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Abstract

Scene graph generation (SGG) aims to understand so-
phisticated visual information by detecting triplets of sub-
ject, object, and their relationship (predicate). Since the
predicate labels are heavily imbalanced, existing super-
vised methods struggle to improve accuracy for the rare
predicates due to insufficient labeled data. In this paper,
we propose SePiR, a novel self-supervised learning method
for SGG to improve the representation of rare predicates.
We first train a relational encoder by contrastive learning
without using predicate labels, and then fine-tune a predi-
cate classifier with labeled data. To apply contrastive learn-
ing to SGG, we newly propose data augmentation in which
subject-object pairs are augmented by replacing their vi-
sual features with those from other images having the same
object labels. By such augmentation, we can increase the
variation of the visual features while keeping the relation-
ship between the objects. Comprehensive experimental re-
sults on the Visual Genome dataset show that the SGG
performance of SePiR is comparable to the state-of-the-
art, and especially with the limited labeled dataset, our
method significantly outperforms the existing supervised
methods. Moreover, SePiR’s improved representation en-
ables the model architecture simpler, resulting in 3.6x and
6.3x reduction of the parameters and inference time from
the existing method, independently.

1. Introduction

Scene graph generation (SGG) is a task that aims to cap-
ture high-level understanding of images or videos through
a graph whose nodes and edges represent the objects and
their relationships (predicates), respectively. Informative
scene graphs have a potential to be effective for visual
question answering (VQA) [33, 15, 29], image caption-
ing [47, 38, 25], and image retrieval [41, 16]. With the ad-
vances in graph and object representations by deep learning,

there has been tremendous progress in scene graph gener-
ation [35, 37, 44, 32, 6, 31, 22, 18, 4]. However, many
challenges still exist mainly due to the imbalanced predi-
cate class distribution.

Predicate classes of Visual Genome (VG) [17], for ex-
ample, which is a widely-used dataset for scene graph gen-
eration, consist of massive abstract predicates (e.g., on, has)
and rare informative predicates (e.g., standing on, carrying).
In other words, the predicate classes have a heavily long-
tailed distribution. Hereinafter, the massive abstract pred-
icates are referred as head categories, the rare informative
predicates as tail categories, and the remaining predicates as
body categories. Since most of the existing SGG methods
are based on supervised learning, they are strongly affected
by such a biased dataset having many predicates in the head
categories and few in the tail categories. As a result, these
methods tend to create less informative scene graphs that
contain a lot of abstract predicates but few detailed predi-
cates. To tackle this issue, various methods have been pro-
posed including re-sampling strategies [18], re-weighting
functions [36], and debiasing methods [31, 8, 4]. These
methods, however, do not contribute to increasing variations
of data on the tail categories and rendering predicate repre-
sentation robust, leading to overfitting to the tail categories
at the expense of performance for the head categories.

In this paper, we propose SePiR (Self-supervised learn-
ing for Predicate Representation), which is a novel self-
supervised learning method to improve predicate repre-
sentation for the tail categories. To resolve the problem
that insufficient labeled data are available for the tail cat-
egories, we adopt self-supervised techniques, specifically
contrastive learning methods such as MoCo [14] and Sim-
CLR [5]. They can learn robust representation without us-
ing target labels through data augmentation. The overview
of the proposed method is shown in Fig. 1. SePiR mainly
consists of three parts: (1) an object detector to generate
object features, i.e., visual features of the objects and their
locations, (2) a relational encoder to extract relationship be-
tween the objects by self-supervised learning, and (3) su-
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Figure 1. Overall pipeline of the proposed SePiR. (1) An object detector generates visual features of the subject (boy) and the object
(skateboard). (2) Then a relational encoder is trained by self-supervised learning, where data augmentation for the subject-object pairs is
realized by replacing the visual features with those having the same object labels. (3) Finally a predicate classifier is trained to predict
predicate labels between the objects (riding) from three features: relational feature by the pre-trained relational encoder, location feature,
and linguistic features.

pervised classifiers to predict object and predicate labels
by using the pre-trained relational encoder. For the self-
supervised part, we propose a data augmentation scheme
that is effective to extract essential representations of the
relationship. We realize such augmentation by replacing vi-
sual features of subject-object pairs with those from other
images having the same object labels. This can increase the
variation of the visual features of the subject-object pairs
while keeping the relationship between the objects, which
contributes to learning robust predicate representations of
the tail categories in spite of the small amount of the labeled
data. In addition, we introduce an attention-based object
detector such as DETR [2] to capture object-specific visual
feature that is effective for above augmentation.

Our extensive experimental results show that SePiR
achieves competitive SGG performance to the state-of-the-
art supervised methods on VG dataset. Notably, our method
significantly outperforms the existing methods on the lim-
ited labeled dataset, which indicates that our self-supervised
method captures good representation of the predicates even
if only a small portion of the labeled data are available. In
addition, the number of model parameters and the inference
time is drastically reduced by 3.6x and 6.3x independently
from those of the state-of-the-art methods. This is due to
the simpler model architectures of the encoder and the clas-
sifiers employed in the proposed method than those of the
existing works because the improved representation can re-
duce the burden on the classifiers.

The contribution of this work is summarized as follows.

• We propose SePiR, which is the first self-supervised

method to improve predicate representation for the
scene graph generation.

• Our self-supervised relational encoder can extract ro-
bust relational features not by using predicate labels
but by adopting data augmentation for subject-object
pairs, in which visual features of the objects are re-
placed with those from other images having the same
object labels.

• Experimental results show that SGG performance of
SePiR is comparable to state-of-the-art supervised
methods on full dataset, and superior to them on harder
limited labeled dataset.

• SePiR also reduces the number of the model param-
eters and inference speed compared to the existing
methods.

2. Related Work
Scene graph generation. Early scene graph generation
methods emphasize on incorporating contexts via a message
passing [35, 18], recurrent neural networks [44, 32], graph
neural networks [6], or attention-based models [9, 23, 4] us-
ing Transformer [34]. Recent methods have focused on ad-
dressing the imbalanced predicate class distribution. Many
debiasing methods [31, 8, 4] are proposed to remove the
intrinsic bias in VG. Other methods have tackled the is-
sue by applying re-sampling [18] or re-weighting of loss
functions [36]. However, as long as they utilize supervised
learning methods, they cannot decipher the intrinsic long-
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tailed distribution, resulting in overfitting to the tail cate-
gories while sacrificing the performance of the head cate-
gories. Aside from supervised methods, there are mainly
three methods to deal with the imbalance distribution:
semi-supervised methods, weakly-supervised methods, and
self-supervised methods. Although semi-supervised meth-
ods [39] need only a small fraction of annotated images,
they still require human labor. Since weakly-supervised
methods [40, 46, 30] attempt to acquire predicate labels by
utilizing corresponding image captions, they end up to be
constrained by the target captions. Therefore, we introduce
the self-supervised learning method to SGG to be released
from manual annotations and limitations of other target do-
mains.

Self-supervised learning for computer vision. Self-
supervised learning has a potential to acquire a general en-
coder with the help of a myriad of unlabelled images. Early
self-supervised learning methods for computer vision uti-
lize heuristic methods: predicting rotations [11], solving
jigsaw puzzles [26], and colorizing grayscale images [45].
Recent methods [5, 14, 12, 7, 43, 1, 3, 10] take different ap-
proaches by incorporating augmentations and a contrastive
loss, resulting in having the comparable performance to
the supervised methods on downstream tasks such as im-
age recognition. In these methods, two different views are
created from a single image (i.e., data augmentation), and
the similarity loss between the encoded embeddings of the
two views is calculated. Then, the parameters of the en-
coder are updated to minimize the similarity loss. Since
naive optimizations lead to generating constant values (this
phenomenon is called collapse), various methods to avoid
the collapse have been proposed. Contrastive learning (e.g.,
MoCo [14] and SimCLR [5]) avoids the collapse by uti-
lizing a lot of negative samples. On the other hand, non-
contrastive learning (e.g., BYOL [12], SimSiam [7], and
Barlow Twins [43]) avoids collapse by several heuristic
methods instead of using negative samples. However, these
methods are designed to capture the representation of ob-
jects, which is effective for the tasks like image recognition,
object detection, and instance segmentation. We cannot ap-
ply such methods to SGG as it is unless adaptations to the
predicate representation is considered.

3. Proposed Method
We address the imbalanced class distribution in scene

graph generation by improving the predicate representation
with the help of self-supervised learning. In previous self-
supervised learning methods [5, 14, 12, 7, 43, 1], data aug-
mentation preserving essential features of the input is the
key technology to learn better representation. More con-
cretely, they augment input images by applying transforma-
tion like resizing and color distortion so as not to change

the information of the object in the image. In order to apply
the self-supervised learning for predicate representation, we
must consider what data should be augmented and what
kind of augmentation should be applied to them. For the
first question, we augment subject-object pairs since they
have information to decide the predicate between the sub-
ject and the object. For the second question, we propose a
new augmentation strategy that can increase the variation of
the subject-object pairs while preserving the relationships
between them.

In this section, we first outline an overall training flow of
SePiR. Then we focus on the detail of our self-supervised
learning method for the scene graph generation.

3.1. Training Flow of SePiR

Figure 1 outlines our scene graph generation method,
which consists of the following three training steps:
(1) training an object detector, (2) training a relational en-
coder in a self-supervised manner, and (3) training classi-
fiers for predicate and object labels.

Object detector. Given a dataset D and an image I ∈ D,
an object detector plays a role in proposing candidates of the
objects and generates their visual features H , tentative ob-
ject labels Vt, bounding boxes B, and confidence scores C
of Vt. In the first step, an object detector is trained in a su-
pervised manner. We adopt an attention-based object detec-
tor (e.g., DETR [2] and Deformable DETR [48]) instead of
conventional object detectors based on region proposal net-
work (RPN) (e.g., Faster RCNN [28] and Feature Pyramid
Network [19]). Object features extracted by an RPN-based
detector occasionally contain unrelated information to ob-
ject labels, such as backgrounds or other objects. To reduce
the influence of this information, attention-based object de-
tectors are beneficial because it is able to detect boundaries
of objects via the attention mechanisms and only extract
object-related features. After training the object detector,
the model parameters will be frozen in the remaining steps.

Relational encoder by self-supervised learning. A re-
lational encoder generates a relational feature er from the
visual features of the subject-object pair as

er = fenc([hs,ho]), (1)

where fenc represents the relational encoder, hs,ho ∈ H
are the visual features of the subject-object pair, and [·, ·]
indicates the concatenation of the feature. How to create the
subject-object pairs and how to train the relational encoder
in a self-supervised manner are explained in Sec. 3.2. After
training the relational encoder, the model parameters will
be frozen in the last classification step.
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Classifiers. In the last step, an object classifier and a pred-
icate classifier are trained with the pre-trained object detec-
tor and the relational encoder. The object classifier is used
to predict the final object labels ps and po for the subject
and the object by

ps = Softmax(foc(hs)), (2)
po = Softmax(foc(ho)), (3)

where foc represents the object classifier. After the object
labels of the subject-object pairs are determined, multiple
inputs are fed to the predicate classifier to predict the pred-
icate labels,

pp = Softmax(fpc([er, els, elo, ews, ewo])), (4)

where fpc is a function for the predicate classifier. els and
elo are location features computed by the function pos that
takes corresponding bounding boxes as inputs. ews and ewo

are linguistic features generated by the GloVe [27] embed-
ding function emb, which takes the corresponding object
labels ps and po as inputs. We use such location and lin-
guistic features to enhance information about the interaction
between subjects and objects, because the relational feature
er obtained by the proposed self-supervised learning may
not have enough interactive information. The effect of these
features are shown in the ablation study in Sec. 4.5.

To optimize the object classifier and the predicate classi-
fier, we calculate a loss as

L = Lo + Lp, (5)

where, Lo is a focal loss [20] for object classification as

Lo = −α(1− po)
γ log(po), (6)

and Lp is a predicate classification loss calculated by a stan-
dard cross entropy.

3.2. Self-Supervised Learning for Relational Fea-
tures

In recent contrastive and non-contrastive self-supervised
learning methods, large batch size is desired to enhance
the robustness of the models [5, 14]. Hence, unlike con-
ventional scene graph generation methods utilizing target
bounding boxes to generate subject-object pairs, we would
like to use as many pairs as possible. However, not all the
possible subject-object pairs are reliable because the object
detector sometimes makes false predictions. In this sec-
tion, we first describe how to truncate subject-object pairs,
and then explain the details of the proposed self-supervised
learning method based on the truncated subject-object pairs.

How to truncate subject-object pairs. Truncation of the
subject-object pairs is performed by the following two

merge

Figure 2. An example of merging technique. Since attention-based
object detectors tend to produce multiple proposals indicating the
same object (in this case, a computer), these bounding boxes are
merged into a single proposal.

steps. First, the pre-trained object detector outputs a fixed
number of objects, and the number of objects is reduced by
a merging technique. Then, after all the possible subject-
object pairs are created (e.g., if the number of objects af-
ter merging is 50, the number of possible pairs becomes
50 × (50 − 1) = 2450), they are truncated using a pair
confidence threshold.

We decrease the number of detected objects by a merg-
ing technique to reduce redundancy. Since recent attention-
based object detectors [2, 24] do not perform non-maximum
suppression (NMS) unlike the RPN-based object detector,
we have observed that the attention-based object detectors
tend to detect all the possible regions of each object in the
image. The example is shown on the left in Fig. 2. In
the figure, three bounding boxes with different shapes in-
dicate the same computer. In that case, if the computer is
set as a subject and the computer mouse is set as an ob-
ject, three computer → mouse pairs that contain similar
information to each other are generated. These redundant
pairs are meaningless because they do not contribute to in-
creasing variations in a batch. Hence, we merge these mul-
tiple bounding boxes like the right side of Fig. 2 so that the
merged bounding box has maximized information about the
computer. The detailed procedure of the merging technique
is explained in supplementary material A.1.

In addition to the merging technique, we truncate the
number of pairs using the pair confidence so that the model
is trained efficiently and reliably. We introduce a pair con-
fidence cpair, which indicates a probability of whether the
pair is formed or not, for each subject-object pair as

cpair = cs × co, (7)

where cs, co ∈ C represent the confidence scores of the ob-
jects belonging to each subject-object pair, which are gen-
erated by the pre-trained object detector. Then, we extract
the pairs that satisfy a requirement cpair > cth, where cth is
a threshold of the pair confidence.

Details of the self-supervised learning. An overview of
the self-supervised learning for the relational encoder is
shown on the left side of Fig. 1. Among outputs of the
pre-trained object detector, we harness visual features H
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and tentative object labels Vt. In previous contrastive
and non-contrastive self-supervised learning methods (e.g.,
SimCLR [5] and BYOL [12]), they create two views by ap-
plying different augmentations to a single image. Geomet-
ric and color transformations are commonly used as data
augmentations for the self-supervised learning of visual fea-
tures. However, such augmentations cannot be applied to
our predicate case because predicates are implicit features
and are not explicitly shown in images. Therefore, we in-
troduce the following augmentation method. First, we ran-
domly fetch two images I ′s, I

′
o ∈ D that respectively contain

objects having the same object labels as the tentative object
labels vts, vto ∈ Vt, which are given to the subject and the
object by the pre-trained object detector. Second, visual fea-
tures h′

s and h′
o are extracted from the same-labeled objects

in I ′s and I ′o, respectively. Then the original visual features
hs and ho are replaced by h′

s and h′
o for data augmentation.

After the augmentation process, both the original object
feature set (hs,ho) and augmented set (h′

s,h
′
o) are fed

into the relational encoder, and relational features er and
e′r are produced. Then the projector generates projections
of er and e′r as z and z′ for the calculation of contrastive
loss. Finally, the relational encoder and projector are
optimized by the same contrastive loss function proposed
in SimCLR [5] using all projections. The loss function
aims to maximize the similarity of relational features
between the original and augmented pairs, while reducing
the similarity between the original and negative pairs.

4. Experiments
4.1. Dataset and Evaluation Metrics

Dataset. We evaluate our model on VG [17]. The most
frequent 150 object categories and 50 predicate categories
are chosen for evaluation, following the same split proce-
dure in the previous works [44, 35]. After filtering out im-
ages that do not have bounding boxes or predicates accord-
ing to an official implementation of [18], we utilize 57,723,
5,000, and 26,446 images for training, validation, and eval-
uation. The number of total triplets is 405,860, 33,203, and
183,642 in a train set, a validation set, and a test set.

Evaluation metrics. Our proposed model is evaluated on
three sub-tasks: (1) predicate classification (PredCls), (2)
scene graph classification (SGCls), and (3) scene graph de-
tection (SGDet). PredCls is the simplest task, where a
model aims to predict only predicates when the true bound-
ing boxes and object labels are given. In SGCls, only the
target bounding boxes are given and the model is required
to predict object labels and predicates between them. As for
SGDet, the model is used to predict triplets without being
informed of target bounding boxes and object labels.

The metrics we used are recall@K (R@K), which is
a fraction of times the correct relationship is predicted in
the top K confident relationship predictions, and mean re-
call@K (mR@K), which is a mean of R@K for each predi-
cate category. The mean recall is proposed by VCTree [32]
and KERN [6] to reduce the effect of long-tailed imbal-
anced class distribution in the dataset. We can see perfor-
mance for the rare predicate more clearly by the mean recall
than the ordinary recall metric.

4.2. Implementation Details

Detailed settings for the three training steps of SePiR are
described as follows.

Object detector. We adopt Conditional DETR [24] as
the attention-based object detector. We train the Condi-
tional DETR with ResNet101-DC5 backbone in a super-
vised manner on VG for 50 epochs, starting with the pre-
trained weights for MS COCO [21]. We train the object
detector using 8 GPUs with batch size 8 (1 batch size on
1 GPU). Except for the batch size, we use the same hy-
perparameters as an official implementation of [24]. After
50-epochs training, we achieve a detection performance of
mAP = 30.5 on the test set of VG.

Relational encoder by self-supervised learning. In a
self-supervised manner, we train the relational encoder for
10 epochs with 32 batch size utilizing LARS [42] optimizer
on single A100 GPU. The learning rate starts from 0.02
and gradually decreases by 0.9999 per iteration. The details
of the network architectures are described in supplementary
material A.2. We set the threshold of pair confidence to
cth = 0.09 by observing the behavior of the object detector,
which is described in supplementary material A.3.

Classifiers. We train the predicate classifier and the ob-
ject classifier for 40,000 iterations with 16 batch size on a
single A100 GPU. We set α = 0.25 and γ = 2.0 in fo-
cal loss for object classification in Eq. (6), according to the
original paper [20]. To exhibit a capacity of the SGG per-
formance ranging from high R@100 to high mR@100, we
combine SePiR with three debiasing methods for the im-
balanced class distribution: Bilevel sampling [18], RTPB
(CB) [4], and a re-weighting loss. The details of the debias-
ing methods are described in supplementary material A.4.

4.3. Comparison with the Previous Methods

Scene graph generation performance. Experimental re-
sults of the proposed method and the state-of-the-art exist-
ing methods on the three sub-tasks are shown in Table 1.
The results of R/mR@20 and 50 are in supplementary mate-
rial B.1. Especially, SePiR incorporating the re-weighting
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PredCls SGCls SGDet
Models R@100 mR@100 R@100 mR@100 R@100 mR@100
KERN [6] 67.6 19.2 37.4 10.0 29.8 7.3
GPS-Net [22] 68.8 22.8 40.1 12.6 31.7 9.8
PCPL [36] 52.6 37.8 28.4 19.6 18.6 11.7
BGNN [18] 61.3 32.9 38.5 16.5 35.8 12.6
Seq2Seq-RL [23] 68.5 30.5 39.0 16.2 34.4 12.1
DTrans + RTPB (CB) [4] 47.5 38.1 25.5 22.8 23.4 19.0
Motifs [44, 32] 67.1 15.3 36.5 8.2 30.3 6.6
Motifs + TDE [31] 55.8 28.3 29.5 15.2 8.4 9.9
Motifs + BA-SGG [13] 52.5 31.7 31.0 17.5 26.9 15.6
Motifs + RTPB (CB) [4] 42.5 37.7 26.9 20.6 22.5 15.5
VCTree [32] 68.1 19.4 38.8 10.8 31.3 8.0
VCTree + TDE [31] 54.5 26.6 31.2 13.4 23.3 10.3
VCTree + BA-SGG [13] 51.8 32.6 35.0 21.2 25.5 15.7
VCTree + RTPB (CB) [4] 43.3 35.6 30.0 25.8 21.3 15.1
SePiR + Bilevel sampling 64.6 33.2 36.8 18.5 32.1 13.1
SePiR + RTPB (CB) 31.8 40.3 18.1 20.7 15.6 16.4
SePiR + Reweight 28.9 43.2 15.9 23.6 16.6 19.7

Table 1. The performance of PredCls, SGCls, and SGDet on VG. The scores of the existing methods are referred from the cited papers.
The bold font indicates the best mR for each task.
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Figure 3. Trade-off curves between R@100 and mR@100 comparing SePiR and the existing methods (Motifs [44], VCTree [32],
BGNN [18], and DTrans [4]) for PredCls, SGCls, and SGDet tasks on VG. rep means our reproduction, and ref means reference from the
original papers. A model has an advantage if the trade-off curves locate in the upper right area, where both R@100 and mR@100 are high.
SePiR is competitive to the state-of-the-art supervised methods.

loss (Reweight) achieves the highest mR@100 on PredCls
and SGDet tasks.

For a fairer comparison, we devise an evaluation method
using a trade-off between R@100 and mR@100 as shown
in Fig. 3. Before delving into the result, we explain a way
of looking at the graphs. Previous methods recently have
focused more on mR@K than on R@K to corroborate that
their methods are effective for the imbalanced class distri-
bution of predicate classes. However, it would be unde-
manding to obtain high mR@K by sacrificing the perfor-
mance of R@K. Denoting only R@K or mR@K is not
enough to compare various scene graph generation models.
Hence, we have to follow a direction that aims to achieve
high mR@K while performing higher score on R@K and
that plans to devise the evaluation method considering both
mR@K and R@K. This motivation leads us to conceive
the graph plotting the trade-off between mR@K and R@K
as Fig. 3. Colors in the graph correspond to different mod-
els, and the markers in the graph indicate different meth-

ods for long-tailed class distribution, such as loss functions
and sampling strategies, which are detailed in supplemen-
tary material A.4. With the trade-off curves, we are able to
discern an advantage of the model if the markers are in the
upper right area of the graph, where both R@K and mR@K
are high.

In Fig. 3, we can see that our proposed method achieves
competitive performance to the state-of-the-art supervised
models, BGNN [18] and DTrans [4]. Note that since the
results of BGNN and DTrans are from our reproduction ex-
periment, the values are different from those of Table 1. The
results of Motifs [44] and VCTree [32] are taken from liter-
ature and the same as Table 1 because we cannot reproduce
their results from the published source codes.

As for PredCls, although SePiR slightly outperforms
other methods for all the range, SePiR does not show ex-
plicit advantages for SGCls. This means that our method
is especially good at predicate classification, which is the
result we are aiming for. For SGDet, which is the most im-
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Figure 4. Comparison of SGDet R@100 for each predicate class between SePiR and DTrans (left axis). The distribution of the predicate
classes in the test split is also shown in the green line (right axis). The predicates are sorted in descending order. SePiR outperforms DTrans
in the rare predicate categories.

# Parameters Inference time
Models Object detector Relational Encoder Classifiers Total (SGDet)

BGNN [18] 161.7 M 181.2 M 343.0 M 0.38 s
DTrans [4] 161.7 M 181.2 M 342.9 M 0.38 s

SePiR 62.4 M 21.3 M 10.0 M 93.6 M 0.06 s

Table 2. The computational performance of SePiR, BGNN [18], and DTrans [4]. A sum of parameters of Relational Encoder and Classifiers
for BGNN and DTrans correspond to the number of parameters required in architectures except for the object detector. For SePiR,
Relational Encoder includes the relational encoder and the projector, and Classifiers includes the object/predicate classifiers.

portant task, SePiR is comparable or superior to the other
methods, except for DTrans. mR@100 of DTrans from our
reproduction is 20.9 and higher than those in Table 1. The
difference between SePiR and DTrans comes from the dif-
ferent architectures for improving object labels. Whereas
the relational encoders in DTrans make use of contexts and
predicate representation for refining object labels, SePiR
does not utilize them.

Fig. 4 shows comparison of the individual R@100 score
of SGDet for each predicate between SePiR+Reweight and
our reproduced DTrans+RTPB(CB). We can see that SePiR
achieves better prediction on tail categories than DTrans.
The detailed comparisons for “head,” “body,” and “tail” cat-
egories are described in supplementary material B.1. Al-
though the overall mR score of DTrans is higher than SePiR,
the result shows that our method is more effective to predict
long-tailed rare relationships.

Computational performance. To see the efficiency of
the proposed model, we evaluated the number of the model
parameters and the computation time in comparison to the
state-of-the-art methods. The result is shown in Table 2.
When it comes to the number of parameters, our model
has the lowest amount of parameters (∼ 90M) compared
to those of the other models (∼ 340M). The significant re-
duction comes from the simple relational encoder and the
attention-based object detector. As for the relational en-
coder, the message passing used in BGNN and the attention-
based architecture using Transformer in DTrans are com-
putationally heavier than SePiR’s encoder realized by sim-

ple multilayer perceptron. We also measure the inference
time per image on a single A100 GPU taking the average of
26,446 test images. In the case of BGNN and DTrans, we
use each official implementation. Our model achieves the
fastest speed compared to state-of-the-art supervised meth-
ods on SGDet. In particular, our model runs about 6.3 times
faster than other methods. The significant reduction also at-
tributes to the MLP-centric architectures of the relational
encoder in SePiR.

4.4. Experiments with Limited Labeled Data

In this section, the experimental results on the limited la-
beled dataset like [5] are presented to corroborate that our
model acquires informative predicate representation by self-
supervised learning. To be specific, we pre-train the rela-
tional encoder with the full train set of VG without predicate
labels and train the predicate classifier with limited labelled
datasets (randomly sampled 5%, 10%, and 30% of images
in a train set of VG). For comparison, we also train state-of-
the-art supervised methods, BGNN and DTrans, in a super-
vised manner with the same limited labeled datasets. We
evaluate all the models on SGDet and utilize the trade-off
graphs following the previous section for a fair comparison.

The result with the limited labeled dataset is shown in
Fig. 5, and that experimented with the full dataset is exhib-
ited in Fig 3. Clearly, we can see that SePiR locates in more
right upper area than the existing supervised methods in all
the limited labeled dataset whereas there seems less gap of
the performance between SePiR and the supervised meth-
ods with respect to the fully labeled dataset. Especially in
the case of 5% dataset, the highest mR@100 of SePiR is
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Figure 5. The comparison of SGDet performance to BGNN [18] and DTrans [4] with limited (5%, 10% and 30%) labeled dataset. We used
the same debiasing methods as Fig. 3. Our method achieves much higher performance than state-of-the-art supervised methods in all the
limited labeled dataset.
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Figure 6. The comparison of performance on PredCls between
SePiR and SePiR without (a) location feature and (b) linguistic
feature. SePiR achieves higher performance than SePiR without
each component.

about 6 points larger than the highest of mR@100 of the su-
pervised methods, and the performances of the supervised
methods stick to lower mR@100 regardless of the methods
for the imbalanced class distribution. Comparisons for each
predicate between SePiR and DTrans are shown in supple-
mentary material B.2. SePiR has a large advantage on tail
categories even with limited labeled dataset. The results
indicate that SePiR is able to improve predicate represen-
tation without using large amount of labeled data by self-
supervised learning, although the state-of-the-art supervised
methods poorly capture the representation if only the lim-
ited labeled data are provided. This result also implies that
SePiR has a potential to acquire more robust predicate rep-
resentation if we harness tremendous of images that do not
have predicate labels.

4.5. Ablation Study

SePiR utilizes location and linguistic features as inputs
of the predicate classifier aside from the relational features.
In this study, we corroborate the validity of using such fea-
tures. More ablation studies about self-supervised methods,

word embeddings, and object detectors are described in sup-
plementary material B.3.

Location feature. For the feature to represent the location
of the objects in images, SePiR utilizes the bounding box
information. To see the effectiveness of using the location
feature, we compare the performance of SePiR with and
without the location feature. Fig. 6 (a) shows the relation-
ship between R@100 and mR@100 for PredCls. We can
see that SePiR achieves slightly higher performance than
the method without location feature. The result shows that
explicit knowledge of locations improves predicate predic-
tions.

Linguistic feature. SePiR employs GloVe word embed-
ding [27] as linguistic feature that helps the model predict
predicates with the help of external linguistic knowledge.
Fig. 6 (b) shows the performance of PredCls with/without
using GloVe word embedding. Obviously, the performance
of SePiR with GloVe is superior to that without GloVe,
which indicates that linguistic feature is imperative to im-
prove predicate predictions.

5. Conclusion
In this paper, we introduce SePiR, self-supervised learn-

ing method to improve predicate representation in scene
graph generation. Experimental results show that our
method is competitive to state-of-the-art supervised meth-
ods using full dataset and is superior to them in the case
of limited labeled dataset, implying that SePiR can capture
essential predicate representations for scene graph genera-
tion. For future work, we will enhance the model so that
it can acquire more robust predicate representations by uti-
lizing myriad of open set images. We consider that these
representations are beneficial not only for scene graph gen-
eration but also for other tasks using predicate representa-
tion, such as human-object interaction and visual relation
detection.
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