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Abstract

Dynamic convolution achieves better performance for ef-
ficient CNNs at the cost of negligible FLOPs increase. How-
ever, the performance increase can not match the signifi-
cantly expanded number of parameters, which is the main
bottleneck in real-world applications. Contrastively, mask-
based unstructured pruning obtains a lightweight network
by removing redundancy in the heavy network. In this pa-
per, we propose a new framework, Sparse Dynamic Convo-
lution (SD-CONV), to naturally integrate these two paths
such that it can inherit the advantage of dynamic mecha-
nism and sparsity. We first design a binary mask derived
from a learnable threshold to prune static kernels, signifi-
cantly reducing the parameters and computational cost but
achieving higher performance in Imagenet-1K. We further
transfer pretrained models into a variety of downstream
tasks, showing consistently better results than baselines. We
hope our SD-Conv could be an efficient alternative to con-
ventional dynamic convolutions.

1. Introduction

There have been rich discussions on the representa-
tion power of deep neural networks in two opposite direc-
tions [43, 34]. From the perspective of increasing the model
capacity, more layers and channels with specialized infras-
tructure (e.g. dynamic convolution [7]) can achieve higher
performance with less overfitting [39, 1]. In the view of
model compression, network pruning and quantization of
complex networks can induce smaller models possibly at
the expense of minor accuracy loss [14, 12]. Regarding
the trade-off between cost and gain in these two opposite
approaches, what will happen when we combine them for
infrastructure optimization? Especially, can we combine

*Corresponding author

the advances of dynamic convolution and sparsity towards
the best of both worlds – achieving a desirable trade-off be-
tween complexity and performance?

Dynamic convolution (DY-Conv) [7] achieves significant
performance gains over static convolution with negligible
computational cost but relatively high memory cost. Specif-
ically, it utilizes an input-based attention mechanism to gen-
erate dynamic attention weights to combine multiple paral-
lel static kernels, boosting the performance at the cost of
increased convolutional parameters.

However, during inference, this parameter increase
does not match the model performance improvement com-
pletely. For example, DY-ResNet-18 [7] is 2.3% higher than
ResNet-18 and 4% lower than ResNet-50 in Top-1 accuracy
on Imagenet-1K [8], while its parameter amount is about
four times of ResNet-18 and twice of ResNet-50. In ad-
dition, large-scale DNNs require huge storage and deploy-
ment cost, which becomes the main bottleneck of the real-
world deployment [28, 13, 24]. These phenomena raise the
problem of parameter efficiency when we try to adopt dy-
namic convolution more efficiently.

A possible routine to improve the parameter efficiency
in dynamic convolution is to refine the method of ker-
nel combination. For example, Li et al. [32] reformu-
late the linear combination of dynamic convolution into a
summation of the static kernel and sparse dynamic resid-
ual. Another scheme is to increase the sparsity to build
compact parameter-efficient networks. One can prune task-
unrelated neurons that usually have small absolute val-
ues [17, 51, 13] or contribute little to the decrease of loss
function [42, 30, 31]. In recent studies, some sparse net-
works not only decrease storage and computational require-
ments but also achieve higher inference scores than dense
networks [10], suggesting the potential utility of sparse
structure in alleviating overfitting problems [?, ?]. In terms
of the representation power of subnetworks, the Lottery
Ticket Hypothesis [13] shows that there consistently exists
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lightweight subnetworks that can be trained from scratch
with competitive learning speed as their larger counterparts,
while maintaining comparable test accuracy. Based on this
hypothesis, we assume that we can find the subnetworks for
dynamic convolution in the training process and achieve a
compact and efficient dynamic convolution network.

In this work, we re-examine the parameter efficiency for
dynamic convolution. We first simply prune out half of the
parameters in the k parallel kernels for pretrained dynamic
convolution layers. Surprisingly, we find that this pruning
operation has minimal effect on the numerical feature of dy-
namic parameters and a negligible impact on performance.

Based on this discovery, we further propose to integrate
dynamic convolution with sparsity, namely sparse dynamic
convolution, which enjoys natural complementarity. Tech-
nically, we present a new algorithm to train the dynamic
convolution modes via iterative pruning. Specifically, we
set a learnable threshold for each convolutional layer and
prune the neurons whose magnitudes are below the thresh-
old. We also propose a penalty term to explicitly regulate
theL0-norm of maintained parameters to guarantee the total
parameters under an overall budget without additional hy-
perparameters. Considering that the computational kernel
is a linear combination of static kernels, the masked kernels
can then be integrated into a sparsely computing kernel with
reduced FLOPs.

To validate the efficiency of sparse dynamic convolu-
tion, we execute our methods on both ImageNet-1K [8]
and downstream tasks, and demonstrate the promotion that
arises from both dynamic convolution and sparsity: Dy-
namic mechanism improves the representation power with
negligible extra computational cost; Sparsity reduces the re-
dundancy of dynamic convolution and promotes the perfor-
mance during inference. In short, our main contributions
are as follows:

• We propose the Sparse Dynamic Convolution (SD-
Conv) to improve the parameter efficiency of dynamic
convolution by marrying the dynamic convolution and
sparsity to maintain the advantage of both worlds.

• We propose a novel L0-norm based pruning method
with an optimization policy to train sparse dynamic
convolution networks efficiently.

• Our experiments on both upstream tasks and down-
stream tasks have shown the complementarity between
sparsity and dynamic convolution.

2. Related Work

Both dynamic convolution and sparsity are often consid-
ered separately to promote neural networks. We delve into
the combination of them and briefly review them as follows:

Dynamic Networks Dynamic networks adapt input-
based parameters or activation functions to boost represen-
tation power. HyperNetworks[16] use a secondary network
to generate parameters for the main network. SENet [22]
applies channel-wise attention to channels. DRConv[6]
transfers the increasing channel-wise filters to a spatial di-
mension with a learnable instructor. CondConv[48] and
Dynamic Convolution [7] each proposed a new convolution
operator to improve the representation capability with neg-
ligible extra FLOPs. Instead of using a single static convo-
lution kernel per layer, they use the linear combination of
a set of k parallel static kernels {Wi, bi}(i = 1, 2, . . . , k),
where the linear scale is dynamically aggregated via a func-
tion of individual inputs. Dynamic convolution [7] utilizes
an attention function to formulate the linear score:

Ŵ =

k∑
i=1

πi ·Wi

s.t.
k∑

i=1

πi = 1, 0 ≤ πi ≤ 1,

(1)

where πk is the attention score of the k-th kernel. Dy-
namic convolution only introduces two negligible addi-
tional computations: 1) Computing the attention scores
πi(i = 1, 2, . . . k). 2) Aggregating parameters based on
attention scores

∑k
i=1 πi(x) ∗Wi. This linear combination

significantly promotes the representation power of dynamic
convolution and improves the performance in mainstream
computer vision tasks.

However, towards the use of k parallel kernels in dy-
namic convolution, Li et al. [32] have proposed that it
lacks compactness, and further utilized a matrix deposition
method to improve this problem. Similarly, our work inves-
tigates the parameter efficiency of dynamic convolution and
utilizes network pruning methods to improve it.

Sparsity Sparsity has been widely studied to compress
deep neural networks in resource-constrained environ-
ments. It can be generally categorized into two groups:
STRUCTURED and UNSTRUCTURED sparsity. Structured
sparsity prunes blocks of sub-networks in a neural network,
while unstructured fine-grained sparsity prunes multiple in-
dividual weights distributed across the whole neural net-
work. Between the two sparsity types, unstructured spar-
sity usually achieves significantly higher compression ratios
while maintaining relatively better performance [17, 15],
which therefore leaves as our default sparsity type.

Unstructured sparsity usually detects unimportant pa-
rameters and utilizes a threshold to prune them. On the one
hand, many previous works compute the threshold based
on different importance-based criteria, including magnitude
[17, 51, 13], Hessian-based heuristics [30, 31] and connec-
tion sensitivity [29, 35]. On the other hand, sparse training
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Figure 1: Illustration of convolution kernel generation process for Dynamic Convolution (Left) and our proposed Sparse
Dynamic Convolution architecture (Right).
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with differential thresholds has also been widely explored.
Kusupati et al. [28] and Manessi et al. [38] propose to learn
layer-wise thresholds automatically using a soft threshold-
ing operator or a close variant of it. As the learning-based
thresholds contribute to the minimization of task-specific
loss, the differential thresholds-based sparse method [28]
contributes to high performance. Besides, sparsity learned
during training with approximate L0-norm regulation has
also been used in several works [33, 2], because it con-
trols the overall sparsity directly. To make the L0-norm of
thresholds differentiable, Louizos et al. [33] set a collection
of non-negative stochastic gates to determine the weights to
be pruned, while Azarian et al. [2] propose an approximate
form of L0-norm to estimate the gradient. Considering both
performance and controllability, we adopt a threshold-based
L0-norm in our sparse method.

3. Methodology
In this section, we first present our motivation for spar-

sity in dynamic convolution, then illustrate our efficient
architecture, namely Sparse Dynamic Convolution (SD-
CONV).

3.1. Motivation

In conventional dynamic convolution, each convolu-
tional layer prepares k parallel kernels to aggregate the dy-
namic kernel, leading to a nearly k times larger model and
potential parameter redundancy. For example, the total pa-
rameters of dynamic ResNet-50 (DY-ResNet-50) are about
100.9M (with 4 kernels) compared to about 23.5M for static
ResNet-50. For this phenomenon, we raise two questions:
(1) Is it necessary to pay the cost of enormous parameters
and computations, e.g. 329% in DY-ResNet-50, to aggre-
gate the dynamic kernels? (2) Is it necessary to deploy all
of these parameters to maintain the slight performance im-
provement, e.g. 1.1% in DY-ResNet-50?

To answer these questions, we turn to analyze the pre-
trained DY-ResNet-50 [19] model from the view of network
pruning. Specifically, we prune out 50% parameters of it

Figure 2: The scaled layer-wise mean and variance values
of the aggregated kernel weights of ResNet-50. “Vanilla”
and “Pruned” denote dynamic convolution networks before
and after pruning, respectively. The mean and variance val-
ues keep nearly unchanged after pruning 50% parameters.
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with the lowest magnitude on CIFAR-100 dataset1 [27]. We
measure the mean and variance values of the parameters
in aggregated kernels as the proxy of the dynamic prop-
erty: given different input samples, each dynamic convolu-
tion layer aggregates the computational kernel dynamically.
By iterating over the entire validation dataset, we compute
the layer-wise mean and variance of parameters in the ag-
gregated kernel, which is shown in Figure 2. Clearly, The
change curves of the vanilla and the pruned networks al-
most coincide, with only some small divergences in the up-
per layers. Therefore, network pruning has little impact on
the numeric features of the dynamic property.

We also conduct a preliminary experiment to investigate
the performance gap caused by network pruning on CIFAR-
100 using ResNet [19] as backbones. We can see from

1https://github.com/weiaicunzai/pytorch-cifar100
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Table 1: Preliminary results for network pruning in dy-
namic convolution (DY-Conv). After pruning 50% parame-
ters “w/ Pruned”, dynamic convolutions still maintain com-
parable performance and the advantage over static convolu-
tions “Static”. ✶ indicates the dynamic models with the best
performance, the fewest parameters, and the fewest FLOPs
(“Static” models are excluded).

Depth Method Param. FLOPs Top-1 (%)

ResNet-10
Static 0.3M 29.9M 66.0
DY-Conv 1.2M 34.8M 68.9
w/ Pruned ✶0.6M ✶27.1M 68.1(-0.8)

ResNet-18
Static 0.7M 35.6M 67.6
DY-Conv 2.8M 43.4M 72.4
w/ Pruned ✶1.4M ✶31.9M 71.9(-0.5)

ResNet-50
Static 1.5M 122.3M 72.2
DY-Conv 6.2M 143.4M 75.2
w/ Pruned ✶3.3M ✶108.5M 74.6(-0.6)

results in Table 1 that pruned networks still maintain al-
most equally competitive performance: DY-ResNet fami-
lies (with dynamic convolution layers) only encounter less
than 1% of performance drop and still outperform static net-
works by more than 2% in accuracy. The above observa-
tions motivate us to explore effective and efficient sparse
dynamic convolution structures.

3.2. Sparse Dynamic Convolution

In this section, we propose Sparse Dynamic Convolu-
tion, which utilizes parallel sparse kernels to aggregate dy-
namic kernels. We use binary masks M to sparsify the ker-
nels by pruning out unimportant parameters. Generally, a
binary mask is a 0/1 matrix indexing the pruned weights in
the parallel kernels. To make the binary mask trainable, we
define a magnitude score S = ∥W∥ and a threshold τ . The
mask is then rounded to 1 if the score is greater than the
threshold, and vice versa, given by

Mi =

{
1, if Si ≤ τ
0, otherwise

. (2)

The major challenge for training binary masks is that Eq. (2)
is non-differentiable, impeding the calculation of gradients
and blocking the updating process. To solve this prob-
lem, Piggyback [37] utilizes the Straight-Through Estima-
tor (STE) [3] (where the gradient is directly passed to its
input ∂M

∂W = 1) to enable gradient estimation so that the
gradient descent can update parameters.

According to Zhou et al. [50], the values of M̃ are not
restricted in binary values 0/1 strictly, which may cause an
unstable training process and accuracy drop. Inspired by

Figure 3: Effect of the hyperparameter T on the binary
function Eq. (3 and 4). It is easily observed that this hy-
perparameter contributes to the sharpness. By decreasing
T , we observe that output values gradually follow an ap-
proximate 0/1 distribution.
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Yang et al. [49], we adopt the softmax function to approx-
imate M̃ into binary values 0/1 for better gradient calcula-
tion:

ψ1 = σ(S − τ), (3)

M̃ =
exp(ψ1/T )

exp(ψ1/T ) + exp(ψ0/T )
, (4)

where σ(·) is the sigmoid function and τ denotes the thresh-
old. ψ0 = 1−ψ1 is the complement of ψ1, M̃ is the gener-
ated mask following an approximate 0/1 distribution. T is
the hyperparamete controlling the sharpness of the function.
For example, T = 1

1024 encourages the output to be either
0 or 1, which is shown in Figure 3. Then we transform M̃
into binary values M using STE to generate and update the
binary masks:

M = round(M̃), ∇M = ∇M̃. (5)

By utilizing binary masks to k kernels, we transform the
dynamic convolution into sparse dynamic convolution. In
this layer, we first sparsify the k parallel static convolution
kernels Wi (i = 1, 2, . . . , k) and then combine them dy-
namically, given by

W̃i =Mi ⊙Wi, Ŵ =
∑
i

πi ∗ W̃i. (6)

Here, W̃i and Ŵ denote the sparsified parameters of the
static kernel and the aggregated sparse kernel, respectively.
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3.3. Loss Function

The binary mask M is determined by the magnitude of
parameters W and the threshold τ . In general situations, τ
is a hyperparameter as the threshold that controls the global
sparsity. A naive way to set the threshold is to maintain the
uniform sparsity of all layers. However, many experiments
have indicated that setting multiple thresholds to control the
layer-wise non-uniform sparsity performs much better [28,
33, 2]. Existing methods to acquire layer-wise sparsity are
often dependent on hyperparameters and require iterative
trials [13]. To address this problem, we propose a learning-
based strategy to obtain layer-wise thresholds. Specifically,
we first transform τ into learnable parameters and utilize it
to generate differential masks:

∂M

∂τ
=
∂M

∂M̃

∂M̃

∂ψ1

∂ψ1

∂τ
. (7)

The gradient backpropagated to M indicates two direc-
tions: contributing to the performance improvement and
constraining the overall sparsity. To constrain the spar-
sity, L0-norm regularization has been widely researched in
model sparsity [33, 2], for it directly regulates the overall
parameter budget. Therefore, given the overall sparse level
s, the non-zero ratio of overall parameters is s̄ = 1− s. We
resort to L0-norm penalty Ls(τ, s) to constrain the layer-
wise non-uniform sparsity as followed:

Ls(τ, s̄) = ReLU(
∑
l

Nl · (||M (l)||0 − s̄)), (8)

where Ls is the regulation loss that controls the global
sparsity, Nl is the number of parameters in the i-th layer,
||M (l)||0 is the L0 norm of the mask M in the l-th layer.
Note that we use the ReLU function to restrict the global
sparsity under the setting value, this loss term only works
when the network is denser than expected. Formally, we
define our loss function L as followed:

L = Lc

(
y, f(x,W, τ)

)
+ λsLs(τ, s̄) + λr||W ||2, (9)

where we represent our networks as f and the ground truth
label as y. Lc is the standard loss function, e.g., cross-
entropy in image classification. ||W ||2 is the L2 weight
regularization loss and λr is the weight decay rate. λs is
a hyperparameter that determines the pruning speed.

3.4. Optimization Policy

We train the sparse dynamic convolution following an it-
erative pruning process [13, 11]. Notably, considering the
time-consuming training process of dynamic networks, we
restrain the total steps consistent with vanilla dynamic con-
volution and equally divide the total steps into n+1 phases.
Given the sparse level s and pruning iterations n, in the first

Algorithm 1: Sparse Dynamic Convolution
Input: Sparsity s, Total Steps T , Pruning Iterations n,
Dynamic Convolution Network f .
Output: Sparse Dynamic Network fs.

1: Initialize s̄ = 1− s, s̄0 = 0,∆t = T
n+1 .

2: for t = 1 to T do
3: Compute loss L = Lc + λsLs(τ, s̄t) + λr||W ||2.
4: Update parameters Wt+1 ←Wt − ηW ∂L

∂W .
5: Update thresholds τt+1 ← τt − ητ ∂L

∂τ .
6: if tmod∆t = 0 then
7: Update variable s̄t+1 = s̄

t
∆t∗n .

8: else
9: Pass variable s̄t+1 = s̄t.

10: end if
11: end for

n phases, we prune s
1
n percent of the parameters at the end

of each phase and retrain the network in the next phase. The
whole training policy is shown in Algorithm 1.

4. Experiment
In this section, we provide comprehensive experiments

on both large-scale image recognition datasets and down-
stream tasks with different CNN architectures to validate
the effectiveness of SD-Conv. Specifically, we compare
the performance of sparse dynamic convolution with other
convolution architectures, and further analyze the design of
sparse dynamic convolution from the perspective of sparsity
and reduced FLOPs.

4.1. Image Classification on ImageNet

Our main experiments are implemented on the ImageNet
dataset [8], which is one of the most challenging image clas-
sification datasets with 1,000 classes, including 1,281,167
images for training and 50,000 images for validation.

CNN Backbones. We use ResNet [19] and Mo-
bileNetV2 [45] families for experiments, covering both
light-weight CNN architectures and larger ones. Specif-
ically, we choose ResNet-10, ResNet-18, ResNet-50 and
MobileNetV2 (1.0×, 0.75×, 0.5×) as the backbones.

Experimental Setup. We validate the effectiveness of
our method by replacing dynamic convolution for all con-
volution layers except the first layer. Each layer has k = 4
experts with the reduce ratio as 16 for the attention block
in dynamic convolution [7]. We use an SGD optimizer
[44] with 0.9 momentum, following cosine learning rate
scheduling and warmup strategy. The learning rate rises
to the max learning rate linearly in the first 10 epochs and
is scheduled to arrive at zero within a single cosine cycle.
When generating binary masks, we set constant T = 1

1024

to ensure M̃ follows approximately 0/1 binary values. The
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Table 2: Comparison for MobileNetV2 and ResNet between Sparse Dynamic Convolution and baselines, including static
convolution, Condconv[48] and DY-Conv [7]. ✶ indicates the dynamic model with the fewest parameters or the fewest
FLOPs (static models are not included). The best performance is bold.

Width Method Param. FLOPs Top-1 (%)

×1.0

Static 3.5M 300.0M 72.0
CondConv 27.5M 329.0M 74.6
DY-Conv 11.8M 312.9M 75.2
SD-Conv ✶7.7M ✶261.9M 75.3

×0.75

Static 2.6M 209.1M 69.3
CondConv 17.5M 233.9M 71.8
DY-Conv 7.6M 220.1M 72.8
SD-Conv ✶5.0M ✶171.8M 73.2

×0.5

Static 2.0M 97.0M 65.4
CondConv 15.5M 113.0M 68.4
DY-Conv 4.4M 101.4M 69.9
SD-Conv ✶3.1M ✶81.5M 70.3

(a) MobileNetV2

Depth Method Param. FLOPs Top-1 (%)

ResNet-10

Static 5.2M 0.89G 63.4
CondConv 36.7M 0.92G 66.8
DY-Conv 18.6M 0.91G 67.5
SD-Conv ✶10.4M ✶0.73G 67.9

ResNet-18

Static 11.1M 1.81G 70.4
CondConv 81.4M 1.89G 72.0
DY-Conv 42.7M 1.85G 72.7
SD-Conv ✶23.2M ✶1.51G 73.3

ResNet-50

Static 23.5M 3.8G 76.2
CondConv 129.9M 4.0G 76.8
DY-Conv 100.9M 4.0G 77.3
SD-Conv ✶54.0M ✶3.4G 77.4

(b) ResNet

scale factor λs of sparse penalty Ls(τ, s) is fixed as 0.01.
We follow Zhou et al. [7]’s temperature annealing strategy
to avoid the unstable output values of the softmax func-
tion in the first epoch. We train the ResNet models for
100 epochs, and the max learning rate is 0.1. For the Mo-
bilenetV2 models, we train them for 300 epochs, and the
max learning rate is 0.05. The weight decay is 4e-5 for all
models.

Main Results. Table 2a and 2b show the comparison
between SD-Conv and other convolution architectures in
two CNN architectures (ResNet and MobilenetV2). Our
baselines include the static convolution, CondConv [48]
and DY-Conv [7]. We set s = 50% to make the overall
sparsity over 50%. As shown, sparse dynamic convolution
achieves significant performance improvement with a much
smaller model size compared to vanilla dynamic convolu-
tion. For ResNet-18, sparse dynamic convolution has only
54.3% of the parameters of vanilla dynamic convolution.
For MobilenetV2-1.0, our method only requires 53.5% of
the parameters of dynamic convolution to achieve the same
level of accuracy. The most prominent advantage of sparse
dynamic convolution is its low computational cost. Owing
to the sparse computational kernel Ŵ , our method requires
much fewer FLOPs in the convolution operation that acts as
the dominant part of the overall FLOPs. The computational
cost of our method is even less than that of static convolu-
tion, while all the other dynamic networks introduce extra
computational costs. For example, sparse dynamic convo-
lution only has 87.3% of FLOPs of static convolution in
MobilenetV2-1.0.

Robustness. Traditional network structures are robust
to the images perturbed with small Gaussian noise, while

Table 3: The robustness evaluation based on random noise
attack. Setting different standard variance σ, we evaluate
the performance of different models. The best performance
is bold.

Model Option 0.05 0.10 0.15 0.20

ResNet-50
Static 68.2 65.4 58.4 54.2
DY-Conv 68.7 66.1 59.2 55.4
SD-Conv 69.1 66.5 59.5 55.9

ResNet-18
Static 60.7 53.9 49.8 45.1
DY-Conv 61.1 54.8 50.4 46.3
SD-Conv 61.3 55.2 50.5 46.7

networks pruned with random masks can even have higher
robustness than normal ones [36]. To check whether SD-
Conv also enjoys such property or even has better robust-
ness in this scenario, we also consider the model’s en-
durance of noise attack. We conduct an robustness evalu-
ation on ImageNet for ResNet-50 [19]. Inspired by Luo et
al. ’s work [36], we feed input images with Gaussian noises
z ∼ N

(
0, σ2

)
to networks. Table 3 shows the robustness

evaluation on random noise attack, we set the sparse ratio
s as 20% and 80% separately for our model. Disturbed by
the same intensity of noise, we can see that our networks
have the highest accuracy and gain up to 0.5% improvement
compared to dynamic architectures.

4.2. Transferring to Downstream Tasks

Network architectures measured against ImageNet [8]
have fueled much progress in computer vision researches
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Figure 4: Transferability comparison between Static, Dynamic, and our proposed SD-Conv from pretrained ResNet to differ-
ent downstream tasks. We report two finetuning approaches: linear finetuning and full finetuning.

CIFAR
10

CIFAR
100

Pets Birds Food
101

Flower Car Sun
397

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

Va
lid

at
io

n 
Ac

cu
ra

cy
 (%

)

Linear Finetuning

CIFAR
10

CIFAR
100

Pets Birds Food
101

Flower Car Sun
397

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

Va
lid

at
io

n 
Ac

cu
ra

cy
 (%

)

Full Finetuning

Static Dynamic Sparse Dynamic

across a broad array of problems, including transferring to
new datasets [9, 46], object detection [23], image segmen-
tation [18] and perceptual metrics of images [25]. Many
previous works have proved that better network architec-
tures learn better features to be transferred across vision-
based tasks [21, 46]. Therefore, we further evaluate the ef-
fectiveness of our network on downstream vision tasks, in-
cluding CIFAR-10 [27], CIFAR-100 [27], Oxford-IIIT Pets
[41], Birdsnap [4], Food-101 [5], Oxford 102 Flowers [40],
Stanford Cars [26], SUN397 [47]. These tasks span several
domains, difficulties, and data sizes.

We transfer all parameters of the upstream model except
the last (fully connected) layer, which is adjusted to the
number of classes in the downstream task, using Kaiming
uniform initialization [20]. We finetune the pretrained Ima-
geNet model following two strategies, linear finetuning and
full finetuning. For linear finetuning, we only train the lin-
ear classifier “on the top” of a fixed representation on down-
stream tasks, while we re-initialize the final layer and train
the whole model for full finetuning. For both strategies, we
take top-1 classification accuracy as the metric to compare
different structures, which is shown in Figure 4. The results
clearly show that the sparse dynamic convolution achieves
consistent improvement compared to dynamic convolution
on downstream tasks, suggesting that pruning redundant in-
formation in the weights is beneficial to dynamic convolu-
tion architectures in transfer settings.

4.3. Further Analysis

Further Increased Sparsity Can Still Maintain Superior
Performance. To further explore the impact of sparsity,
we conduct an ablation study by investigating a series of
sparse ratios (from 20% to 80%). Figure 5 shows the result

Figure 5: The ablation study on sparsity for ResNet. Dotted
line represents the performance of static convolution.
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of the ablation study on ImageNet classification [8] experi-
ments for ResNet [19] in different depth, where we directly
report the classification accuracy. For ResNet models with
different depths, we can observe a consistent phenomenon
that SD-Conv performs stably under different degrees of
network pruning. At low sparse ratios (e.g. s ≤ 40%),
pruning out some unimportant parameters can lead to higher
performance. When further increasing the sparse ratios, e.g.
60% and 80%, sparse dynamic convolution networks still
maintain a significant performance advantage over static
convolution networks. Considering the competitive perfor-
mance, network pruning is an efficient way to simplify and
promote dynamic convolution.
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Figure 6: The curves of kernel and layer sparsity for
ResNet-18.
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Reduced FLOPs Come from the Sparse Aggregated
Kernel. As shown in Table 2a and Table 2b, the FLOPs of
sparse dynamic convolution networks are even lower than
static convolution. According to our observation, the re-
duced FLOPs come from the sparsity in propagated kernels
Ŵ . Even so, we have to mention that the sparsity of Ŵ
is not definitely dependent on the sparsity of parameter W̃j

(j = 1, 2, . . . , k) but lies in the overlap between them: the
i-th element of Ŵ is zero only when all static kernels W̃j

(j = 1, 2, . . . , k) have zero elements in the i-th position.
Therefore, other than layer sparsity towards parameters (the
proportion of zero-elements in W̃j), we also resort to the
kernel sparsity towards propagated kernels (the proportion
of zero-elements in ŵ). To investigate the distribution of
pruned parameters in propagated kernels, we visualize the
pruned ratio of propagated kernels Ŵ and k kernels Wk in
Figure 6. We show that the kernel sparsity follows a similar
trend to layer sparsity but maintains relatively smaller val-
ues. Even so, each propagated kernel still maintains a cer-
tain degree of sparsity, and the pruned weights contribute to
the reduced FLOPs compared to dense convolution kernels.

5. Discussion of Masking Strategy

As aforementioned in Section 4.3, the kernel sparsity lies
in the overlap region of k masks Mi (i = 1, 2, . . . , k) and
is usually lower than the parameter sparse ratio. Only when
M1 = M2 = · · · = Mk, the kernel sparsity can be the
highest and the FLOPs can be minimized, . Therefore, we
evaluate a strategy that directly applies the same mask to
the static kernels and then compare it with our proposed
method, as shown in Figure 7. We can see from the numeric
results from Table 4 that utilizing the same mask to k ker-
nels can cause a performance drop though it significantly re-
duces the FLOPs. In contrast, our learning-oriented thresh-
olds lead to different masks among static kernels and obtain
significantly better results. We believe that the sparser ag-
gregated kernels cause the performance drop and there ex-

Table 4: Comparison between two different masking strate-
gies. We use “Diff” to denote the different masking strategy
and “Same” to denote the same masking strategy. ✶ indi-
cates the dynamic model with the fewest parameters or the
fewest FLOPs.

Network Method Param Flops Acc(%)

ResNet-50

Static 2.35M 3.8G 76.2
DY-Conv 100.9M 4.0G 77.3
Diff ✶63.3M 3.5G 77.4
Same ✶63.3M ✶2.5G 76.6

MobilenetV2-1.0

Static 3.5M 300.0M 72.0
DY-Conv 11.1M 312.9M 75.2
Diff ✶5.3M 271.9M 75.3
Same ✶5.3M ✶192.3M 74.6

Figure 7: Comparison between two masking strategies. The
left one is the default setting in SD-Conv, which takes k
different masks for each counterpart kernel. On the right,
each kernel shares the same mask.

Different Mask Same Mask

1W 2W 1W 2W

1M 2M 1M 2M

ists a trade-off between optimal FLOPs and performance in
sparse dynamic convolution.

6. Conclusion

In this work, we systematically re-examine the param-
eter efficiency property of dynamic convolution networks
through the lens of network pruning. Based on our findings,
we propose a plug-in strategy, i.e. Sparse Dynamic Con-
volution, for existing dynamic convolution methods. Our
method improves the performance of dynamic convolution
both in upstream ImageNet classification and a variety of
downstream tasks, with fewer parameters and FLOPs. Our
study empirically indicates the effectiveness of sparsity in
dynamic convolution and informs the potential to further
promote sparse dynamic convolution in view of the trade-
off between performance and FLOPs.

6461



References
[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learn-

ing and generalization in overparameterized neural networks,
going beyond two layers, 2020.

[2] Kambiz Azarian, Yash Bhalgat, Jinwon Lee, and Tijmen
Blankevoort. Learned threshold pruning, 2021.
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