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Abstract

We present CoopNet, an approach that improves the co-
operation of co-trained networks by dynamically adapting
the apportionment of gradient, to ensure equitable learn-
ing progress. It is applied to motion-aware self-supervised
prediction of depth maps, by introducing a new hybrid
loss, based on a distribution model of photo-metric recon-
struction errors made by, on the one hand the depth +
odometry paired networks, and on the other hand the op-
tical flow network. This model essentially assumes that
the pixels from moving objects (that must be discarded
for training depth and odometry), correspond to those
where the two reconstructions strongly disagree. We jus-
tify this model by theoretical considerations and exper-
imental evidences. A comparative evaluation on KITTI
and CityScapes datasets shows that CoopNet improves or
is comparable to the state-of-the-art in depth, odometry
and optical flow predictions. Our code is available here:
https://github.com/mhariat/CoopNet.

1. Introduction
Humans are amazingly competent at inferring 3D struc-

tures of a scene from monocular images. This ability is ac-
quired from the very first day of their lives, when infants
learn to understand the geometric properties of their envi-
ronment and its regularities. Then, they learn to interpret
2D images as 3D scenes by making their visual perception
consistent with their inner understanding of the world.

This mechanism can be emulated with self-supervised
learning. To do so, intermediate visual tasks such as depth,
optical flow and camera pose estimations are performed by
deep neural networks to reproduce a scene from different
viewpoints. This whole pipeline can be trained in an end-
to-end manner, using the consistency between the observed

images and synthesised views as the supervisory signal [43,
8]. It will only perform well if the intermediate estimations
are close enough to their ground truth.

Self-supervision has the advantage that the underlying
process producing the visual tasks is more robust and can
generalise better to new unknown data compared to di-
rect supervision setting with available ground-truth data [6],
where it can be hard to avoid over-fitting due to the lack
of constraints. Self-supervised networks have to develop
both geometric and contextual reasoning skills, attributes
that are far less dataset dependent, to correct the inconsis-
tencies of the view reconstruction. Self-supervision, on top
of its healthy training conditions, brings a lot of flexibil-
ity. It allows to learn from a much larger scope of data as
ground-truth data are not required. Fine-tuning can addi-
tionally be stacked within an incremental learning strategy
with only minor manageable time and memory increases.

In our work, we are particularly interested in depth esti-
mation. However, other intermediate visual estimation such
as odometry or optical flow will also be considered and as-
sessed with appropriate metrics. We will use only monocu-
lar images in order to force visual task estimations to lever-
age contextual information as much as possible to solve am-
biguities, and because it only requires a cheap and ubiqui-
tous monocular camera.

The view synthesis training strategy requires to face sit-
uations such as texture changes, light reflections and oc-
clusions amongst others. But the most challenging issue
would certainly be to deal with moving objects, since the
warping transformation assumes the scene to be static, and
moving regions can pollute the learning process with mis-
leading high reconstruction errors.

Our contribution is to propose a new strategy relying on
the cooperation between the Optical Flow, the Depth and
the Pose networks during the learning process. Basically,
regions for which these networks disagree on their view
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syntheses are removed from the training samples when nec-
essary. Our completely self-supervised training strategy is
assessed on KITTI [9] and Cityscapes [4]. Although sim-
ple, our method outperforms the current state-of-the art un-
supervised training strategies dealing with moving objects
by a substantial margin. It also competes with methods
that make use of semantic information coming from off-
the-shelf algorithms.

2. Related Work
Self-supervised Learning framework. Recently, many re-
search works on unsupervised monocular depth prediction
have emerged with the willingness to reduce the gap with
fully-supervised methods. The principle is based on the
warping image transformation procedure [8, 17]. A target
view at time t is reconstructed from a source view at time
s of the same scene by calculating a warped image Îs. The
chosen sources timestamps s are surrounding the target one
t, and generally set to

{
t−1, t+1

}
. The supervision signal

used to train the neural network is:

L =
∑
σ

∑
s

∑
pσ

Φ
(
Iσt (pσ), Î

σ
s (pσ)

)
(1)

With the photo-metric error function Φ defined as:

Φ (x, y) = α
1− SSIM (x, y)

2
+ (1− α) |x− y| (2)

where SSIM is the structural-similarity [38] and σ is a scale
index, since intermediate downscale estimations are also
considered in the process to address the gradient locality
problem caused by the bilinear interpolation [17]. Here Iσ

refers to the resized version of image I with a downscale
factor of 1

2σ , and pσ is the pixel index of images resized at
scale σ. In the remainder of the paper, we will drop the σ
for better readability.

Now, depending on the objective, the warped image Îs
can be obtained in two different ways. One introduced by
[43] and using the combination of a depth network Dθ and
a camera pose network Tα, to apply the re-projection for-
mula:

Îθ,αs (p) = Is

(
KT̂t→sD̂t(p)K

−1p
)

T̂t→s =
[
R, t

]
∈ SE (3)

(3)

where K is the calibration matrix, T̂ is the displacement
matrix predicted by Tα, and D̂ is the depth map predicted
by Dθ.
And another one [31, 42] using an optical flow network Fδ

that directly predicts the displacement vector Fδ:

Îδs (p) = Is (p+ Fδ(p)) (4)

Accounting for Motion. Unlike the warping of Eq. 4,
which does not care for the origin of motion, the warping
of Eq. 3 is no longer valid in moving regions, correspond-
ing to objects that have a displacement on their own. It then
makes sense to define the rigid flow as the apparent mo-
tion flow induced by the camera motion only, under rigid
assumption, and calculated as:

Fθ,α(p) = KT̂t→sD̂t(p)K
−1p− p (5)

Inside moving object regions, even though depth and
pose predictions are correct, the photo-metric Loss Φ will
render wrong values and disrupt the back-propagation pro-
cess within pose and depth networks. There are two ways to
fix this issue. Either one adds a residual correction to T̂t→s

in order to account for potentially moving objects as done
by [26] and [11]. Or one can also decide to remove moving
object pixels from the loss L in Eq. 1. This is the strategy
that we decide to follow in this paper.

Being able to detect the moving regions of an image is a
real challenge. Hence, several methods [2, 24] chose to rely
on an off-the-shelf instance segmentation algorithms [14]
to get rid of potential moving objects. A strong limitations
here is the lack of generalisation. Indeed, these off-the-
shelf algorithms are trained on different datasets [29], as the
mainstream ones used in monocular depth estimation don’t
offer enough annotated ground-truth data. Some works tried
to overcome this issue either by incorporating the instance
segmentation part into the learning pipeline [23], with the
off-the-shelf algorithm predictions used as the ground-truth
data. Or by using the feature maps of the off-the-shelf net-
work to drive [28, 13] the different visual task networks.
In both cases the issue still remains. Besides, these meth-
ods are not compliant with our fully self-supervised learn-
ing setting. We want to be able to keep learning on the fly
and benefit from a large scope of data.

Closely related to our work, [3] warps an image using the
two orthogonal ways from Eq. 3 and Eq. 4. The supervision
signal is then modified as:

LGLNet =
∑
s,p

Ψ
(
It (p) , Î

θ,α
s (p) , Îδs (p)

)
(6)

with Îθ,αs and Îδs respectively given by Eq. 3 and Eq 4, and
Ψ is the adaptive photo-metric loss:

Ψ(x, y, z) = min (Φ (x, y) ,Φ (x, z)) (7)

This approach therefore tries to detect moving pixels by
the difference between the optical flow and rigid flow pre-
dictions, assuming a worse prediction by the rigid flow.
Other approaches such as [40, 41, 30, 27, 25, 7] propose to
infer a moving object mask using a pre-determined metric
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related to the geometric inconsistency between the optical
flow and the rigid flow.

Following the idea of [3], our contribution, rather, incor-
porates a loss-oriented component as part of the decision on
moving pixels, while taking care of the different progres-
sion speeds between networks to make them benefit from
each other in the best way. Additionally, we continuously
adapt our decision criterion along the training process using
a quantile based approach.

3. Limits of the adaptive photo-metric loss
3.1. Instability

The goal of the adaptive photo-metric loss of [3] is to
co-train, on the one hand the pair (Dθ, Tα) and, on the
other hand Fδ . Since the loss distributes the pixel errors to
both networks, according to argminy,z (Φ(x, y),Φ(x, z)),
the networks are actually competing against each other. All
things being equal, the optical flow Fδ is intrinsically better
at learning from the photo-metric loss than (Dθ, Tα), as the
re-projection (Eq. 3) is more constrained compared to Eq. 4.
We will call this property the intrinsic bias throughout the
paper. This unbalanced learning capacity between the two
contestants is worsen over the training epochs. Indeed, the
Ψ operator splits the set of pixels in two parts based on the
sign of the random variable ∆ defined as:

∆(p) = Φ
(
It(p), Î

θ,α
s (p)

)
− Φ

(
It(p), Î

δ
s (p)

)
(8)

The probability density function f∆ is approximately
Gaussian. In [3], pixels for which ∆ has non-zero nega-
tive values are used to train the pair (Dθ, Tα), whereas the
rest of the pixels train Fδ .

Figure 1: Density models of ∆ used in our work, for all the
pixels (black), rigid pixels (blue dashed), and mobile pixels
(red dashed). This is the result of the statistical analysis of
∆ on all the images of KITTI and highlights the intrinsic
bias of the Gaussian distribution, the moving pixels follow-
ing a bimodal distribution centred on both sides of the tails
and the rigid pixels located around the mean value. Note
that since rigid pixels are the vast majority, µrigid ≊ µ.

Over the training iterations, Fδ takes advantage of its
better learning abilities over (Dθ, Tα), shifting f∆ to the

right as shown in Fig. 1, thus creating an imbalance on the
number of pixels allocated to each contestant. It benefits the
optical flow network, which gets even better at the expense
of the depth and pose networks. The resulting sequence of
mean values (µn = E [∆n])n∈N, where n refers to the train-
ing iteration index, has an upward trend that needs to be kept
under control to avoid a degenerative state where the optical
flow is too good and prevents the pair (Dθ, Tα) from learn-
ing anything. The criterion used to study stability is the con-
vergence of the sequence

(
θn = 1/P

(
∆n < 0

))
n∈N, with P

the probability measure. We provide in supplementary ma-
terial a proof that the operator Ψ can make θn diverge if
the intrinsic power of Fδ is not taken care of. Practically,
the procedure is very sensitive to small changes, especially
when it advantages the optical flow. For the same hyper-
parameter settings, the depth network can, depending on the
initialized weights, either give good predictions or produce
bad map estimations as displayed in Fig. 2.

Figure 2: Degenerate cases with black stains (correspond-
ing to infinite depths) spreading all over the image.

3.2. Fundamental issue

As illustrated in Fig. 1, values of moving pixels ∆moving
are particularly found in the tails of the distribution. Values
in the right part of the tail are due to the systemic inability of
the pair (Dθ, Tα) to account for any moving displacement.
Values in the left part of the tail often corresponds to moving
objects for which the optical flow faces smoothing issues as
pictured in Fig. 3, rather than a much better prediction of
the depth and pose networks. Together, they are responsi-
ble for a great part of the variation of ∆ and thus lead to
σrigid < σ. Values of rigid pixels ∆rigid, rather, are mostly
located in a close neighbourhood of µ. Intuitively, both the
pair (Dθ, Tα) and Fδ have a consistent understanding for
static regions of a scene. Hence, the resulting values taken
by ∆ are more stationary and fairly close, neglecting the
intrinsic bias.
As mentioned previously, the idea of [3] is to consider pix-
els p for which ∆(p) has negative values to train the pair
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Figure 3: Smoothing issue around moving objects. The Hot Colormaps images aim at representing both the sign and absolute
value of the ∆ function (see colour bar).

(Dθ, Tα). However, by doing so, not only does it throw
away a substantial number of rigid pixels, as the inter-
val [µ− σrigid, µ+ σrigid], which covers the values of about
68% of the rigid pixels, satisfies:

]−∞, 0[∩ [µ, µ+ σrigid] = ∅
]−∞, 0[∩ [µ− σrigid, µ] = ∅ if σrigid < µ

(9)

but more importantly, it wrongly takes into account the
moving pixels in the left part of the tails (see Fig. 1).

4. Method
The main purpose of our work is to offer a healthier

learning protocol to co-train (Dθ, Tα) and Fδ . Inspired by
the different issues raised in the previous section we propose
a Quantile Based Split of the probability density function
f∆ in order to:

• Only train the pair (Dθ, Tα) on a tight neighbourhood
of µ, and stop considering pixels with values in the left
tail, thus focusing better on static pixels.

• Train the flow on the whole set of pixels with a larger
weight on pixels with ∆ values in the tails of the dis-
tribution.

The diagram of our method, named CoopNet, is given
in Fig. 4. Unlike [3], which makes the networks compete
against one another, our approach is based on cooperation.
In the same spirit as teacher - student techniques, the pair
(Dθ, Tα) wait for the approval of the stronger network Fδ to
select pixels to be trained on. If the optical flow Fδ agrees
with the pair (Dθ, Tα) on the displacement of a given pixel
p, then this pixel p can safely be considered as rigid and
used to feed the loss Lθ,α defined in Eq. 10 below.

4.1. Description

For η ∈ [0, 0.5], let us denote qη the (0.5 + η)-quantile
of the probability density function f∆. Let us also define

Vη = [q−η, qη] a neighbourhood of µ.
As said in the previous section, most of the rigid pixels

have a ∆ value close to µ. That’s why in our approach,
the pair (Dθ, Tα) is only trained on pixels belonging to
∆−1 (Vη) (see Fig. 1), with ∆−1 the inverse image. The
larger the interval Vη , the closer to the tails and the more
likely the pollution by large absolute values |∆(p)| of
moving pixels, which is not desirable. On the contrary, a
small Vη will filter many pixels and the pair (Dθ, Tα) may
not learn anything, as the back-propagation needs enough
samples to work. Hence, the hyper-parameter η has to be
adjusted to find the best trade-off.

Different training strategies were experimented to find
the best way to train the optical flow network, and we found
out that learning from all the pixels was the most effective
manner, with a weighted sum advantaging moving pixels.
Pixels p corresponding to values ∆(p) in the tails, specif-
ically the η-quantile and the (1− η)-quantile have more
weights (Eq. 11).

These two ideas lead to a split of the loss L (eq 1), into
two terms, as follows:

Lδ =
∑
p∈P

w (p) Φ
(
It(p), Î

δ
s (p)

)
Lθ,α =

∑
p∈∆−1(Vη)

Φ
(
It(p), Î

θ,α
s (p)

)
LCoopNet = Lθ,α + Lδ

(10)

with P the set of all pixels and w defined as:

w (p) =


|P|

|∆−1(Γ)| if p ∈ ∆−1 (Γ)
|P|

|∆−1(Γ)|
otherwise

Γ =]−∞, q−η[∪]qη,+∞[

(11)

The losses Lθ,α and Lδ are used to train respectively the
pair (Dθ, Tα) and Fδ .
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Figure 4: Diagram depicting CoopNet. The Quantile Module takes as input the rigid flow inferred by the pair (Dθ, Tα) and
the flow produced by Fδ to compute ∆. The running values (q̃−η, q̃η) are updated with the P 2 algorithm [18] to be used at
the next epoch. The current values (q−η, qη) determine the neighbourhood Vη to induce a mask map {p /∈ Vη}

.

4.2. Advantages over the adaptive photo-metric loss

Training the optical flow on a different set, the comple-
ment Vη of the one used by the pair (Dθ, Tα) for instance, as
done by [3], would be sub-optimal. The performances of the
optical flow network on rigid regions would be very poor,
close to a random prediction. As a consequence, rigid pixels
prigid would have significant negative ∆(prigid) values and
would be mixed with the large negative values of moving
pixels that Fδ failed to predict correctly. Although the most
important is to distinguish rigid pixels from moving pixels
correctly predicted by Fδ which are in much greater num-
bers, this is not ideal. With our approach, rather, the proba-
bility density function f∆ has a clumped dispersion pattern
as illustrated in Fig. 1, with three clusters sharply delimited.
And the intersection between the rigid cluster and each of
the two other moving ones is greatly limited. Keeping all
that has been said so far in mind, one can legitimately won-
der how the distribution of ∆ can stay clamped with three
clusters in the approach of [3], as stated in the previous sec-
tion. The optical flow is trained on ∆−1 (]−∞, 0[) a subset
which is, luckily, composed of enough rigid pixels for Fδ to
be decent on the static regions. Unfortunately this property
is not taken advantage of thereafter.

Finally, let us define:

L1 = E
[
Φ
(
It(p), Î

θ,α
s (p)

)∣∣∣p ∈ P , ∆(p) ∈ Vη

]
L2 = E

[
Φ
(
It(p), Î

θ,α
s (p)

)∣∣∣p ∈ P , ∆(p) < 0

] (12)

We give in supplementary material the mathematical
proof that L1 < L2. This inequality demonstrates theo-
retically the benefits of introducing the neighbourhood Vη

over using the sign of ∆(p) like [3].

4.3. Regularisation set

We observe experimentally that too many moving pix-
els can still pollute the neighbourhood Vη , even when the
hyper-parameter η is set to be very selective. This is
due to the well known weakness of the photo-metric func-
tion Φ (Eq. 4): Because Φ compares images based on colour
similarities, it has difficulties to be discriminative in homo-
geneous areas. Hence, although the pair (Dθ, Tα) and Fδ

disagree on the displacement to be made to warp a moving
pixel p, the value ∆(p) might still be similar to the ones
taken by rigid pixels and thus fall into Vη . For this reason,
we propose to add a new constraint on the agreement of both
networks on the pixels displacement.

We introduce ∆flow defined as:

∆flow (p) =
Fθ,α (p)− Fδ (p)∥∥Fθ,α (p)

∥∥
2
+

∥∥Fδ (p)
∥∥
2

(13)

where Fθ,α (p) is the image displacement of a pixel pro-
duced by the image warping. As for ∆, the closer the pair
(Dθ, Tα) and Fδ , the smaller ∆flow. However, the flow val-
ues Fθ,α (p) and Fδ (p) are vectors with two components,
then ∆flow is a 2d random vector. As the flow value has a
strong dependency on the position in the image (close pix-
els tend to have higher flow magnitudes than far pixels), a
normalisation term is added in the denominator in Eq. 13.
The random variable ∆flow doesn’t take into account colour
intensities and is thus insensitive to the homogeneous issue
raised previously. Besides, it has no intrinsic bias which
exists with ∆ because of the operator Φ.

Finally, the neighbourhood Vη chosen to compute Lθ,α

in Eq. 10 can be replaced by V:

V = Vη ∩ Vζ

Vζ = Vflow, x
ζ ∩ Vflow, y

ζ

(14)
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with Vflow, x
ζ and Vflow, y

ζ defined in the same way as Vη using
respectively ∆x

flow and ∆y
flow. The loss-oriented neighbour-

hood Vη remains the main actor of the decision process,
while Vζ can be seen as a prior with a regularisation ef-
fect to solve the homogeneous issue. One might well ask
why not consider the magnitude of the flow differences in-
stead. The reason is that this choice makes all that had been
demonstrated with ∆ (that assumes signed values and a nor-
mally distributed random variable) to remain true.

4.4. Implementation details

Additional Losses On top of LCoopNet defined in Eq. 10, we
also take into account the following subsidiary losses:

• The geometric consistency loss Lgc proposed by [1].

• A forward-backward consistency check Lfwd,bwd of the
optical flow Fδ as done in [31, 44].

• The standard edge-aware smoothness loss Ls for both
depth and flow maps. The normalised disparity is used
here as proposed by [36] to avoid divergence.

• The epipolar constraint Lep with different version of
the one proposed in [3] (see supplementary materials).

• The inverse of the variance of depth maps Lvar men-
tioned in [21] in order to stabilise the training process.

The final loss is:

Lfinal = LCoopNet + λgcLgc + λfwd,bwdLfwd, bwd

+λsLs + λepLep + λvarLvar
(15)

Network Architectures. Our focus in this work is to pro-
mote our cooperation learning protocol and to see how it
compares with the other well-established self-supervised
depth estimation training strategies [10, 43, 3, 26]. For
a better comparison, we decided to use the same standard
networks as those methods. In particular, for both the
depth and flow networks, we adopt a UNet structure with
four intermediate multi-scale predictions as proposed by
[43]. The Pose networks is based on a ResNet encoder at
the end of which a 6-DoF vectors is predicted. For the
depth network we use the specific DispResNet architec-
ture of [10]. For the flow network we implement the Res-
FlowNet of [41, 25]. Both the depth and pose networks
have a ResNet18 backbone while the flow network uses a
ResNet50 encoder. More efficient networks could of course
improve performances even more. For instance, regarding
the depth network, PackNet [12], architectures using atten-
tion [20, 7, 19, 27] and/or cost-volume [39, 20] are perform-
ing well, just like FlowNet [5] and PwC-Net [15, 34] for the
flow prediction.
Occlusions are dealt with in two ways. The warping mod-
ule of [37] is used to mask occluded pixels in Lδ with a

hard occlusion threshold set to 0.2. While for Lθ,α, oc-
cluded pixels are handled thanks to the standard minimum
re-projection of [10].
Parameter settings. Our method is implemented in Py-
Torch. Training is done using the optimiser Adam [22] with
β1 = 0.99 and β2 = 0.999. ResNet backbones are ini-
tialised using ImageNet [33] pretrained weights. Networks
are trained for 30 epochs with a batch size of 4. The ini-
tial learning is set to 10−4 and decreased to 10−5 after 20
epochs. Standard data-augmentation is performed includ-
ing horizontal flips, random contrast, saturation, hue and
brightness jitters. A burning step of 5 epochs is used dur-
ing which the pair (Dθ, Tα) is trained with [10]. Quantiles
are computed on the fly based on the algorithm of [18].
The neighbourhood Vη is determined using quantile val-
ues of the previous epoch (see Fig. 4) with η = 0.15 and
ζ = 0.25. The loss weights were determined with a grid-
search and finally set to λgc = 0.001, λfwd, bwd = 0.001,
λs = 0.01, λep = 0.001 and λvar = 10−6. We employ a
single NVIDIA GTX 1080 Ti GPU. Training time takes 12
hours.

5. Experiments

We conducted extensive experiments on depth, camera
pose and optical flow estimations in order to validate our
method. We present the results obtained on two datasets:

KITTI [9] is the most popular benchmark to evaluate depth
and ego-motion estimations. It consists of urban, rural
and highway images, captured by driving around the city
of Karlsruhe. We use the standard evaluation protocol to
retrieve the ground truth depth values from the LIDAR
sensor data, and we follow the standard data split proposed
by [6] with 22 600 training pair images and 697 test pair
images.

Cityscapes [4] is also composed of urban images but it
contains a greater variety of situations with images coming
from more than 50 European cities and is challenging be-
cause it contains more scenes with moving objects. Follow-
ing the protocol of [26] training is done on 22 973 image-
pairs obtained by completing the usual 2975 training im-
ages with the 19 998 extra-training images. For evaluation,
we use the 1 525 test images.

5.1. Depth

Quantitative results are given in Tab. 1. CoopNet out-
performs already very effective methods with a substan-
tial margin in almost all of the different metrics. Qualita-
tive results are presented in Fig. 5. Overall, depth maps
yielded by CoopNet are sharpest and achieve better pre-
dictions in challenging situation such as thin objects, high
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Set Method Size Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

K

Li et al. [26] 128× 416 0.130 0.950 5.138 0.209 0.843 0.948 0.978
DLNet[19] ‡ 128× 416 0.128 0.979 5.033 0.202 .851 0.954 0.980
CoopNet 128× 416 0.126 1.014 5.091 0.204 0.856 0.954 0.980
CoopNet R50 128× 416 0.121 0.971 5.055 0.199 0.863 0.955 0.980
Monodepth2[10] 192× 640 0.115 0.903 4.863 0.193 0.877 0.959 0.981
SGDepth [23] † 192× 640 0.117 0.907 4.693 0.191 0.879 0.961 0.981
Tosi et al. [35] † 192× 640 0.126 0.835 4.937 0.199 0.844 0.953 0.982
CoopNet 192× 640 0.113 0.872 4.824 0.190 0.878 0.959 0.982
Insta-DM [24] † 256× 832 0.112 0.777 4.772 0.191 0.872 0.959 0.982

CS

Struct2Depth[2]† 128× 416 0.145 1.737 7.28 0.205 0.813 0.942 0.978
Gordon[11] † 128× 416 0.127 1.330 6.96 0.195 0.830 0.947 0.981
Li et al.[26] 128× 416 0.119 1.29 6.98 0.190 0.846 0.952 0.982
CoopNet 128× 416 0.121 1.443 7.01 0.190 0.846 0.951 0.980

Table 1: Results of depth estimations. We only compare our methods to the most recent and competitive algorithms. All
results here are presented for different image sizes. For each metric the best result is displayed in bold and the second one is
underlined. The depth cutoff is set to 80m. For red metrics, lower is better. For blue metrics, higher is better. † - Use of an
off-the-shelf semantic algorithms. ‡ - Use of a transformer depth network. K: trained and evaluated on KITTI. CS: trained
and evaluated on Cityscapes. R50: Use a ResNet50 backbone instead of ResNet18 for the depth network.

Methods Seq. 09 Seq. 10
terr (%) rerr (

◦/100m) terr (%) rerr (
◦/100m)

ORB[32] 15.30 0.26 3.68 0.48
Zhou[43] 17.84 6.78 37.91 17.78
Bian[1] 11.2 3.35 10.1 4.96

CoopNet 8.42 2.66 7.29 2.14

Table 2: Odometry: Average Translation and Rotation er-
rors for sequence 09 and 10 of the KITTI Odometry Dataset.

Method Noc All
FlowNetS[5] 8.12 14.19
FlowNet2[16] 4.93 10.06
GeoNet[41] 8.05 10.81
GLNet[3] 4.86 8.35
CoopNet 5.10 9.43

Table 3: Optical Flow: Average end point error (in pixels)
for non occluded (Noc) and for all (All) pixels on the KITTI
2015 flow dataset.

Lgc Lep Ls Lfwd,bwd Lvar
Lphoto Abs Rel APELbaseline Lapc LCoopNet

✓ ✓ 0.157 11.93
✓ ✓ 0.144 12.26
✓ ✓ 0.130 9.74
✓ ✓ ✓ 0.130 9.21
✓ ✓ ✓ ✓ 0.130 9.16

✓ ✓ ✓ ✓ 0.128 9.27
✓ ✓ ✓ ✓ ✓ ✓ 0.126 9.43
✓ ✓ ✓ ✓ ✓ 0.135 8.35

Table 4: Ablation study on absolute relative error
(depth) and average end point error (flow). Resolution
size: 128 × 416. In our baseline, both the optical flow Fδ

and the pair (Dθ, Tα) are trained using the standard photo-
metric losses L (see equations 1 to 4) computed on all of the
pixels. As common practice, the smoothness loss Ls is used
in all experiments. Last row corresponds to GLNet [3].

texture and moving regions. An ablation study is also pre-
sented in Tab. 4. Note the great improvements brought by
LCoopNet (line 3) compared to the two other types of photo-
metric loss (line 1-2). As displayed in the second part of the

ablation study, the subsidiary loss benefits are marginal as
compared to LCoopNet.

5.2. Optical flow and Odometry

To assess optical flow we use the KITTI 2015 flow
dataset containing 200 annotated training images as test im-
ages. Tab. 3 shows that CoopNet gives close results to
GLNet[3] while outperforming all the other methods.
The results of our camera-pose estimations trained on
KITTI are shown in Tab. 2. Again, our method achieves
significant gains over the presented methods. We chose
to compare specifically to [1], as their scale-consistent ap-
proach is particularly centred on the odometry. The results
are however still below classical approaches [32].

5.3. Visual analysis of ∆

Fig. 6 shows some example of ∆ values. We observe
experimentally that rigid pixels prigid for which ∆(prigid)
differs the most from µ (blue and red values) correspond to
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Figure 5: Comparison of depth map estimation algorithms in challenging situations. White Dashed rectangles target the
improvement brought by our method.

(a) Thin objects (b) High-Texture regions (c) Edges

Figure 6: Illustration of the large variations of ∆ between positive and negative values in challenging cases indicative of a
strong ambiguity. Also note the dominance of the red colour due to the intrinsic bias mentioned in Sec. 3.1.

tricky cases where it’s quite difficult, even for a human, to
determine the flow displacement: for instance pixels at the
edges, in high-texture areas or around thin objects. Con-
versely, values nearby µ (white values) come from rigid pix-
els that are easy to infer. This supports our claim that when
η is low enough, the neighbourhood Vη can be seen as an
agreement area. In other words, both the pair (Dθ, Tα) and
Fδ share the same understanding on the mechanism that
governs the displacement of pixels from ∆−1 (Vη).

6. Conclusion

We have presented CoopNet, a training strategy that
achieves competitive performances in depth, ego-motion

and optical flow estimations using unsupervised training.
It relies on a healthy cooperation between different visual
tasks so that each one can benefit from the others, relying
on the fact that networks should agree on their warping dis-
placement prediction for a pixel to be considered as rigid.

This idea could be further improved by combining it with
an explicit residual correction of the ego-motion [26]. In
this case Vη no longer represents rigid pixels exclusively,
but can still be seen as an agreement area from which one
can take advantage to emphasise the training process on pix-
els for which networks disagree.

1274



References
[1] J.W. Bian, Z. Li, N. Wang, H. Zhan, C.Shen, M.M Cheng,

and I. Reid. Unsupervised scale-consistent depth and
ego-motion learning from monocular video. In Interna-
tional Conference on Neural Information Processing Sys-
tems (NIPS), page 35–45, 2019.

[2] V. Casser, S. Pirk, R. Mahjourian, and A. Angelova. Depth
prediction without the sensors: Leveraging structure for un-
supervised learning from monocular videos. In AAAI Confer-
ence on Artificial Intelligence, volume 33, pages 8001–8008,
2018.

[3] Y. Chen, C. Schmid, and C. Sminchiescu. Self-supervised
learning with geometric constraints in monocular video. In
ICCV, pages 7063–7072, 2019.

[4] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The
Cityscapes dataset for semantic urban scene understanding.
In CVPR, pages 3213–3223, 2016.

[5] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V.
Golkov, P. Van der Smagt, D. Cremers, and T. Brox. Flownet:
Learning optical flow with convolutional networks. In ICCV,
pages 2758–2766, 2015.

[6] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction
from a single image using a multi-scale deep network. In
International Conference on Neural Information Processing
Systems (NIPS), page 2366–2374, 2014.

[7] F .Gao, J. Yu, H. Shen, Y. Wang, and H. Yang.
Attentional separation-and-aggregation network for self-
supervised depth-pose learning in dynamic scenes. In Con-
ference on Robot Learning (CoRL 2020), Cambridge MA,
2020.

[8] R. Garg, V. Kumar, B.G. Gustavo, and I. Reid. Unsuper-
vised CNN for single view depth estimation: Geometry to
the rescue. In ECCV, pages 740–756. Springer International
Publishing, 2016.

[9] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the KITTI vision benchmark suite. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3354–3361, 2012.

[10] C. Godard, O.M. Aodha, M. Firman, and G. Brostow. Dig-
ging into self-supervised monocular depth estimation. In
ICCV, pages 3828–3838, 2019.

[11] A. Gordon, H. Li, R. Jonschkowski, and A. Angelova. Depth
from videos in the wild: Unsupervised monocular depth
learning from unknown cameras. In ICCV, pages 8977–
8986, 2019.

[12] V. Guizilini, R. Ambrus, S. Pillai, A. Raventos, and A.
Gaidon. 3d packing for self-supervised monocular depth es-
timation. In CVPR, pages 2485–2494, 2020.

[13] V. Guizilini, R. Hou, J. Li, R. Ambrus, and A. Gaidon. Se-
mantically guided representation learning for self-supervised
monocular depth. In International Conference on Learning
Representations, 2020.

[14] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-
CNN. In ICCV, pages 2961–2969, 2017.

[15] J. Hur and S. Roth. Self-supervised monocular scene flow
estimation. In CVPR, 2020.

[16] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, T.
Brox, P. Van der Smagt, D. Cremers, and T. Brox. Flownet
2.0: Evolution of optical flow estimation with deep networks.
In CVPR, pages 2462–2470, 2017.

[17] M. Jaderberg, K. Simonyan, A. Zisserman, and K.
Kavukcuoglu. Spatial transformer networks. In Interna-
tional Conference on Neural Information Processing Sys-
tems (NIPS), 2016.

[18] R. Jain and I. Chlamtak. The P2 algorithm for dynamic sta-
tistical computing calculation of quantiles and histograms
without storing observations. Communications of The ACM
- CACM, 28, 1985.

[19] S. Jia, X.Pei, W. Yao, and S.C Wong. Self-supervised
depth estimation leveraging global perception and geometric
smoothness using on-board videos. CoRR, abs/2106.03505,
2021.

[20] A. Johnston and G. Carneiro. Self-supervised monocular
trained depth estimation using self-attention and discrete dis-
parity volume. In CVPR, pages 4756–4765, 2020.

[21] U.H. Kim and J.H. Kim. Revisiting self-supervised monoc-
ular depth estimation. Robot Intelligence Technology and
Applications, 2022.

[22] D.P Kingma, J. Ba, N. Snavely, and D.G. Lowe. ADAM: A
method for stochastic optimization. In International Confer-
ence on Learning Representations (ICLR), San Diego, CA,
2015.
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