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Abstract

Pose estimation of objects in images is an essential prob-
lem in virtual and augmented reality and robotics. Tradi-
tional solutions use depth cameras, which can be expensive,
and working solutions require long processing times. This
work focuses on the more difficult task when only RGB in-
formation is available. To this end, we predict not only the
pose of an object but the complete probability density func-
tion (pdf) on the rotation manifold. This is the most general
way to approach the pose estimation problem and is partic-
ularly useful in analysing object symmetries. In this work,
we leverage implicit neural representations for the task of
pose estimation and show that hypernetworks can be used
to predict the rotational pdf. Furthermore, we analyse the
Fourier embedding on SO(3) and evaluate the effectiveness
of an initial Fourier embedding that proved successful. Our
HyperPosePDF outperforms the current SOTA approaches
on the SYMSOL dataset.

1. Introduction

Pose estimation has gained an increasing interest in the
last years. In many robotic applications, such as object
grasping, tracking and occlusion handling, the robotic per-
ception should be able to accurately estimate 3D poses
to perform a valid grasp. Traditional approaches assume
present depth information and estimate the pose by rely-
ing on local invariant features [1, 37] or template-matching
[24]. These algorithms rely on expensive evaluations of
multiple pose hypotheses rendering them inefficient. Fur-
thermore, missing textures on many objects hamper their
performance.

RGB-based methods, which do not require expensive
depth sensors, have outperformed depth methods in terms
of speed and accuracy using convolutional neural networks
in the BOP challenge [26]. In this work, we will continue
to focus on RGB-based methods.

Figure 1: Overview of the network Architecture. An im-
age x is fed through a vision network that predicts a feature
vector. This feature vector is then used as the weights of
an MLP. The MLP acts on the rotation manifold and takes
as input the Fourier embedded rotation γ(R) and outputs a
probability.

One major problem in pose estimation are symmetries
that arise in industrial settings or in our daily life (for exam-
ple, a ball without texture or a cup, whenever the cup han-
dle is not visible). Those challenges are tackled in differ-
ent ways; for example, for the TLESS [25] and YCB-video
[76] datasets, additional symmetry information is provided
by [26] and available during training and inference. Still,
classical pose estimators are trained to output a single pose
and do not consist of any symmetry information handling.
Hence, we want to focus on methods that can handle sym-
metries and quasi-symmetries.

In this work, we follow a general approach - predicting a
probability distribution on the rotation manifold
p : SO(3) → R+. Once obtained, present symmetries can
be easily read from the probability distribution peaks while
still allowing for single pose predictions by simply taking
the maximum peak as the respective rotation. One approach
can be to use multinomial mixture distributions of the gaus-
sian distribution [58, 18, 11]. This would introduce the need
to select a number of normal distributions, which differs
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from object to object, as different amounts of symmetries
exist for objects like a pyramid or a cup. Additionally, with
an object like a cup, the number of symmetries is dependent
if the handle of the cup is visible or not, which is problem-
atic for the mixture distribution to handle.

A more general approach is given by [46], where they
use a multilayer perceptron (MLP) to represent the proba-
bility density function. In detail, they combine the image
feature vector with the rotation feature vector and feed it
jointly through the MLP to yield a probability of that rota-
tion to be the actual rotation. This removes the need of a
manual investigation of the symmetry count, as it learns it
implicitly. In this way, [46] can show remarkable perfor-
mance.

This opens up a connection to the field of Implicit Neu-
ral Representations (INRs) that recently has received signif-
icant attention. INRs use neural networks to map the input
domain of the signal (e.g., coordinates of a specific pixel in
the image) to a representation of color, occupancy or density
at the input location. INRs have boosted the performance on
texture synthesis [23, 49], shape representation [38, 39] and
derivation of shapes from images [8, 10, 17, 16, 30, 43, 51].

To close the bridge to INRs, we want the rotation to be
the sole input to the MLP; hence we propose using a hyper-
network. To do so, we define a vision network that receives
the image as input and outputs the weights of the MLP, act-
ing as the implicit neural representation. The usage of hy-
pernetworks allows learning a prior over the space of pa-
rameterized functions and thus can be much faster to fine-
tune, compared to models trained from scratch. Addition-
aly, our hypernetworks are trained end-to-end with back-
propagation and therefore are efficient and scalable. Fur-
thermore, it enables a knowledge transfer from INR the-
ory to our problem domain. Specifically, we aim to utilize
Fourier encodings in our settings, which have drastically
boosted the performance of INR applications [71, 4]. In
summary, we present the following contributions:

• HyperPosePDF - a hypernetwork to predict a non-
parametric probability distribution on SO(3) given an
image, that not only can do pose estimation but also in-
herently consists of all the symmetry information, thus
allowing for uncertainty quantification.

• A transfer from the Fourier encoding used in tradi-
tional INR applications to the usage in a pose estima-
tion scenario.

2. Related work
2.1. Hypernetworks

Hypernetworks have become very common in deep
learning and date back as far as the beginning of the 1990s
in the context of meta-learning and self-referential [64].

Several works explored the use of hypernetworks for
RNNs [63, 19, 70, 22, 3, 20], CNNs [13, 32, 29, 5, 54,
31, 61] and Reinforcement Learning [14, 28, 60]. Archi-
tecture search algorithms incorporated forms of hypernet-
works early on [68, 33, 6, 77]. Furthermore, the concept
of self-attention can be viewed as a form of adaptive layers
[62].

Finally, hypernetworks have also been introduced to the
field of Implicit Neural Representations [65]. However, the
use of hypernetworks has mainly been explored for 2D and
3D image and scene generation [42, 36, 66, 67, 74].

Likewise, we want to apply a hypernetwork to implicit
neural representations associated with the task of predicting
the probability distribution on the rotation manifold.

2.2. Implicit Neural Representations

Inspired by its recent success, Implicit Neural Represen-
tations have recently received much attention. Especially in
3D computer vision works based on INRs achieved state-
of-the-art results [2, 21, 30, 52, 7, 65]. Further impressive
results are achieved across different domains, e.g., from 2D
supervision [66, 48, 44] and 3D supervision [59, 50] to dy-
namic scenes [47], which use space-time INRs for represen-
tation.

One crucial part of the performance for INRs is the us-
age of an initial Fourier embedding. The lack of accuracy
for fine details was tackled by the introduction of the well-
known positional encoding [44]. With the finding that the
main contributor of the Fourier embedding is its size and
standard deviation [72, 4], other embeddings have been in-
troduced; in its most extreme form, the random sampling
from a gaussian distribution [72], which can outperform tra-
ditional embeddings if the standard deviation is chosen ac-
curately.

Recently, the theory of INRs inspired tackling the pose
estimation problem with its specific focus on symmetries
by learning the distribution on SO(3) and influencing the
design choice of the network architecture [46].

2.3. Pose Estimation

In recent years, pose estimation methods based on RGB
images using convolutional neural networks [34, 69, 27]
have outperformed the classic approaches [26] while also
reaching higher fps. As symmetries occur plentifully in
industrial or everyday objects, it is interesting and essen-
tial to conduct further research on their occurrence. If ob-
ject symmetries are known during training, it is possible to
group equivalent rotations to a single one, allowing training
to proceed as in classical single-valued regression [56]. In
[9], manually labeled symmetries of 3D poses are needed
to learn the embedding and classification of the symmetry
order together.
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(a) If the red marker is visible, the rotation of the cylinder is unique.

(b) Rotation around the x-axis with the
marker being moved to the bottom.

(c) Rotation around the y-axis with the
marker being pushed to the front.

(d) Rotation around the z-axis with the
marker being moved to the bottom.

(e) Rotation around the x-axis with the
marker being moved to the top.

(f) Rotation around the y-axis with the
marker being pushed to the back.

(g) Rotation around the x-axis with the
marker being moved to the left.

(h) As the marker is not visible, a continuous
symmetry can be seen. Only half of the sym-
metry axis of a normal cylinder is displayed
as the model learned to nullify the subspace
of rotations for which the marker would be
visible.

(i) The marker is not visible, therefore our
model continuous symmetry axis with a gap
in between representing the area, where the
marker would be visible. axis with a gap in
between representing axis with a gap in be-
tween representing axis

(j) The movement around the z-axis has the
effect of maintaining the tilt colour. As in
this scenario the marker was always visible,
only one unique rotation is present. axis
with a gap in between representing axis with
a gap in between representing axis

Figure 2: Visualization of results on the cylO object from the SYMSOL II dataset. Elements of SO(3) with a positive
probability are visualized as points on the grid. Intuitively, we can consider each point on the grid as the direction of a
canonical z-axis, and the color indicates the angle of inclination axis around this axis. Note that the hollow circle indicates
the ground truth pose, while the filled area depicts the predicted poses. Note that in the case of a missing red dot, the ground
truth pose may be ambiguous and we plot only one possible ground truth pose. The visualization tool was introduced by [46].

On the contrary, [69, 27] make pose or symmetry super-
vision unnecessary by using an augmented autoencoder to
isolate pose information. During inference, they receive a
latent representation, compare it to a fully covered sample
in a codebook of saved latent representations of rotations
and take the closest one.

As symmetries are not the only source of pose uncer-
tainty, it is interesting to utilize a more flexible representa-
tion. Recent works focused on a statistical approach by con-
sidering parametric probability distributions. [53, 11, 18]

regressed the parameters of a von Mises distribution over
Euler-angles and [45] utilize Matrix Fisher distributions on
SO(3). To this end, [58, 18, 11] propose using multimodal
mixture distributions. One challenge when training the mix-
tures is avoiding mode collapse, for which a winner-takes-
it-all strategy can be used [11]. An alternative to the mixture
models is to predict multiple pose hypotheses directly [41],
but this does not share any of the benefits of a probabilistic
representation.

A more general representation of the distribution is pro-
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SYMSOL I (log likelihood ↑)
cone cyl. tet. cube ico. avg.

Deng et al. [11] 0.16 -0.95 0.27 -4.44 -2.45 1.48
Gilitschenski et al. [18] 3.84 0.88 -2.29 -2.29 -2.29 -0.43
Prokudin et al. [58] -1.87 -3.34 -1.28 -1.86 -0.50 -2.39
Murphy et al. [46] 4.45 4.26 5.70 4.81 1.28 4.10
HyperPosePDF (Ours) 5.74 4.73 7.04 6.77 5.10 5.78

Table 1: A model was jointly trained for all of the SYMSOL I classes. We compare our results against multimodal mixture
models [11, 18, 58] and Implicit-PDF [46] which we all outperform by a significant amount in the log likelihood metric. A
value of -2.29 represents the minimal information of a uniform distribution on SO(3).

SYMSOL I (Spread ↓)
cone cyl. tet. cube ico.

Deng et al. [11] 10.1 15.2 16.7 40.7 28.5
Murphy et al. [46] 1.4 1.4 4.6 4.0 8.4
HyperPosePDF (Ours) 0.55 0.48 3.27 2.18 3.24

Table 2: Similiar to Tab. 1 we train a joint model for all objects in the SYMSOL I dataset and compare it to the method
of [11] and Implicit-PDF [46]. For the cone and cylinder, the spread of the probability prediction away from the rotational
continuous symmetry has a value of less than one degree.

posed by [46], where they model the probability density
function with a multilayer perceptron whose architecture
is inspired by the field of INRs. Their works provide the
challenging SYMSOL and SYMSOL II datasets focused
on symmetries and can show superior performance to the
above-introduced mixture models.

In our work we are going to make use of a hypernetwork
to predict the weights of an implicit neural representation.
This implicit neural representation is associated with the
task of representing a probability distribution on SO(3). We
then aim to fully utilize the theoretical findings on Fourier
embeddings for pose estimation, which have been found to
be crucial for the performance of INRS. We will introduce
our approach in the following.

3. Method
Given an image x, our goal is to predict a probability

density function

p(·|x) : SO(3) → [0, 1] (1)

that incorporates not only a single rotation but the general
information on the distribution of the rotation of an object
in a given image. This is especially helpful in finding sym-
metry patterns of objects.

We give a general overview of our approach in Figure 1.
The input image is first fed through a vision network to out-
put a feature vector. This feature vector is then used as the
weights of an MLP. The MLP then represents the probabil-
ity density function on SO(3) by taking a Fourier-mapped

rotation SO(3)

∈

R 7→ γ(R) as input, and outputting the
corresponding probability p(R|x) ∈ [0, 1]. With this for-
mulation, it is possible to make single pose predictions by
taking the mode of the pdf or to predict the full distribution
to observe patterns of symmetries.

3.1. Fourier Transform on the Rotation Manifold

For an integrable function of the form f : R → C the
Fourier transform of f is defined as

Ff (l) =

∫
R
f(x) e−ilx dx. (2)

The Fourier transform is usually applied to periodic, and
bounded functions, i.e. of the form f : [0, 2π) → C. In-
stead of defining f on the range [0, 2π), we can also find
a mapping between α ∈ [0, 2π) and the rotation matrices
Rα ∈ SO(2), where α is the rotation angle. This allows us
to use the Fourier transform for complex valued functions
defined on the rotation group SO(2). This indeed suggests
that the Fourier transform can be generalized to work with
various other groups, specifically SO(3).

In fact, this is possible by introducing the Wigner-D ma-
trices, which are from a technical point of view the irre-
ducible representations of the rotation group SO(3) [55].
Leveraging this observation, it is possible to define the
Fourier transform for a function

f : SO(3) −→ R. (3)
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SYMSOL I (log likelihood ↑)
cone cyl. tet. cube ico. avg.

Positional Encoding 5.74 4.73 7.04 6.77 5.10 5.78
Gaussian encoding 5.78 5.05 7.16 6.80 5.48 6.05
Siren encoding 5.66 4.71 8.06 7.34 4.01 5.96

Table 3: We evaluate the effect of an initial Fourier embedding being applied to our network. In this table we compare the
effect of positional encoding [44] vs. Gaussian encoding [72] vs. a learnable sinusoidal layer [65]. While the positional
encoding is the most spread embedding, it is possible to increase the performance by changing to a Gaussian embedding or
a learnable sinusoidal layer. For the experiments reported in the other tables, we use a positional encoding.

SYMSOL II (log likelihood ↑)
sphX cylO tetX avg.

Deng et al. [11] 1.12 2.99 3.61 2.57
Gilitschenski et al. [18] 3.32 4.88 2.90 3.70
Prokudin et al. [58] 4.19 4.16 1.48 0.48
Murphy et al. [46] 7.30 6.91 8.49 7.57
HyperPosePDF (Ours) 7.73 7.12 8.53 7.72

Table 4: For this experiment, we trained a model for each object of the SYMSOL II dataset separately and compare our
results against multimodal mixture models [11, 18, 58] and Implicit-PDF [46]. We are able to achieve better results than our
competitors on all objects. These experiments were especially challenging due to the differing numbers of symmetries that
are dependant on the visibility of the markers on the objects.

By using the Wigner-D functions Dm,n
l , which are an or-

thogonal basis for the rotation group SO(3), the Fourier
transform is given as

f =

L∑
l=1

l∑
m,n=−l

fl,m,nD
m,n
l (4)

with the integer L denoting the degree of freedom. It is
possible to rewrite this into an ordinary Fourier transform
by expanding the Wigner-D function to a Fourier sum. In
literature, this derivation is usually given by using the Euler
angles representation R(α, β, γ) of the respective rotation.
Following [57] it turns out that

f(R(α, β, γ)
)
) =

L∑
l,m,n=−L

hm,n
l e−i

(
(m,n,l)(R(α,β,γ)

)
,

(5)

where the derivation of the Fourier coefficients hm,n
l can be

found in the supplementary material. For ease of writing,
we define i := (m,n, l). Using Euler’s formula it is easy to
show that (see supplementary material)

f(R) =

L∑
i=−L,m≥0

ai cos(2πiR) + bi sin(2πiR), (6)

where

a0 = h0,

ai =

{
0 ∃j ∈ {2, 3} : i1 = ij−1 = 0 ∧ ij < 0

2Re(hi) otherwise,

bi =

{
0 ∃j ∈ {2, 3} : i1 = ij−1 = 0 ∧ ij < 0

−2Im(hi) otherwise.

(7)

The main idea is to make the coefficients a and b train-
able, by letting them act as weights of a neural network on
an initial Fourier embedding. In [4] it was shown that for
problems of dimension > 2, as it is in our case, memory
problems arise on a modern Nvidia RTX 2080Ti GPU if all
coefficients are jointly approximated as the size of the em-
bedding simply gets too large. This introduces the need of
finding appropriate Fouier embeddings that do not affect the
performance and memory consumption of the method. The
design choices of the embedding is discussed in the next
section.

3.2. Fourier embedding

Inspired by the success for INRs, we compare the follow-
ing three embeddings on a flattened rotation R ∈ SO(3),
which we call r in the following.

• The positional encoding is defined as:
γ(r) = [. . . , cos(π2

j
m r), sin(π2

j
m r), . . . ]
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for j = 0, . . . ,m− 1 where m ∈ N, using a log-linear
spacing for each dimension [44].

• The Gaussian embedding is defined as:
γ(r) = [cos(2πBr), sin(2πBr)], where B ∈ Rm×d is
sampled from a normal distribution N (0, σ2), while σ
is the hyperparameter to be optimized [72].

• Instead of using an initial Fourier encoding, it is also
possible to use a sinusoidal network. Contrary to clas-
sical MLPs, it consists of periodic activation func-
tions. It has been shown that an additional initial si-
nusoidal layer acts as a learnable Fourier embedding
layer, achieving similiar or better performance [4, 65].

4. Experiments
We conduct our experiments on the Symsol I, Symsol II

and Pascal3D+ datasets. While we use the common Acc30°
metric for Pascal3D+, we evaluate the SYMSOL datasets
using two metrics: log likelihood and spread, which we will
introduce in the following.

4.1. Evaluation Metrics

We assume the ground truth labels to be samples from an
underlying but unknown distribution, which contains all in-
formation about symmetries, noise and ambiguities. As the
output of our model is also a distribution, it is standard to
compare the two distributions using maximum likelihood.
More formally: Our test set consists of images x ∈ I , where
each x has annotated poses Rx = (Rx

1 , . . . , R
x
k) for some

k ∈ N and k > 1 if there exist symmetries. We then calcu-
late the averaged log likelihood as follows

LL =
1

|I|
∑
x∈I

1

|Rx|
∑

R∈Rx

log(p(R|x)).

Another way of comparing two distributions is to calcu-
late the spread Spr. It assumes a set of equivalent rotation
annotations to be given. It uses the geodesic distance

d : SO(3)× SO(3) → R+

(R1, R2) 7→ || logR1R
T
2 ||F

using the Frobenius norm || · ||F . Only the closest ground
truth annotation is then taken into account

Spr = ER∼p(R|x)[ min
R′∈Rx

d(R,R′)].

4.2. SYMSOL I

The Symsol I dataset is publicly available as part of the
Tensorflow datasets. This dataset is especially interesting as
it consists of 5 objects with multiple symmetries, namely:
cone, cylinder, tetrahedron, cube and icosahedron. Here,

the tetrahedron, cube and icosahedron have countably many
symmetries, i.e. 12, 24 and 60, respectively. As the cone
and cylinder both have continuous symmetries, their anno-
tations are made discrete with an equidistant 1-degree spac-
ing. Each RGB image is of size 224× 224. The associated
labels per image are its class and the ground truth rotation
including all equivalent rotations.

Our implementation specifics are as follows. For our vi-
sion module we use a pretrained ResNet-50 backbone. We
predict the weights of a one-layer network with a width of
256. The number of coefficients used for the positional en-
coding is set to 4. A learning rate of 1e − 4 is used for
the first 1000 iterations, then a cosine decay is applied. Us-
ing the Adam optimizer, we evaluate our model after 200k
iterations using a batch size of 16.

The model learns jointly all object classes of the SYM-
SOL I dataset. Table 1 shows the log likelihood results. In
this metric, we can demonstrate superior results to compet-
ing methods on all objects individually and on average. This
is particularly visible for the objects cone, tetrahedron, cube
and icosahedron. We were able to rerun the experiments
of the competing methods and receive numbers closely to
their official numbers, still, we show their reported values
in our table. Note that we used the positional encoding in
this experiment. We can further improve the performance
by switching to Gaussian or Siren encodings. Table 2 shows
the spread results. We compare against reported values from
[11] and [46]. The metric values are in degrees and show
how well the method is able to capture the ground truths.
For the cone and cylinder, the spread of the probability pre-
diction away from the rotational continuous symmetry has a
value of less than one degree. The spread experiments have
only been conducted on the SYMSOL I dataset as it is the
only one with full symmetry annotations. If only a single
ground truth is known this metric would be misleading as it
penalizes correct predictions if no corresponding annotation
is available.

We compare the different Fourier embeddings as intro-
duced in section 3.2. For the Gaussian embedding, we
found a scale of 2 to perform best. Likewise, the perfor-
mance of the sinusoidal embedding heavily depends on the
chosen bias, which we found to perform best with a value of
1. Table 3 shows that, in general, an embedding is helpful,
and with accurate parameters, it is possible for the Gaussian
and Siren embedding to outperform the positional encoding.

4.3. SYMSOL II

The Symsol II dataset is also publicly available as part
of the Tensorflow datasets. This dataset consists of three
objects: a tetrahedron (tetX) with a marked red area , a
cylinder (cylO) with a marked off-center point and a sphere
(sphX) with an X and a marked point. Depending on the vis-
ibility, these markings affect the number of symmetries sig-

98812374



PASCAL3D+ (Acc30° ↑)

bottle bus table sofa tv avg
Liao et al. [35] 0.93 0.95 0.61 0.95 0.82 0.852
Mohlin et al. [45] 0.94 0.95 0.62 0.85 0.84 0.840
Prokudin et al. [58] 0.96 0.93 0.76 0.90 0.91 0.892
Tulsianiet al. [73] 0.93 0.98 0.62 0.82 0.80 0.830
Mahendran et al. [40] 0.96 0.97 0.67 0.97 0.88 0.890
Murphy et al. [46] 0.93 0.95 0.78 0.88 0.86 0.880
HyperPosePDF (Ours) 0.83 0.92 0.97 0.89 0.88 0.898

PASCAL3D+ (Median ↓)

bottle bus table sofa tv avg
10.3 4.8 12.0 12.3 14.3 10.74
7.8 3.3 12.5 13.8 11.7 9.82
5.4 2.9 12.6 9.1 12.0 8.4
12.9 5.8 15.2 13.7 15.4 12.6
7.0 3.1 11.3 10.2 11.7 8.66
8.8 3.4 7.3 9.5 12.3 8.26
11.7 3.9 4.2 5.8 6.5 6.42

Table 5: Results on objects from the Pascal3D+ dataset. A single model was jointly trained on all classes. We compare our
results in the Acc30° and the median in degrees. We are able to achieve similar or slightly better results than the competing
methods.

(a) A tv faced towards the camera while a movie is playing. (b) A sofa in beige with two pillows placed on it.

(c) A bottle with yellow plastic wrapped around it. (d) A red bus with the front faced to the right.

Figure 3: Results on the Pascal3D+ dataset. As all objects in these images are standing upright and are faced towards us, the
rotations are closely related. With the presence of texture, symmetries are not existent and hence, we predict only a single
rotation for the objects.

nificantly. For example, the sphere without visible markings
would have all orientations with the marks on the back pos-
sible, but if both markings are visible the orientation would
be unique.

We took the same implementation specifics as for the
SYMSOL I dataset. Following [46], we trained a network
for each object separately. Table 4 shows that we are able
to achieve promising results on this challenging dataset. In
particular, we show in the experiments that our method is
able to represent distributions that cannot be well approx-
imated by mixture-based models. That is mainly because
of the changing amount of present symmetries due to the
visibility of the given markings.

In general, it is not clear how to visualize a pose. Report-
ing the values of a 3 × 3 rotation matrix will not help the
reader to check whether the predicted pose is correct or not.
Just recently in [46] a new method for visualizing poses was

introduced. With the help of Hopf fibrations, they project
circles of poses from SO(3) to the 2-sphere and then use the
color to indicate the location on the circle. Because of the
projection to a lower dimension, limitations do exist. Still,
we are happy to use the visualization tool to demonstrate the
performance of our model. Figure 2 shows qualitative re-
sults of a model trained on SYMSOL II. We plot the ground
truth and predicted poses of cylO object. The plots illustrate
that the model has successfully learned the pose distribution
of this object. When the red dot is visible, the model suc-
cessfully collapses the distribution to predict a small range
of poses. When it is not visible, the model outputs a smooth
distribution of all possible poses given how the object is vis-
ible in the figure.
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4.4. Pascal3D+

To analyze whether our approach is applicable to single
pose estimation, we conduct additional experiments on a
subset of the Pascal3D+ dataset [75]. It consists of a sub-
set of the object categories from the well known PASCAL
VOC dataset [15], where 3D annotations are added. Fur-
thermore, the dataset has been enlarged by adding more im-
ages from the ImageNet dataset [12]. The annotation of an
object consists of the elevation, azimuth, and distance of the
camera position in 3D. With at least 3000 instances per cat-
egory, it is a challenging dataset of real world objects, like
planes, trains, bicycles and more. The choice of a subset is
due to the unavailability of an official dataloader and exist-
ing invalid bounding box annotations in the dataset that we
handled individually, e.g. manually adding the missing an-
notations or skipping elements with incorrect annotations.
This leads us to exclude quantitative results of the objects
where we can not guarantee alignment with publicly avail-
able results on this dataset. Still, we show qualitative results
in the supplementary material. For the train and test splits,
we follow the split provided by [35].

Our implementation specifics are as follows. As the
complexity of the images in the Pascal3D+ dataset is higher
than in the SYMSOL dataset we choose a larger pretrained
ResNet-101 backbone for our vision module. We predict
the weights of a one-layer network with a width of 256. Us-
ing the Adam optimizer, we evaluate our model after 150k
iterations using a batch size of 16. A learning rate of 1e− 5
is used for the first 1000 iterations, and then a cosine decay
is applied.

Table 5 shows our evaluations in the standard Acc30°
metric and the median angular error. While our method
is specifically designed to account for present symmetries,
the table shows that we are also competitive in the task of
single-pose prediction. In [35] the authors reported values
that are incorrectly lowered by a factor of

√
2. Hence we re-

port the corrected values in our experiments. Visualizations
can be found in Figure 3, where we display four objects: a
bottle, a sofa, a bus, and a tv monitor. With the presence of
textures, the pose predictions are unique.

5. Conclusion

Previous works demonstrated that hypernetworks can be
used to predict implicit neural representations for the task of
2D and 3D shape reconstruction. To the best of our knowl-
edge we are the first to show that hypernetworks are able to
predict the weights of an implicit neural representation as-
sociated with the task of pose estimation. HyperPosePDF is
able to predict a non-parametric distribution on the rotation
manifold, designed to incorporate uncertainty of symmetry,
noise and ambiguities. Additionally, we could show that the
commonly used Fourier embedding for INRs is also capa-

ble of boosting the pose estimation results. Furthermore,
we achieve superior performance on the challenging SYM-
SOL datasets that consist of objects with varying symme-
tries. Besides that, we are able to maintain comparable per-
formance on single-pose estimation evaluated on the Pas-
cal3D+ dataset.

This work demonstrated promising results in pose esti-
mation tasks. In future works, it would be interesting to see
how these insights generalize to new application domains,
such as spin detection in table tennis robots or visual-inertial
odometry in flying robots.
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