 58.5 89.6 5,820 19,820 403 65.3 91.3 9333 12034 395

Table 7: Tracking performance of each environment on validation split with the top-down detector. We compare the detection

model trained with and without each domain-specific data, which demonstrate similar performance.

Env
Generalization Adaptation Supervised

mAP R-1 mAP R-1 mAP R-1

Cafe 48.82 77.78 63.61 88.01 59.55 87.80

Industry 39.42 65.84 51.39 79.15 44.77 76.26

Lobby 46.08 72.63 60.36 87.43 51.63 82.79

Office 42.89 73.47 58.72 80.64 51.20 76.79

Retail 28.46 49.33 33.25 58.29 31.64 57.43

Table 8: Person re-identification (ReID) performance of

each environment on the testing split. We report the per-

formance of three different training settings.

we build the largest multi-camera multiple people tracking

dataset with the help of an auto-annotation system, which

employs various calibrated depth sensors and RGB sen-

sors to construct a robust 3D tracker and generates reli-

able multi-camera tracking ground truth. Our dataset of-

fers high-quality, dense annotations for every frame. We

study the performance of two real-time trackers and one ro-

bust ReID model on our dataset. The results suggest that a

large-scale dataset allows tracking systems and the ReID

model to perform better. We believe these findings will

benefit real-world tracking systems. For example, we can

deploy one auto-annotation system, collect data and train

adapted models, which will be useful for large chain retail-

ers whose interior design are similar across stores. On the

other hand, the experiments also show the challenges of de-

signing a highly accurate multi-camera tracking system in a

cluttered and crowded environment, and the baseline meth-

ods are far from meeting the accuracy requirements of the

demanding applications. We hope our dataset can encour-

age more research efforts to be invested in this topic.
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