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Abstract

We present a new and general framework for convolu-
tional neural network operations on spherical (or omnidi-
rectional) images. Our approach represents the surface as a
graph of connected points that doesn’t rely on a particular
sampling strategy. Additionally, by using an interpolated
version of SelectionConv, we can operate on the sphere
while using existing 2D CNNs and their weights. Since our
method leverages existing graph implementations, it is also
fast and can be fine-tuned efficiently. Our method is also
general enough to be applied to any surface type, even those
that are topologically non-simple. We demonstrate the ef-
fectiveness of our technique on the tasks of style transfer
and segmentation for spheres as well as stylization for 3D
meshes. We provide a thorough ablation study of the per-
formance of various spherical sampling strategies.

1. Introduction
Omnidirectional (or spherical) images are ever present

in modern computer vision, from 360◦ videos for VR to
HDRI images as lighting references in 3D graphics. Much
research has gone into trying to bring the benefits of deep
learning to this useful domain. A naive approach is to sim-
ply apply 2D Convolutional Neural Networks (CNNs) to
a projection of the sphere, such as on the equirectangular
image or a cubemap unfolding. However, all planar projec-
tions of a sphere lead to distortion of the 3D content. Thus,
traditional 2D CNNs perform poorly in such cases.

To resolve this, two approaches have been well explored
previously. The first is to design the convolution opera-
tor uniquely for the sphere, looking at important proper-
ties such as rotation equivariance of the convolution opera-
tion [3, 4, 14]. The second is to try to transfer what has been
learned from a 2D CNN to a specialized network that can
operate on spherical images, either through distorting the
convolution operator itself [5, 28] or through special projec-
tions of the spherical image into the plane [8, 33]. Both of
these approaches have potential shortcomings. In the first,
by redefining a convolution specific to the spherical domain,

Figure 1. Interpolated SelectionConv can perform tasks such as
segmentation on spheres (left) and 3D mesh stylization (right).

all training data must also be in the spherical domain, for
which available datasets tend to be much smaller than their
2D counterparts. In the second approach, techniques are
often restricted to particular samplings of the sphere (most
often the icosphere [8, 33]), which can only exist at specific
resolutions, and transitions to these representations may re-
quire fine-tuning to properly adjust the CNN weights [33].

This work aims to begin to bridge the gap between these
two approaches to operating on omnidirectional images. We
propose a framework that builds on our previous work of
SelectionConv [13], a graph-based approach for transfer-
ring weights from a 2D CNN. By using an edge-interpolated
version of this method, we can create a graph of points on
the sphere using any sampling scheme that we desire and
still maintain the anisotropic behavior of convolution that is
needed for transferring from 2D CNNs. Our new approach
is general while remaining fast and efficient since it builds
on previous graph network infrastructure.

We show that our method is a simple and effective way to
bring 2D techniques into the spherical domain, while avoid-
ing many of the drawbacks of regular SelectionConv and
previous approaches. We also show that customizable sam-
pling techniques may be more effective than the icosphere
approach that has generally been used. Lastly, while we pri-
marily focus on spherical images for this work, our method
is general enough to operate on any surface or 3D mesh.
Examples of tasks that can be performed with our method
are shown in Fig. 1.

In summary, our contributions are as follows:
• We introduce an interpolation-based scheme for using

SelectionConv in non grid-like spaces.
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• We adapt Interpolated SelectionConv to work for sur-
face point-cloud representations by modifying the se-
lection function and clustering method.

• We demonstrate the effectiveness of our graph repre-
sentation with customizable sampling techniques on
the tasks of spherical stylization and segmentation. We
also demonstrate stylization of 3D meshes. We achieve
results comparable to state-of-the-art methods.

• We present a thorough ablation study of various spher-
ical sampling and clustering techniques.

2. Related Works
2.1. SelectionConv

This work builds heavily on the idea of selection-
based convolution, which was first proposed in Selection-
Conv [13], a method for using CNNs on irregular image
types such as cubemaps and masked images. In selection-
based convolution, graph networks can be manipulated to
be commensurate with 2D CNNs. This is done by prepro-
cessing a graph’s adjacency matrix into multiple adjacency
matrices, where each matrix represents a cardinal or ordinal
direction. By doing this, spatial structure is built back into
the graph and weights can be transferred from a trained 2D
CNN to a modified graph network. Thus, graph structures
can be designed for specific irregular image types and the
same 2D networks can operate in these new domains.

In [13], all experiments were done with graph represen-
tations that assume a single selection per target node. This
allowed graph connections to go across seams for irregular
images, but a single selection is not sufficient when building
the graph in more general spaces such as arbitrary surfaces
or point clouds. We extend this approach by demonstrat-
ing how to effectively allow multiple selections per node
to give interpolated values when selections lie between dis-
crete spatial locations. This is similar to techniques such
as [20], but with the added benefit that we can orient the
interpolation for each individual node on a surface.

2.2. Spherical CNNs

Neural networks designed for spheres fall roughly into
two categories. The first is projection-based CNNs that
aim to learn on traditional 2D images and then utilize
that information in some way on the sphere. The second
is surface-based CNNs that have special convolution
operations designed specifically for spheres.

Projection-based CNNs
The first approaches to applying CNNs to the sphere op-

erated on projections of the sphere such as the equirectan-
gular projection [17], cubemap projection [2, 21], or even a
combination of multiple projections [15, 25, 29]. After the
proposal of deformable convolution by Dai et al. [6], many

researchers focused on deforming the convolution operator
specifically for sphere projections [5, 26, 28].

Lee et al. [18] later demonstrated the effectiveness of
operating on an icosahedral approximation of the sphere.
Zhang et al. [33] adapted a similar representation, but allow
for a more direct CNN operation by breaking the icosa-
hedron into 5 planar projections. Eder et al. [8] increased
performance on many spherical tasks by representing the
sphere as a set of tangent images at the icosphere vertices.

Surface-based CNNs
Cohen et al. [3, 4] have proposed a convolution structure

designed specifically for spheres and surfaces that is rota-
tion and gauge equivariant. Representations have also been
designed that utilize spherical harmonics [9] or define the
convolution in terms of a linear combination of differential
operators [14]. This line of work continues to expand to
be used for more complex and general spherical networks,
such as LSTMs [31].

Our method aligns closely with projection-based ap-
proaches since it transfers weights from a 2D CNN and op-
erates with oriented convolutions on the sphere. Our ap-
proach, however, builds on a framework that is not limited
to spheres, and, like surface-based CNNs, is not constrained
to a specific sampling technique.

2.3. Sphere and Mesh Style Transfer

Many spherical approaches demonstrate performance on
tasks such object detection, semantic segmentation, and
depth prediction. While we compare our method on the task
of segmentation, we also demonstrate that our representa-
tion generates high-quality stylizations of the sphere. Ruder
et al. [23] were the first to demonstrate style transfer on a
spherical image, but their method requires a slow optimiza-
tion approach or fine-tuning a style network for spheres.
Like [13], our approach can stylize the sphere in a single
feed-forward pass with any content and style image, but we
do so with fewer artifacts than previous approaches.

Since our representation can easily be applied to general
surfaces, we demonstrate style transfer for meshes as well.
There have been many approaches to applying convolutions
to surfaces and 3D meshes [11, 12, 16, 24, 30], but these
convolutions are trained on 3D data for 3D-specific tasks.
Some methods have performed mesh style transfer [10, 13,
27, 32], but these approaches are optimization-based, re-
quire professional reference renderings, use aligned texture
maps, or have artifacts at seams. Our approach is simple,
fast, and has no model or style prerequisites.

3. Interpolated SelectionConv
As discussed in Sec. 2.1, our method builds on the orig-

inal SelectionConv [13], which proposes a modified graph
network that can distinguish between the edges of a graph
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during a convolution operation. Thus, if a graph is de-
signed and processed for a specific type of irregular image,
selection-based graph convolution will preserve the orien-
tation and allow a traditional CNN to operate even in the
irregular space.

In order to distinguish the edges during a graph convo-
lution, the graph must be preprocessed into multiple adja-
cency matrices. Selection-based convolution extends the
common formulation of graph convolution to reflect these
different spatially-relative adjacency matrices. Specifically,

X(k+1) =
∑
m

S̃mX(k)Wm (1)

where m represents a given direction/selection, S̃m is the
adjacency matrix for that selection, X(k) is the current node
activations, and Wm is the learned weights for that selec-
tion. Rather than a binary adjacency matrix, note that S̃m

is normalized so that multiple incoming edges can have the
same selection, allowing for more general point-cloud-like
structures. This work further utilizes this normalization to
break the restriction that each edge have a single selection.

In our original SelectionConv work, edges were given
the selection of the cardinal or ordinal direction most
closely aligned with the spatial relationship between the re-
spective pixels or nodes. With general sampling patterns,
however, node relationships do not lie so cleanly along spe-
cific axes. Thus, it is beneficial to be able to interpolate be-
tween multiple selections. To do this, we first assign multi-
ple edges to a single node with each edge having a different
selection (i.e., we assign the same source and target node to
multiple adjacency matrices). Then, we assign each of those
edges an edge weight that determines how much the spatial
relationship between the nodes matches the given direction.

With this, we have two different senses of normalization.
The first accounts for our introduced interpolation by nor-
malizing all the assigned edges for a given source and target
node, making the total of the interpolation weights across
selections equal to one, or mathematically:

Ŝm(i, j) =
Sm(i, j)∑
k Sk(i, j)

(2)

This guarantees that a single target node can not have an un-
balanced amount of influence during the aggregation step.
The second normalizes in the manner discussed in [13],
where each of the adjacency matrices is normalized indi-
vidually so that for a given source node, the sum of all the
target node edge weights equals one, or mathematically:

S̃m(i, j) =
Ŝm(i, j)∑
k Ŝm(i, k)

(3)

With this formulation, we are no longer constrained
to discrete selections but can interpolate selection values
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a) Angular Interpolation b) Barycentric Interpolation

Figure 2. Illustration of a) angular interpolation versus b) barycen-
tric interpolation. In angular interpolation, the edge to each node is
added to the adjacency matrix of the two selections it lies between.
If a local distance/radius can be determined, barycentric interpola-
tion can be used which also includes the central selection.

within the convolution operation. There are various ways
to interpolate a location’s value given a set of points. We
demonstrate two simple and effective ways to interpolate
selection weights given source and target nodes.

3.1. Angle-based Interpolation

One way to practically determine the interpolation of a
node between two selections is to use angles. Instead of
simply choosing the selection in the direction that most
closely matches a given edge, we use the angles between
the given edge and the unit vectors for each selection direc-
tion (excluding the central selection). The two selections, a
and b, with the smallest angles are added to the respective
adjacency matrices and the edge weights are equal to the
convex combination of the two angles, or mathematically:

wa =
θb

θa + θb
(4)

wb = 1− wa (5)

This process is illustrated in Fig. 2.a.

3.2. Barycentric Interpolation

The angle-based interpolation is intuitive and would be
expected to perform well for graph structures where nodes
are spaced approximately equidistant from each other.
However, another interpolation scheme can be used that ac-
counts properly for distance from the source node. If an av-
erage or expected distance between nodes can be calculated,
then the interpolation can be triangulated between three se-
lections using barycentric interpolation. This process is il-
lustrated in Fig. 2.b.

Though the general form of barycentric interpolation re-
quires inverse matrices or other time-consuming calcula-
tions, it can be dramatically simplified since the three points
of interpolation will always lie along a perfect right triangle
with two bases of length d. In these circumstances, the three
edge weights become

w0 = 1− max(|p|)
d

(6)
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wa =
max(|p|)−min(|p|)

d
(7)

wb =
min(|p|)

d
(8)

where p is the location of the target node relative to the
source node. Further details and a proof of this formulation
are shown in Appendix A of the supplemental material.

4. The Spherical Graph
As noted in Sec. 2.2, many networks that operate on

spherical images must first project the spherical data to
some form. Ideally, rather than working on projections, it
would be best to work on the spherical data directly without
relying on projection. Thus, we generate our graph struc-
ture in 3D space using the spherical surface and adjust our
selection function appropriately. We will now give the de-
tails of how we generate the exact graph structure.

4.1. The Spherical Selection Function

The original selection function used in [13] is

s(vi, vj) =

0 if ∥xj − xi∥ < ϵ

argmax
k

Dk · (xj − xi) otherwise (9)

where vi and vj are two nodes of the graph, xi ∈ R2 and
xj ∈ R2 are their respective positions, and {Dk ∈ R2, 1 ≤
k ≤ 8} represents the set of unit vectors for each of the 8
cardinal/ordinal directions. In order to work on spheres, we
modify this selection function by making selections relative
to the surface of the sphere, using a local planar approxima-
tion to determine orientation.

To make a local planar approximation, we first need
the normal ẑ to each node position (which is conveniently
the normalized version of the 3D location xi ∈ R3 for a
sphere). Next, we generate a rotation matrix using the ap-
proximate up-vector of ỹ = ⟨0, 1, 0⟩ and Graham-Schmidt
orthogonalization. Specifically,

x̂ = ỹ × ẑ (10)

ŷ = ẑ× x̂ (11)

R =

x̂ŷ
ẑ

 (12)

With this rotation matrix, edges from the node can be ro-
tated relative to the surface. Then, the new z-coordinate is
dropped, giving a local planar approximation of the coordi-
nate relative to the surface. This dropping of z-coordinate
can be represented by multiplying by a truncated identity
matrix:

It =

[
1 0 0
0 1 0

]
(13)

a) Spherical Graph b) Local Planar Projection

Figure 3. Visualization of the graph connections being made in
3D space (a), and selections being made based on the local planar
projection at each node (b).

Thus, the final spherical selection function (for a single se-
lection) becomes

s(vi, vj) =

0 if ∥xj − xi∥ < ϵ

argmax
k

Dk · ItR (xj − xi) otherwise

(14)
Once the main selection is made, other selections and inter-
polation values can be determined according to Sec. 3. An
illustration of our final graph structure is shown in Fig. 3.

4.2. Sampling

Most spherical data is stored in the form of an equirect-
angular image, where the spherical data has been projected
to a cylinder and then unfolded to the plane. This repre-
sentation is easy to store, but the pixels do not represent
locations that are equidistantly sampled across the sphere.
Preferably, the algorithm should sample points from the im-
age in such a way that their 3D locations are more consis-
tently spaced across the surface.

For this work, we consider the following sampling strate-
gies when comparing to the equirectangular baseline:

• Fibonacci Spiral: A common and fast approach for
approximating equidistant points.

• Icosphere: Points generated by taking the icosahedron
and subdividing iteratively.

• Layering: A sampling method described in [7],
where points are appropriately distanced in θ based on
equidistant ϕ values.

Examples of each of these sampling schemes are shown in
Fig. 4. We include the layering sampling algorithm here
(Algorithm 1) for convenience, which we adapt from [7].

4.3. Clustering

Nodes in the graph need to be clustered together for the
downsampling stages of the CNNs. When operating on ir-
regular images as in [13], these could be easily determined
by grouping pixels together on a 2D grid. However, deter-
mining clusters for a sphere based on the 2D equirectangu-
lar image removes the benefits of working in a 3D space.
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Equirectangular Random Fibonacci Spiral Icosphere Layering

Figure 4. The various sampling methods we test for building our graph on the spherical surface. The sampling points on the equirectangular
image (top) correspond to particular points on the spherical surface (bottom).

Algorithm 1 Layering Sampling
Require: Nϕ, (i.e. number of sampling rows)

1: a← π2/N2
ϕ

2: d←
√
a

3: Mϕ ← round[π/d]
4: dϕ ← π/Mϕ

5: dθ ← a/dϕ
6: for each m in 0...Mϕ − 1 do
7: ϕ← π(m+ 0.5)/Mϕ

8: Mθ ← round[2πsin(ϕ/dθ)]
9: for each n in 0...Mθ − 1 do

10: θ = 2πn/Mθ

11: Append point (θ, ϕ)
12: end for
13: end for

Thus, to cluster in 3D, we must resample the sphere at a
lower resolution. Each current node is clustered to the re-
sampled node of closest proximity.

All of the previous sampling techniques (as well as ran-
dom sampling) can be used, with an aim for a desired cluster
size. For example, a stride of 2 in each dimension is com-
monly used in downsampling layers of CNNs. This would
give a desired cluster size of 4, and each of the sampling
methods would be used in the following ways:

• Random: Randomly generate 1/4 as many points.
• Fibonacci Spiral: Resample with 1/4 as many points.
• Icosphere: Complete one less subdivision of the icosa-

hedron (since 1/4 as many points will be generated).
• Layering: Increase the distance between ϕ values by

2 and resample.

4.4. Customizable Resolution

When 2D CNNs are trained, there is generally a fixed
resolution that the input data is set too. Additionally, there
is usually a small range of field-of-views in the cameras that
were used to generate the training data. In a 2D sense, this

intrinsically sets an expected size and scale that the network
is expecting to see certain objects. While data augmentation
and other techniques can make the network more flexible to
some degree, it is important that our graph structures lie
at relatively the same resolution and field-of-view that the
network is expecting.

For example, the Stanford2D-3D-S dataset [1] that we
evaluate on in Sec. 6 uses training images that have a field-
of-view (FOV) between 45◦ and 75◦. If a 2D CNN was
trained on N × N images of that camera, the relative angle
between points on our 3D surface in any direction should be
approximately:

∆θ =
FOV
N

(15)

This spacing is handled by the sampling method we use for
the sphere. As mentioned previously, most methods have
relied on icosphere sampling for their approaches, but the
icosphere is constructed through subdivisions and thus is
limited to discrete resolutions that are quadruplings of the
initial resolution. With a sampling approach such as lay-
ering, however, we can directly control the sampling den-
sity on the sphere and thus match the desired ∆θ more pre-
cisely. This gives it improved performance over the ico-
sphere, which we demonstrate in Sec. 7.

5. Surface Graphs
The approach described in Sec. 4 was specific to spheres,

but with a few simple modifications, it can be applied to any
general surface, specifically 3D meshes. To generate the
graph on a surface, we start by randomly sampling the sur-
face. For each node, the normal of the face it was sampled
from and its respective UV coordinate are also stored. Next,
edges connecting nearby points are made using a KNN ap-
proach (while also accounting for folds by culling points
with disparate normals).

Then, to determine selections, the same selection pro-
cess and selection function as Sec. 4.1 can be used with two
key differences. First, the approximate up-vector for the
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surface is either manually assigned (if a reasonable volume
orientation exists) or is randomly generated. Second, the
normal ẑ used for the Graham-Schmidt orthogonalization
is the stored face normal for each node. All other steps in
the process remain the same for the graph generation. The
surface is then resampled at a lower resolution to determine
clustering nodes, and the whole process is repeated for the
needed number of downsamplings.

As is shown in Sec. 6.3, one benefit of this approach
is that, just like the sphere, we can customize the approx-
imate resolution of the point cloud on the mesh by control-
ling the number of points in the initial sampling. Increasing
the number of initial points increases the level of detail to
which we operate on the mesh.

6. Results
For the results presented, we use the layering method for

both sampling and clustering discussed in Sec. 4 and the an-
gular interpolation presented in Sec. 3.1. We also use repli-
cate padding in the networks to handle missing selections.
We use this representation for its ability to customize the
resolution on the sphere and since we found it to perform
the best overall on all tasks. A more thorough analysis of
the different sampling and clustering techniques, as well as
a comparison between the interpolation techniques, is pre-
sented in Sec. 7.

6.1. Spherical Stylization

We start with a clear visual example of the effective-
ness of transferring weights from a 2D CNN to our graph
structures without the need of any additional fine-tunning.
We demonstrate style transfer with the approach proposed
by Li et al. [19] on our spherical representations. Selec-
tionConv [13] achieved spherical style transfer by build-
ing a fully connected graph structure based on a cube map.
While this approach improved the stylization over the naive
method of stylizing the equirectangular image directly, the
uninterpolated nature of the graph can give artifacts along
pixels where a direction transition occurs. Our new ap-
proach removes such artifacts, as shown in Fig. 5. This is
possible because we can smoothly vary the selection be-
tween nodes in 3D space. Additionally, when reconstruct-
ing the equirectangular image, the relevant points are inter-
polated in 3D space, which gives a smooth and plausible
stylization throughout the whole sphere. Our new method
is also similar to [13] in run time and memory usage.

6.2. Spherical Segmentation

A common spherical image task is omnidirectional se-
mantic segmentation. We evaluate our method on such a
task using the Stanford 2D-3D-S dataset [1]. It consists
of equirectangular images of various indoor scenes with 13
different classes.

Method Input mIOU fine-tuned
Cubemap [13] RGB 36.3% -
UGSCNN [14] RGB-D - 38.3%
GaugeNet [3] RGB-D - 39.4%
Sphere (Ours) RGB-D 39.9% 41.4%

HexRUNet [33] RGB-D - 43.3%
TangentIms [8] RGB-D 38.9% 51.9%

Table 1. Mean intersection-over-union (mIOU) on the Stanford
2D-3DS dataset segmentation task [1]. The mIOU is shown for
both direct transfer (left) and after fine-tuning (right). Our method
performs comparably to state-of-the-art approaches.

We first train a simple 6-layer deep U-Net architec-
ture [22], similar to the architecture used in [14, 33], and
include depth information with the input to be consistent
with state-of-the-art methods. We train on the provided pre-
computed views of the spherical image. Once the network
has been trained in 2D space, we transfer over the weights
to our graph representation with interpolated selections. We
use the layering approach and scale the resolution to match
the average ∆θ from the training data.

We can also fine-tune the graph representation on the full
3D data. These fine-tuning steps can be completed quickly
since our graph structure only needs to be calculated once,
then it can be reused in every successive iteration. Only the
node feature values need to be updated.

The mean IOU for our method, both before and after
fine-tuning in spherical space, is shown in Table 1, along
with comparisons to other previous works. We evaluate on
the full scale equirectangular images (4096×2048) and fol-
low the standard practice of weighting the metrics for each
pixel by cosine of their latitude location, similar to [14, 33].

As is shown, our method has performance comparable to
state-of-the-art approaches, even after a direct transfer with-
out fine-tuning. While [33] and [8] have higher mean IOU
scores, we note that [33] must use a fine-tuned icosphere
representation and that [8] requires processing 80 different
512× 512 planar projections to make a single spherical im-
age, whereas our approach can evaluate in a single pass with
a reusable graph structure between spherical images.

6.3. Mesh Stylization

Lastly, we demonstrate the ability of our method to gen-
eralize to general surfaces by stylizing 3D meshes. In [13],
a UV edge-pairing process was required to determine edges
across seams in the texture map. This process failed to re-
move all artifacts along seam boundaries and was time con-
suming for high-polygon-count meshes. Our new approach
avoids this computationally expensive step while achieving
far better consistency along UV seams since the edges and
selections are made in 3D space, rather than on the topo-
logically complex 2D texture map. A comparison of this
approach to the previous work is shown in Fig. 6. Addi-
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Figure 5. A 360◦ image (1st row), its stylization when naively stylizing the equirectangular image (2nd row), using the cube-map graph
setup in [13] (3rd row), and compared to our interpolated spherical representation (4th row). The equirectangular projection along with
various views of the scene are presented. In the naive approach, note the vertical seam in the middle of the back view as well as the
distortion in the top and bottom views. In the original SelectionConv results, note the artifacts in the top and bottom views along the seam
connections (making an x shape). Those artifacts are removed with our new method. Public domain image courtesy of polyhaven.com.

a) Mesh b) Naive c) [13] d) Ours

Figure 6. When the texture map of the original mesh (a) is styl-
ized naively (b), many artifacts are present along the UV seams.
Stylizing with SelectionConv (c) removed some of those artifacts,
but inconsistencies remain. Interpolated SelectionConv (d) retains
far greater consistency along seams.

tionally, our method allows users to control the number of
initial sampling points, making it time invariant to the com-
plexity of the mesh. This also provides a simple way for
controlling the level of detail in the stylization on the mesh
while operating on high quality meshes and texture maps.
Examples of these benefits are shown in Fig. 7 and in the
supplemental material.

7. Ablation Study

We presented the layering sampling and clustering tech-
nique (with angular interpolation) as our best representation
of the sphere. However, one of the benefits of our method
is that we are not constrained to any specific graph struc-
ture. Thus, we give the performance of the other possible
representations of our sphere.

We test the various sampling methods and clustering
methods with the previously presented segmentation task
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Sampling\Clustering Random Equirectangular Spiral Icosphere Layering
Equirectangular 35.1% / 35.0% 38.1% / 37.0% 38.9% / 38.8% 38.7% / 38.5% 40.7% / 39.8%

Spiral 32.8% / 32.5% 32.8% / 32.3% 35.7% / 35.9% 36.3% / 36.2% 37.9% / 37.2%
Icosphere 31.9% / 30.8% 33.3% / 31.9% 35.9% / 35.4% 36.5% / 35.6% 38.1% / 36.7%
Layering 34.3% / 33.6% 36.2% / 34.3% 38.1% / 37.5% 38.8% / 38.2% 39.9% / 38.7%

Table 2. Ablation study comparing mIOU results for the various sampling, clustering, and interpolation approaches on the Stanford2D-
3D-S segmentation task. Angle-based interpolation results are shown on the left. Barycentric results are shown on the right. Results for
random clustering were averaged over multiple configurations.

a) Mesh b) Naive c) Ours

Figure 7. Example stylizations of high quality meshes with 4K
textures (a). Naively stylizing the texture map (b) is slow, leaves
artifacts on seams, and provides little control for the level of detail
for the stylization. Our approach (c) removes seam artifacts while
allowing the user to control the number of sampling points, which
in turn determines the speed and detail of the stylization. Public
domain meshes courtesy of polyhaven.com.

without fine-tuning. Additionally, we compare barycentric
interpolation versus angle-based interpolation for these var-
ious representations. The results are shown in Table 2.

The results show some interesting patterns. First, all
methods perform worst when using random and equirect-
angular clustering. This is to be expected since the points
will not be pooled together based on equidistant locations.
Second, we note that spiral and icosphere sampling per-
form poorest overall since the spiral approach generates
neighborhoods that tend to be more irregular and neither
allows for customizing the resolution in a precise way. (We
also note that icosphere performs more poorly than demon-
strated elsewhere, but we attribute this to the fact that we do
not explicitly modify the convolution operator to be hexag-
onal like many icosphere-specific methods [18, 33].) Also,
barycentric interpolation performs slightly below angle-
based interpolation for most sampling and clustering repre-
sentations. We attribute this to the blurring effect that comes
from the larger number of edges, especially when compared
to the angle-based representation when most points are rea-
sonably spaced. Lastly, we note that layering clustering did
the best for all methods. Equirectangular sampling with
layering clustering even outperformed the layering/layering
representation on the segmentation task, but we note that it

used 25% more nodes and edges, which makes it slower to
run and harder to fine-tune.

8. Conclusion

We have presented a general framework for transferring
weights from 2D convolutional networks to graph networks
that can operate on spherical images and surfaces. These
networks can be fine-tuned even further in their specific
domains as needed. This approach allows for a simple
and effective way to improve performance on spherical
tasks without requiring large datasets that are specific to
the spherical domain. We have also demonstrated possible
applications for 3D meshes and have provided a thorough
ablation study exploring sampling of spherical surfaces.

Limitations
The main limitation of our approach comes from the ex-

tra memory needed to store the graph edges while perform-
ing the convolution. Though we describe our method math-
ematically using adjacency matrices, the implementation
actually uses memory-efficient edge indexes. However, this
means that allowing multiple selections for the same edge
increases the size of the edge index. Additionally, since
the interpolation values also need to be stored, the memory
needed for a graph with many nodes can become quite large.
Since our focus was on direct transfer, this is usually not an
issue and most graphs can still fit in GPU memory, but fine-
tuning any task must be done with a very small batch size
to be feasible.

Like the original SelectionConv, we can’t use larger
convolution kernel sizes because the edge hopping process
is not differentiable. Thus the networks we used contained
only 3 × 3 and 1 × 1 kernels. We note, however, that this
limitation is shared with other previous methods [14, 33].

Future Work
Though we demonstrated style transfer on meshes, the

field of meshes and general surfaces is extensive and has
many applications. More exploration and experiments us-
ing our interpolated SelectionConv in this area could be the
study of future work. Looking into additional interpola-
tion schemes and techniques for determining expected ra-
dial distances is also worth investigation.
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Welling. Spherical CNNs. In International Conference on
Learning Representations, 2018.

[5] Benjamin Coors, Alexandru Paul Condurache, and Andreas
Geiger. SphereNet: Learning spherical representations for
detection and classification in omnidirectional images. In
European Conference on Computer Vision, September 2018.

[6] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In International Conference on Computer Vision,
pages 764–773. IEEE, 2017.

[7] Markus Deserno. How to generate equidistributed points on
the surface of a sphere, 2004.

[8] Marc Eder, Mykhailo Shvets, John Lim, and Jan-Michael
Frahm. Tangent images for mitigating spherical distortion.
In Conference on Computer Vision and Pattern Recognition,
pages 12426–12434. IEEE, 2020.

[9] Carlos Esteves, Christine Allen-Blanchette, Ameesh Maka-
dia, and Kostas Daniilidis. Learning SO(3) equivariant rep-
resentations with spherical CNNs. In European Conference
on Computer Vision, pages 52–68, 2018.
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Illumination-guided example-based stylization of 3D render-
ings. ACM Trans. Graph., 35(4):92:1–92:11, 2016.

[11] Niv Haim, Nimrod Segol, Heli Ben-Hamu, Haggai Maron,
and Yaron Lipman. Surface networks via general covers. In
International Conference on Computer Vision. IEEE, Octo-
ber 2019.

[12] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar
Fleishman, and Daniel Cohen-Or. MeshCNN: a network
with an edge. ACM Transactions on Graphics (TOG),
38(4):1–12, 2019.

[13] David Hart, Michael Whitney, and Bryan Morse. Selection-
Conv: convolutional neural networks for non-rectilinear im-
age data. In European Conference on Computer Vision, Oc-
tober 2022.

[14] Chiyu “Max” Jiang, Jingwei Huang, Karthik Kashinath,
Prabhat, Philip Marcus, and Matthias Nießner. Spherical
CNNs on unstructured grids. In International Conference
on Learning Representations (Poster), 2019.

[15] Hualie Jiang, Zhe Sheng, Siyu Zhu, Zilong Dong, and
Rui Huang. Unifuse: Unidirectional fusion for 360°

panorama depth estimation. Robotics and Automation Let-
ters, 6(2):1519–1526, 2021.

[16] Alon Lahav and Ayellet Tal. Meshwalker: Deep mesh under-
standing by random walks. ACM Transactions on Graphics
(TOG), 39(6):1–13, 2020.

[17] Wei-Sheng Lai, Yujia Huang, Neel Joshi, Christopher
Buehler, Ming-Hsuan Yang, and Sing Bing Kang. Semantic-
driven generation of hyperlapse from 360 degree video.
Transactions on Visualization and Computer Graphics,
24(9):2610–2621, 2018.

[18] Yeonkun Lee, Jaeseok Jeong, Jongseob Yun, Wonjune Cho,
and Kuk-Jin Yoon. SpherePHD: Applying CNNs on a spher-
ical PolyHeDron representation of 360° images. In Con-
ference on Computer Vision and Pattern Recognition, pages
9173–9181. IEEE, 2019.

[19] Xueting Li, Sifei Liu, Jan Kautz, and Ming-Hsuan Yang.
Learning linear transformations for fast arbitrary style trans-
fer. In Conference on Computer Vision and Pattern Recogni-
tion. IEEE, 2019.

[20] Jiageng Mao, Xiaogang Wang, and Hongsheng Li. Interpo-
lated convolutional networks for 3d point cloud understand-
ing. In International Conference on Computer Vision. IEEE,
October 2019.

[21] Rafael Monroy, Sebastian Lutz, Tejo Chalasani, and
Aljoscha Smolic. SalNet360: Saliency maps for omni-
directional images with CNN. Signal Process. Image Com-
mun., 69:26–34, 2018.

[22] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional networks for biomedical image segmen-
tation. In Nassir Navab, Joachim Hornegger, William M.
Wells, and Alejandro F. Frangi, editors, Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI 2015,
pages 234–241, Cham, 2015. Springer International Publish-
ing.

[23] Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox.
Artistic style transfer for videos and spherical images. Inter-
national Journal of Computer Vision, 126(11):1199–1219,
2018.

[24] Ayan Sinha, Jing Bai, and Karthik Ramani. Deep learning
3D shape surfaces using geometry images. In European Con-
ference on Computer Vision, pages 223–240. Springer, 2016.

[25] Yu-Chuan Su and Kristen Grauman. Learning spherical con-
volution for fast features from 360° imagery. In Proceedings
of the 31st International Conference on Neural Information
Processing Systems, page 529–539, Red Hook, NY, USA,
2017. Curran Associates Inc.

[26] Yu-Chuan Su and Kristen Grauman. Kernel transformer net-
works for compact spherical convolution. In Conference
on Computer Vision and Pattern Recognition, pages 9442–
9451. IEEE, 2019.
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