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Abstract

Convolutional neural networks (CNNs) have been the
consensus for medical image segmentation tasks. However,
they suffer from the limitation in modeling long-range de-
pendencies and spatial correlations due to the nature of
convolution operation. Although transformers were first de-
veloped to address this issue, they fail to capture low-level
features. In contrast, it is demonstrated that both local and
global features are crucial for dense prediction, such as seg-
menting in challenging contexts. In this paper, we propose
HiFormer, a novel method that efficiently bridges a CNN
and a transformer for medical image segmentation. Specifi-
cally, we design two multi-scale feature representations us-
ing the seminal Swin Transformer module and a CNN-based
encoder. To secure a fine fusion of global and local features
obtained from the two aforementioned representations, we
propose a Double-Level Fusion (DLF) module in the skip
connection of the encoder-decoder structure. Extensive ex-
periments on various medical image segmentation datasets
demonstrate the effectiveness of HiFormer over other CNN-
based, transformer-based, and hybrid methods in terms of
computational complexity, quantitative and qualitative re-
sults. Our code is publicly available at GitHub.

1. Introduction

Medical image segmentation is one of the main chal-
lenges in computer vision, which provides valuable infor-
mation about the areas of anatomy needed for a detailed

*Equal contribution
†Corresponding author

analysis. This information can greatly assist doctors in de-
picting injuries, monitoring disease progression, and assess-
ing the need for appropriate treatment. As a result of the
growing use of medical image analysis, highly precise and
robust segmentation has become increasingly vital.

With their impressive ability to extract image features,
Convolutional Neural Networks (CNNs) have been used
widely for different image segmentation tasks. With the
rise of encoder-decoder-based networks, like Fully Convo-
lutional Networks (FCNs) [36], U-shaped structures, e.g.
U-Net [41], and their variants, CNNs have experienced re-
markable success in medical image segmentation tasks. In
both structures, skip connections are employed to embody
high-level and fine-grained features provided by the encoder
and decoder paths, respectively. Despite the success of
CNN models in various computer vision tasks, their perfor-
mance is restricted due to their limited receptive field and
the inherent inductive bias [19, 4]. The aforementioned rea-
sons prevent CNNs from building global contexts and long-
range dependencies in images and, therefore, capping their
performance in image segmentation.

Recently, motivated by the outstanding success of trans-
formers in Natural Language Processing (NLP) [47], vi-
sion transformers have been developed to mitigate the draw-
backs of CNNs in image recognition tasks [19]. Transform-
ers primarily leverage a multi-head self-attention (MSA)
mechanism that can effectively construct long-range de-
pendencies between the sequence of tokens and capture
global contexts. The vanilla vision transformer [19] ex-
hibits comparable performance with CNN-based methods
but requires large amounts of data to generalize and suf-
fers from quadratic complexity. Several approaches have
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been proposed to address these limitations. DeiT [44] pro-
poses an efficient knowledge distillation training scheme to
overcome the difficulty of vision transformers demanding a
great deal of data to learn. Swin Transformer [35] and pyra-
mid vision transformer [48] attempt to reduce vision trans-
formers’ computational complexity by exploiting window-
based and spatial reduction attention, respectively.

Moreover, multi-scale feature representations have lately
demonstrated powerful performance in vision transformers.
CrossViT [12] proposes a novel dual-branch transformer
architecture that extracts multi-scale contextual informa-
tion and provides more fine-grained feature representations
for image classification. Similarly, DS-TransUNet [33]
presents a dual-branch Swin Transformer to capture differ-
ent semantic scale information in the encoder for the task of
medical image segmentation. HRViT [23] connects multi-
branch high-resolution architectures with vision transform-
ers for semantic segmentation. As a result, such structures
can effectively aid in enhancing the modeling of long-range
relationships between tokens and obtaining more detailed
information.

Despite the vision transformers’ ability to model the
global contextual representation, the self-attention mech-
anism induces missing low-level features. Hybrid CNN-
transformer approaches have been proposed to alleviate the
problem above by leveraging the locality of CNNs and the
long-range dependency character of transformers to encode
both global and local features, particularly TransUnet [13]
and LeVit-Unet [52] in medical image segmentation. How-
ever, these approaches have some impediments that prevent
them from attaining higher performance: 1) they cannot ef-
fectively combine low-level and high-level features while
maintaining feature consistency, and 2) they do not use the
multi-scale information produced by the hierarchical en-
coder properly.

In this paper, we propose a novel encoder-decoder CNN-
transformer-based framework that efficiently leverages the
global long-range relationships of transformers and local
feature representations of CNNs for an accurate medical im-
age segmentation task. The encoder comprises three mod-
ules: two hierarchical CNN and Swin Transformer modules
and the DLF module. Swin Transformer and CNN modules
each contain three levels. First, an input image is fed into a
CNN module to learn its local semantic representation. To
compensate for the lack of global representation, the Swin
Transformer module is applied on top of CNN’s shallow
features to capture long-range dependencies. Next, a pyra-
mid of Swin Transformer modules with varying window
sizes is utilized to learn multi-scale interaction. To encour-
age feature reusability and provide localization information,
a skip connection module is designed to transfer CNN’s lo-
cal features into the Transformer blocks. The resulting rep-
resentation of the smallest and largest pyramid levels is then

entered into the DLF module. The novel proposed DLF
module is a multi-scale vision transformer that fuses two
obtained feature maps using a cross-attention mechanism.
Finally, both recalibrated feature maps are passed into the
decoder block to produce the final segmentation mask. Our
proposed HiFormer not only alleviates the problem men-
tioned above but also surpasses all its counterparts in terms
of different evaluation metrics. Our main contributions:
• A novel hybrid method that merges the long-range contex-
tual interactions of the transformer and the local semantic
information of CNN.
• A DLF module to establish effective feature fusion be-
tween coarse and fine-grained feature representations.
• Experimental results demonstrate the effectiveness and
superiority of the proposed HiFormer compared to the com-
peting methods on medical image segmentation datasets.

2. Related Works
2.1. CNN-based Segmentation Networks

Convolutional Neural Networks are considered the de-
facto standard for different computer vision tasks. One
area where CNNs have achieved excellent results is im-
age segmentation, where class labels are assigned to each
pixel. Long et al. [36] showed that fully convolutional
networks (FCNs) can be used to segment images without
fully connected layers. Given that the output from vanilla
FCNs, where the convolutional layers are stacked sequen-
tially, is usually coarse, other models were proposed that
fuse the output of different layers [6, 39, 41]. Several ap-
proaches have been introduced to improve the limited re-
ceptive field of FCN, including dilated convolution [14, 54]
and context modeling [56, 15]. CNN models have shown
outstanding performance in medical imaging tasks. After
the introduction U-net [41], other researchers focused on
utilizing U-shaped encoder-decoder structures. In [46], an
over-complete network is augmented with U-net, and in U-
net++ [57], the encoder-decoder architecture is re-designed
by adding dense skip connection between the modules. This
structure has been further improved and utilized in different
medical domains [8, 30, 21, 5].

2.2. Vision Transformers
Following the remarkable success of transformers in

NLP [47], Dosovitskiy et al. [19] propose the Vision Trans-
former (ViT), which achieved state-of-the-art performance
on image classification tasks by employing self-attention
mechanisms to learn global information. Several derivatives
of vision transformers have been introduced to make them
more efficient and less dependent on a large-sized dataset to
achieve generalization [44, 55, 51].

In addition, many approaches have been presented, fo-
cusing on multi-scale representations to improve the ac-
curacy and efficiency via extracting information from dif-
ferent scales. Inspired by the pyramid structure in CNNs
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[38, 53, 9, 34], PVT [48] was the first introduced pyramid
vision transformer. Later, Swin Transformer [35] proposes
a hierarchical vision transformer using an efficient shifted
windowing approach for computing self-attention locally.
CrossViT [12] suggests using a dual-branch vision trans-
former followed by a cross-attention module for richer fea-
ture representations while performing in linear time. Vision
transformers have also shown impressive results in other
vision tasks, including [58, 20], which offer end-to-end
transformer-based models for object detection, and [43, 24]
for semantic and instance segmentation.

2.3. Transformers for Medical Image Segmentation
Despite the encouraging results of CNN models, such

approaches generally demonstrate restrictions for modeling
long-range dependencies due to their limited receptive field,
thereby yielding weak performance. Recently, transformer-
based models have gained significant popularity over CNN
models in medical image segmentation. Swin-UNet [10]
and DS-TransUNet [33] propose pure transformer mod-
els with a U-shaped architecture based on Swin Trans-
former for 2D segmentation. In addition to fully trans-
former models, TransUNet [13] takes advantage of both
CNNs and transformers to capture both low-level and high-
level features. UNETR [27] uses a transformer-based en-
coder to embed input 3D patches and a CNN-based de-
coder to achieve the final 3D segmentation results. Most
prior works utilize either CNN, lacking in global features,
or transformers, limited in local feature representation for
feature extraction; this renders ineffective feature maps that
do not contain rich information. In hybrid works, simple
feature-fusing mechanisms are employed that cannot guar-
antee feature consistency between different scales. Moti-
vated by multi-scale representations, we propose HiFormer,
a CNN-transformer-based architecture that effectively in-
corporates both global and local information and utilizes a
novel transformer-based fusing scheme to maintain feature
richness and consistency for the task of 2D medical image
segmentation.

3. Method
An overview of the proposed HiFormer is presented in

this section. As illustrated in Fig. 1a, our proposed architec-
ture provides an end-to-end training strategy that integrates
global contextual representations from Swin Transformer
and local representative features from the CNN module in
the encoder. A richer feature representation is then obtained
using the Double-level Fusion module (DLF). Afterward,
the decoder outputs the final segmentation map.

3.1. Encoder
As shown in Fig. 1a, the proposed encoder is composed

of two hierarchical models, CNN and Swin Transformer,
with the DLF module that enriches the retrieved features

and prepares them to be fed into the decoder. Since us-
ing CNNs or transformers separately causes either local or
global features to be neglected, which affects the model’s
performance, we first utilize the CNN locality trait to ob-
tain local features. Here, the CNN and Swin Transformer
each include three distinct levels. We transfer local fea-
tures of each level to the corresponding Swin Transformer’s
level via a skip connection to attain universal representa-
tions. Then each transferred CNN level is added with its
parallel transformer level and passes through a Patch Merg-
ing module to produce a hierarchical representation (see
Fig. 1a). We exploit the hierarchical design to take advan-
tage of multi-scale representations. The largest and small-
est levels go into the DLF module to exchange information
from different scales and generate more powerful features.
In the following, we will discuss our CNN, Swin Trans-
former, and DLF modules deeply and in detail.
3.1.1 CNN Module
The proposed encoder begins by employing a CNN as the
feature extractor to build a pyramid of intermediate CNN
feature maps of different resolutions. Taking an input image
X ∈ RH×W×C with spatial dimensions H and W , and C
channels, it is first fed into the CNN module. CNN module
consists of three levels, from which a skip connection is
connected to the associated transformer’s level using a Conv
1 × 1 to compensate for low-level missing information of
transformers and recover localized spatial information.
3.1.2 Swin Transformer Module
The vanilla transformer encoder block [19] consists of two
main modules: a multi-head self-attention (MSA) and a
multi-layer perceptron (MLP). The vanilla transformer is
composed of N identical transformer encoder blocks. In
each block, before the MSA and the MLP blocks, Layer-
Norm (LN) is applied. Additionally, a copy of the activa-
tions is also added to the output of the MSA or MLP block
through skip-connections. One major problem with the
vanilla ViT, which uses the standard MSA, is its quadratic
complexity, rendering it inefficient for high-resolution com-
puter vision tasks like image segmentation. To overcome
this limitation, Swin Transformer [10] introduced the W-
MSA and SW-MSA.

The Swin Transformer module includes two succes-
sive modified transformer blocks; the MSA block is re-
placed with the window-based multi-head self-attention
(W-MSA) and the shifted window-based multi-head self-
attention (SW-MSA). In the W-MSA module, self-attention
will be applied to local windows of size M × M . The W-
MSA module has linear complexity; however, given that
there is no connection across windows, it has limited mod-
eling power. To alleviate this, SW-MSA is introduced that
utilizes a windowing configuration that is shifted compared
to the input of the W-MSA module; this is to ensure that we
have cross-window connections. This process is depicted in
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Figure 1: (a) The overview of the proposed HiFormer. HiFormer consists of a hierarchical CNN-transformer feature ex-
tractor module; outputs of the first and last levels are fed through the DLF feature fusion module. Afterward, the decoder uses
the DLF’s output to generate accurate segmentation maps. In the diagram, blue and orange blocks denote Swin Transformer
and CNN levels, respectively. (b) The overview of Cross Attention. The class token of the small level, CLSs, is first pro-
jected for dimension alignment and then appended to P l. The resulting embedding performs as a key and value. Moreover,
CLS′s is utilized for the query. Finally, after computing attention and back projection, Zs is obtained. This process can also
be extended to the large level.

Eq 1.

ẑl = W-MSA
(
LN

(
zl−1

))
+ zl−1,

zl = MLP
(
LN

(
ẑl
))

+ ẑl,

ẑl+1 = SW-MSA
(
LN

(
zl
))

+ zl,

zl+1 = MLP
(
LN

(
ẑl+1

))
+ ẑl+1, (1)

The output of the first level in the CNN pyramid will be
fed into a 1 × 1 convolution to generate (H/4 × W/4)
patches (tokens) of length D′. These patches go through the
first Swin Transformer block, generating the first attention-
based feature maps. A skip-connection adds the previous
activations to the obtained feature maps, resulting in the
largest branch feature map P l. Next, patch-merging is ap-
plied, which concatenates 2× 2 groups of adjacent patches,
applies a linear layer, and increases the embedding dimen-
sions from D′ to 2D′ while reducing resolution. Similarly,
higher-level feature maps of both the CNN and attention-
based feature maps are fused and fed into Swin Transformer
blocks to generate higher-level outputs. The latter is de-
noted as P s, the smallest level feature map.
3.1.3 Double-Level Fusion Module (DLF)
The main challenge is efficiently fusing CNN and Swin
Transformer level features while preserving feature consis-
tency. A straightforward approach is to directly feed the
summation of CNN levels with their matching Swin Trans-
former levels through a decoder and attain the segmenta-
tion map. Such approach, however, fails to ensure feature

consistency between them, leading to subpar performance.
Hence, we propose a novel Double-Level Fusion (DLF)
module, which takes the resultant smallest (P s) and largest
(P l) levels as inputs and employs a cross-attention mecha-
nism to fuse information across scales.

In general, shallow levels have better localization infor-
mation, and as we approach deeper levels, semantic infor-
mation becomes more prevalent and is better suited for the
decoder part. Faced with the dilemma of extensive compu-
tational cost and imperceptible effect of middle-level fea-
ture map in model accuracy, we did not consider using the
middle level in feature fusion to save computational costs.
As a result, we encourage representation by multiscaling the
shallowest (P s) and last (P l) levels while preserving local-
ization information.

In the proposed DLF module, the class token plays a sig-
nificant role since it summarizes all the information of input
features. We assign each level a class token derived from
global average pooling (GAP) over the level’s norm. We
obtain class tokens as demonstrated below:

CLSs = GAP (Norm(P s))

CLSl = GAP (Norm(P l))
(2)

where CLSs ∈ R4D′×1 and CLSl ∈ RD′×1. Class tokens
are then concatenated with associated level embeddings be-
fore being passed into the transformer encoders. The small
level is followed by S and the large level by L transformer
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encoders for computing global self-attention. Notably, we
also add a learnable position embedding for each token of
both levels before giving them to the transformer encoders
for learning position information.

After passing embeddings through the transformer en-
coders, features of each level are fused using the cross-
attention module. Specifically, before fusion, two-level
class tokens are swapped, which means the class token of
one level concatenates with the tokens of the another level.
Then each new embedding is separately fed through the
module for fusion and finally back projected to its own
level. This interaction with other level tokens enables class
tokens to share rich information with their cross-level.

In particular, this displacement for the small level is
shown in Fig. 1b. fs(.) first projects CLSs to the dimen-
sionality of P l, and the output is denoted as CLS′s. CLS′s

concatenated with P l serves as a key and value and indepen-
dently performs as a query for computing attention. Since
we only query the class token, the cross-attention mecha-
nism operates in linear time. The final output Zs can be
mathematically written as follows:

ys = fs(CLSs) +MCA(LN([fs(CLSs) ∥ P l]))

Zs = [P s ∥ gs(ys)] (3)

3.2. Decoder
Motivated by Semantic FPN [31], we design a decoder

that combines features from the P s and P l levels into a uni-
fied mask feature. First, the low and high-resolution feature
maps, P s and P l, are received from the DLF module. P s

(H/16, W/16) is followed by a ConvUp block which applies
two stages of 3 × 3 Conv, 2× bilinear upsampling, Group
Norm [50], and ReLU to attain ( H/4, W/4 ) resolution. P l

( H/4, W/4 ) is also followed by a Conv Block, which em-
ploys a 3×3 Conv, Group Norm, and ReLU and remains at (
H/4, W/4 ) resolution. The summation of both processed P s

and P l is headed through another ConvUp block to achieve
the final unified H ×W feature map. After passing the ac-
quired feature map through a 3×3 Conv in the segmentation
head, the final segmentation map is generated.

4. Experiments
4.1. Dataset
Synapse Multi-Organ Segmentation: First, we evalu-
ate HiFormer’s performance on the benchmarked synapse
multi-organ segmentation dataset [11]. This dataset in-
cludes 30 cases with 3779 axial abdominal clinical CT im-
ages where each CT volume involves 85 ∼ 198 slices
of 512 × 512 pixels, with a voxel spatial resolution of
([0.54 ∼ 0.54]× [0.98 ∼ 0.98]× [2.5 ∼ 5.0]) mm3.
Skin Lesion Segmentation: We conduct extensive exper-
iments on the skin lesion segmentation datasets. Specifi-
cally, we utilize the ISIC 2017 dataset [18] comprising 2000
dermoscopic images for training, 150 for validation, and

600 for testing. Moreover, we adopt the ISIC 2018 [17]
and follow the literarure work [1, 2] to divide the dataset
into train, validation, and test sets accordingly. Besides, the
PH2 dataset [37] is used, a dermoscopic image database in-
troduced for both segmentation and classification tasks.
Multiple Mylomia Segmentation: We also evaluate our
methodology on multiple myeloma cell segmentation grand
challenges provided by SegPC 2021 [25, 26]. The challenge
dataset includes a training set with 290 samples and valida-
tion and test sets with 200 and 277 samples, respectively.

4.2. Implementation Details
We implemented our framework in PyTorch and trained

on a single Nvidia RTX 3090 GPU with 24 GB of memory.
The input image size is 224 × 224, and we set the batch
size and learning rate to 10 and 0.01 during training, re-
spectively. In addition, we use the weights pre-trained on
ImageNet for the CNN and Swin Transformer modules to
initialize their parameters. Our model is optimized using the
SGD optimizer with a momentum of 0.9 and weight decay
of 0.0001. Moreover, data augmentations such as flipping
and rotating are employed during training to boost diversity.
Table 1 depicts the suggested model’s final configurations.

Table 1: The proposed model configurations. WS repre-
sents window size, D′ expresses the embedding dimension,
and r denotes the MLP expanding ratio used in the trans-
former block. The number of heads in the DLF module is
the same for both levels.

Model CNN Swin Transformer DLF
Dimension

D′ # Layer # Head WS Ps Pl S L r # Head

HiFormer-S ResNet34 96 [2,2,6] [3,6,12] 7 384 96 1 1 1 3
HiFormer-B ResNet50 96 [2,2,6] [3,6,12] 7 384 96 2 1 2 6
HiFormer-L ResNet34 96 [2,2,6] [3,6,12] 7 384 96 4 1 4 6

4.3. Evaluation Results
We adopt a task-specific paradigm in terms of evalua-

tion metrics in each experiment. Specifically, these met-
rics include the Dice score, 95% Hausdorff Distance (HD),
Sensitivity and Specificity, Accuracy, and mIOU. To ensure
an unprejudiced comparison, we contrast HiFormer against
both CNN and transformer-based methods, along with the
models formulated on an amalgamation of both.

4.3.1 Results of Synapse Multi-Organ Segmentation
The comparison of the proposal with previous state-of-the-
art (SOTA) methods in terms of the average Dice-Similarity
Coefficient (DSC) and average Hausdorff Distance (HD) on
eight abdominal organs is shown in Table 2. HiFormer
outperforms CNN-based SOTA methods by a large mar-
gin. Compared to other transformer-based models, our
HiFormer-B shows superior learning ability on both evalu-
ation metrics, observing an increase of 2.91% and 1.26% in
Dice score and a decrease of 16.99 and 6.85 in average HD
compared to TransUnet and Swin-Unet, respectively. Con-
cretely, HiFormer steadily beats the literature work in the
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(a) Ground Truth (b) Unet (c) LeVit-Unet (d) Trans-Unet (e) Swin-Unet (f) HiFormer-S (g) HiFormer-B (h) HiFormer-L

aorta gallbladder left kidney right kidney liver pancreas spleen stomach

Figure 2: Segmentation results of the proposed method on the Synapse dataset. The red rectangles identify organ regions
where the superiority of our proposed method can be clearly seen.

segmentation of most organs, particularly for the stomach,
kidney, and liver segmentation. One can observe that Hi-
Former has distinct advantages over other methods in terms
of average HD. Besides, the efficiency in terms of the num-
ber of parameters is indicated in Table 2, which will be dis-
cussed in the following sections. A characteristic qualitative
example of the results is given in Fig. 2. We have observed
that the proposed method can accurately segment fine and
complex structures and output more accurate segmentation
results, which are more robust to complicated backgrounds.
4.3.2 Results of Skin Lesion Segmentation
The comparison results for benchmarks of ISIC 2017, ISIC
2018, and PH2 skin lesion segmentation task against lead-
ing methods are presented in Table 3. Our HiFormer per-
forms much better than other competitors w.r.t. most of
the evaluation metrics. Specifically, the superiority of Hi-
Former across different datasets highlights its satisfactory
generalization ability. We also show a visual comparison
of the skin lesion segmentation results in Fig. 3 which indi-
cates that our proposed method is able to capture finer struc-
tures and generates more precise contours. Specifically, as
in Fig. 3, our approach performs better than hybrid meth-
ods such as TMU-Net [40] in boundary areas. Moreover,
showcased in Fig. 3, HiFormer is robust to noisy items
compared to pure transformer-based methods such as Swin-
Unet [10], where the performance degrades due to lack of
locality modeling. The superior performance is achieved
by an expedient combination of transformer and CNN for
modeling global relationships and local representations.
4.3.3 Results of Multiple Mylomia Segmentation
In Table 4, we include the results based on the mean IoU
metric. The HiFormer structure consistently outperformed
the challenge leader board in all configurations we tested.
In addition, some segmentation outputs of the proposed Hi-
Former are illustrated in Fig. 4. As shown, our predictions
adjust well to the provided GT masks. One of the key ad-
vantages of HiFormer is its ability to model multi-scale rep-
resentation. It restrains the background noise, which is the

case in datasets with highly overlapped backgrounds (such
as SegPC). Stated succinctly, HiFormer exceeds CNN-
based methods with only local information modeling ability
and transformer-based counterparts, which render poor per-
formance in boundary areas.

4.4. Comparison of Model Parameters
In 5, we compare the numbers of parameters of our pro-

posed method with those of medical image segmentation
models. Our lightweight HiFormer shows great superior-
ity in terms of model complexity while attaining eminent or
on-par performance compared to the literature works.

5. Ablation Study
Comparison of different CNN backbones. We first inves-
tigate the contribution of different CNN backbones. Specifi-
cally, we employ variants of ResNet [28] and DenseNet [29]
as two prior arts of convolutional architectures. As shown
in Table 7, utilizing the ResNet backbone results in the best
performance. Moreover, we have witnessed that a larger
CNN backbone does not necessarily result in a performance
boost (see row 3, 4 in Table 7), which gives us the insight to
use ResNet50 architecture as the default.
Impact of the DLF module. Next, we evaluate the im-
portance of the DLF module on segmentation performance.
The experimental results reported in Table 6 reveal the non-
negligible role of the DLF module during the encoding and
decoding process. Specifically, the DLF module brings sig-
nificant improvements (3.24% and 2.18%) to the dice score
and HD, respectively. Through the cross-attention mecha-
nism, the DLF module assists the network in incorporating
global and local features. The results prove that an expedi-
ent combination of CNN and transformer is helpful in seg-
menting target lesions. In addition, the impact of the DLF
module on the SegPc and Skin datasets is provided in the
Supplementary Material (SM) (see Table 1-2).
Ablation on different DLF module configurations. Ta-
ble 8 shows the performance of different DLF module con-
figurations. We test different values for the number of heads
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Table 2: Comparison results of the proposed method on the Synapse dataset. Blue indicates the best result, and red displays
the second-best.

Methods DSC ↑ HD ↓ Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

DARR [22] 69.77 - 74.74 53.77 72.31 73.24 94.08 54.18 89.90 45.96
R50 U-Net [13] 74.68 36.87 87.74 63.66 80.60 78.19 93.74 56.90 85.87 74.16
U-Net [41] 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58
R50 Att-UNet [13] 75.57 36.97 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95
Att-UNet [42] 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75
R50 ViT [13] 71.29 32.87 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95
TransUnet [13] 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
Swin-Unet [10] 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
LeVit-Unet [52] 78.53 16.84 78.53 62.23 84.61 80.25 93.11 59.07 88.86 72.76
DeepLabv3+ (CNN) [16] 77.63 39.95 88.04 66.51 82.76 74.21 91.23 58.32 87.43 73.53

HiFormer-S 80.29 18.85 85.63 73.29 82.39 64.84 94.22 60.84 91.03 78.07
HiFormer-B 80.39 14.70 86.21 65.69 85.23 79.77 94.61 59.52 90.99 81.08
HiFormer-L 80.69 19.14 87.03 68.61 84.23 78.37 94.07 60.77 90.44 82.03

Table 3: Performance comparison of the proposed method against the SOTA approaches on skin lesion segmentation bench-
marks. Blue indicates the best result, and red displays the second-best.

Methods ISIC 2017 ISIC 2018 PH2

DSC SE SP ACC DSC SE SP ACC DSC SE SP ACC

U-Net [41] 0.8159 0.8172 0.9680 0.9164 0.8545 0.8800 0.9697 0.9404 0.8936 0.9125 0.9588 0.9233
Att-UNet [42] 0.8082 0.7998 0.9776 0.9145 0.8566 0.8674 0.9863 0.9376 0.9003 0.9205 0.9640 0.9276
DAGAN [32] 0.8425 0.8363 0.9716 0.9304 0.8807 0.9072 0.9588 0.9324 0.9201 0.8320 0.9640 0.9425
TransUNet [13] 0.8123 0.8263 0.9577 0.9207 0.8499 0.8578 0.9653 0.9452 0.8840 0.9063 0.9427 0.9200
MCGU-Net [1] 0.8927 0.8502 0.9855 0.9570 0.8950 0.8480 0.9860 0.9550 0.9263 0.8322 0.9714 0.9537
MedT [45] 0.8037 0.8064 0.9546 0.9090 0.8389 0.8252 0.9637 0.9358 0.9122 0.8472 0.9657 0.9416
FAT-Net [49] 0.8500 0.8392 0.9725 0.9326 0.8903 0.9100 0.9699 0.9578 0.9440 0.9441 0.9741 0.9703
TMU-Net [40] 0.9164 0.9128 0.9789 0.9660 0.9059 0.9038 0.9746 0.9603 0.9414 0.9395 0.9756 0.9647
Swin-Unet [10] 0.9183 0.9142 0.9798 0.9701 0.8946 0.9056 0.9798 0.9645 0.9449 0.9410 0.9564 0.9678
DeepLabv3+ (CNN) [16] 0.9162 0.8733 0.9921 0.9691 0.8820 0.8560 0.9770 0.9510 0.9202 0.8818 0.9832 0.9503

HiFormer-S 0.9238 0.9153 0.9832 0.9695 0.9079 0.8934 0.9801 0.9618 0.9455 0.9737 0.9604 0.9646
HiFormer-B 0.9253 0.9155 0.9840 0.9702 0.9102 0.9119 0.9755 0.9621 0.9460 0.9420 0.9772 0.9661
HiFormer-L 0.9225 0.9046 0.9856 0.9693 0.9053 0.8828 0.9820 0.9611 0.9451 0.9561 0.9691 0.9659

Table 4: Performance evaluation on the SegPC challenge.

Methods mIOU
Frequency recalibration U-Net [3] 0.9392

XLAB Insights [7] 0.9360
DSC-IITISM [7] 0.9356

Multi-scale attention deeplabv3+ [7] 0.9065
U-Net [41] 0.7665

Contexual attention [40] 0.9395
HiFormer-S 0.9392
HiFormer-B 0.9406
HiFormer-L 0.9395

and depth (S and L) for both the small and large levels and
the MLP expanding ratio in the MLP block of the trans-
former module (r). We observe that the pair of (2, 1) for
(S,L) and six heads for both levels work best. As shown in
row A, increasing the number of heads does not necessar-
ily improve performance. Additionally, the expanding ratio
(r) plays a significant role in the performance. Compared
to row C, doubling r results in a 1.04% increase in DSC
and a 1.82% drop in HD. More information regarding the

Table 5: Comparison of model parameters.

Model # Params (M) DSC ↑ HD ↓
TransUnet 105.28 77.48 31.69
Swin-Unet 27.17 79.13 21.55
LeVit-Unet 52.17 78.53 16.84

DeepLabv3+ (CNN) 59.50 77.63 39.95

HiFormer-S 23.25 80.29 18.85
HiFormer-B 25.51 80.39 14.70
HiFormer-L 29.52 80.69 19.14

Table 6: Impact of the DLF module on the Synapse dataset.

Model DLF DSC ↑ HD ↓
HiFormer-B ✗ 77.15 16.88
HiFormer-B ✓ 80.39 14.70

technical design of the DLF module is provided in the SM.
Ablation on feature consistency. We conduct two experi-
ments to measure and demystify the feature consistency and
discuss them in detail in the SM. First, we present the fea-
ture visualization of each level before and after involving
the DLF module (SM, Fig. 1-2). The second experiment
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(a) Input Image (b) Ground Truth (c) Swin-Unet (d) TMU-Net (e) HiFormer-S (f) HiFormer-B (g) HiFormer-L

Figure 3: Visual comparisons of different methods on the ISIC2017 skin lesion segmentation dataset. Ground truth bound-
aries are shown in green, and predicted boundaries are shown in blue.

(a) Input Image (b) Ground Truth (c) Prediction

Figure 4: Visual representation of the proposed method on
the SegPC cell segmentation dataset.

Table 7: Comparison of different backbones for the CNN
module on the Synapse dataset. Except for the CNN mod-
ule, all configurations are identical to HiFormer-B.

Model # Params (M) DSC ↑ HD ↓
HiFormer+ResNet18 19.36 77.15 16.88
HiFormer+ResNet34 24.75 79.39 22.71
HiFormer+ResNet50 25.51 80.39 14.70
HiFormer+ResNet101 44.50 79.42 17.18

HiFormer+DenseNet121 23.92 78.65 16.18
HiFormer+DenseNet169 29.55 78.73 15.94
HiFormer+DenseNet201 35.36 79.08 21.30

proves how applying each module aids with feature consis-
tency (SM, Table 3). Overall, the contribution of each mod-
ule in providing more consistent features can be inferred
from the results.
6. Discussion

Our comprehensive experiments on different medical
image segmentation datasets demonstrate the effectiveness
of our proposed HiFormer model compared to CNN and
transformer-based approaches. The key advances of our ap-
proach are two folds. The first rationality of its design is
combining CNN and transformer both in the shallow layers
of the network. Second, the skip-connection module pro-
vides feature reusability and blends CNN local features with
global features provided by the transformer module. The
quantitative view of the HiFormer network on five challeng-

Table 8: Ablation study for the DLF module with different
parameters on the Synapse dataset. For a fair comparison,
ResNet-50 has been used as the CNN module in all the con-
figurations, and r denotes the MLP expanding ratio used in
the transformer block of the DLF module.

Model Dimension # Heads Params
Ps Pl S L r Ps Pl DSC ↑ HD ↓ (M)

HiFormer-B 384 96 2 1 2 6 6 80.39 14.70 25.51

A 384 96 2 1 2 12 6 79.00 15.81 25.51
B 384 96 2 1 2 3 3 77.95 19.11 25.51
C 384 96 2 1 1 6 6 79.35 16.52 24.90
D 384 96 2 1 3 6 6 79.22 17.96 26.12
E 384 96 1 1 2 6 6 79.48 20.15 24.33
F 384 96 2 2 2 6 6 78.86 19.75 25.59

ing datasets reveals that it can perform segmentation well,
surpassing the SOTA methods in most cases. From the per-
spective of visual analysis, Fig. 2 illustrates noise-less seg-
mentation of organs such as the Liver and Kidney, which
is also consistent with quantitative benchmarks. In contrast,
our model acquires failure cases in some cases (e.g., Aorta),
which again agrees with numerical results. Moreover, it
is perceived that the low-contrast skin images still bring
great difficulties for our model. In general, HiFormer has
shown the potential to learn the critical anatomical relation-
ships represented in medical images effectively. In terms of
model parameters, HiFormer is a lightweight model com-
pared with other complex models, which impose serious
problems in medical image segmentation.

7. Conclusions
In this paper, we introduce HiFormer, a novel hybrid

CNN-transformer-based method for medical image seg-
mentation. Specifically, we combine the global features ob-
tained from a Swin Transformer module with local repre-
sentations of a CNN-based encoder. Then, using a DLF
module, we attain a finer fusion of features derived from
the aforementioned representations. We achieve superior
performance over CNN-based, vanilla transformer-based,
and hybrid models indicating that our methodology secures
the balance in keeping the details of low-level features and
modeling the long-range interactions.
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