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Abstract

Discriminativeness is a desirable feature of image cap-
tions: captions should describe the characteristic details
of input images. However, recent high-performing caption-
ing models, which are trained with reinforcement learning
(RL), tend to generate overly generic captions despite their
high performance in various other criteria. First, we in-
vestigate the cause of the unexpectedly low discriminative-
ness and show that RL has a deeply rooted side effect of
limiting the output words to high-frequency words. The
limited vocabulary is a severe bottleneck for discrimina-
tiveness as it is difficult for a model to describe the de-
tails beyond its vocabulary. Then, based on this identifica-
tion of the bottleneck, we drastically recast discriminative
image captioning as a much simpler task of encouraging
low-frequency word generation. Hinted by long-tail clas-
sification and debiasing methods, we propose methods that
easily switch off-the-shelf RL models to discriminativeness-
aware models with only a single-epoch fine-tuning on the
part of the parameters. Extensive experiments demonstrate
that our methods significantly enhance the discriminative-
ness of off-the-shelf RL models and even outperform pre-
vious discriminativeness-aware methods with much smaller
computational costs. Detailed analysis and human evalua-
tion also verify that our methods boost the discriminative-
ness without sacrificing the overall quality of captions.'

1. Introduction

Image captioning plays a fundamental role at the inter-
section of computer vision and natural language processing
by converting the information in images into natural lan-
guage descriptions. Generated captions can be used in vari-
ous downstream tasks: aiding visually impaired users [19],
visual question answering on images and videos [16, 31],
visual dialogue [68], and news generation [79].

I'The code will be made available at https://github.com/uky
h/switch_.disc_caption.git
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Transformer RL:
a group of boats
sitting in the water

¥4 Transformer RL:
a group of boats
sitting in the water

-wFT: a row of
small boats tied to a
dock

+WFT: many small
boats tied together
at night

Transformer RL:
a group of boats
sitting in the water

Transformer RL:
a group of boats
sitting in the water

e +wFT a black and
- ‘ white photo of boats
docked at a pier

Figure 1. Caption examples in the MS COCO validation set.
Transformer RL is a Transformer captioning model trained with
RL and wFT is our fine-tuning method. Transformer RL gener-
ates exactly the same caption for the four images. The underlined
words indicate the characteristic information that are not men-
tioned by Transformer RL, and the blue words are those that have
never appeared in the outputs of the model. See Appendix 2 for
more examples.

+WFT: a body of
water with boats on
it

For those downstream tasks, captions should be discrim-
inative: captions should describe the characteristic and im-
portant details of the input images [51]. However, cur-
rent captioning models tend to generate overly generic cap-
tions [12, 11, 64, 66]. In particular, models trained with
the standard reinforcement learning (RL) [50], which is
the de facto standard training method in current image cap-
tioning [55], unexpectedly perform poorly in discrimina-
tiveness despite the significant advantages in various other
criteria [39, 62]. For example, a high-performing Trans-
former [57] captioning model trained with RL generates ex-
actly the same caption for the four different images shown
in Figure 1, ignoring the other salient details of each image.

To address the problem of overly generic captions, stud-
ies have been intensely conducted on discriminative im-
age captioning, which is also called distinctive image cap-
tioning or descriptive image captioning. Previous research
has created new RL rewards regarding discriminativeness
or new model architectures to enhance discriminativeness.
These approaches improved the discriminativeness; how-
ever, their models come with additional computations, re-
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quire retraining from scratch, and do not shed light on the
cause of existing models’ low discriminativeness.

Instead of creating or paying those computational costs,
we first analyze the cause of the unexpectedly low discrim-
inativeness of off-the-shelf RL models, i.e., pre-trained, ex-
isting RL models, to explore ways to improve their discrim-
inativeness. Our first contribution is the identification
of a deeply rooted side effect in RL that limits output
words to high-frequency words. The limited vocabulary
is a severe bottleneck for discriminativeness as it is difficult
for a model to describe the details beyond its vocabulary.

Given this identification of the bottleneck, now we can
directly address the bottleneck by simply encouraging the
generation of low-frequency words. This task relaxation
allows us to introduce long-tail classification and debias-
ing methods to discriminative image captioning for the first
time. Our second contribution is our effective and effi-
cient methods that switch any off-the-shelf RL models
to discriminativeness-aware models with only a single-
epoch fine-tuning on the part of the parameters. Un-
like previous approaches, our methods do not require any
discriminativeness rewards, new model architectures, or re-
training from scratch.

Extensive experiments demonstrate that increasing low-
frequency words in outputs significantly boosts discrimi-
nativeness from off-the-shelf RL models and even outper-
forms previous discriminativeness-aware models with much
smaller computational costs. These results verify that the
limited vocabulary of RL models has been the major cause
of their low discriminativeness. Detailed analysis and hu-
man evaluation also show that our methods enhance the dis-
criminativeness without sacrificing the overall quality. We
believe that our novel findings on the cause of low discrimi-
nativeness and the practical solutions to it will significantly
impact future research on discriminative image captioning.

2. Discriminativeness and a Bottleneck of RL

Currently, RL is the de facto standard training method
for models used in image captioning because it signifi-
cantly improves the performance in various evaluation met-
rics [55]. However, it does not improve discriminativeness
and may even decrease it [39, 62]. In this section, we exam-
ine the cause of the unexpectedly low discriminativeness.

2.1. RL in Image Captioning

We provide a brief overview of the standard RL algo-
rithm used in image captioning. It was proposed by [48]
and refined by [50]. Their goal was to directly optimize
non-differentiable test-time metrics by minimizing the neg-
ative expected reward:

Lre(0) = —Eus g (w0 [r(w®)], (1)
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Figure 2. Relative frequency of the words in the sequences sam-
pled for the MS COCO training images. Five sequences were sam-
pled for each image. The words (9,486 unique words excluding an
out-of-vocabulary token (unk)) are sorted by their frequency in
ground-truth captions and divided into 200 bins. We show the first
10 bins and the sum of the rest. GT is the ground-truth caption
of the training images, CE is the output of a captioning model
trained with the CE loss, and RL is the output of a captioning
model trained with RL. Here, we used the Transformer model.

where w® = (wj,...,w$) is a sequence sampled from a
policy py, I is an input image, and r(+) is a reward function.
To compute the gradient of £(6), [48] applied the REIN-
FORCE algorithm [69] to text generation. The algorithm
approximates the gradient as follows:

VoLrL(0) = —(r(w®) — b)Vglogpe(w® | I). (2)

Here, b is a baseline reward that reduces the variance in the
gradient. Typically, the reward function r(-) is CIDEr [59],
and the baseline reward b is a reward for a sequence sampled
with greedy decoding [50].

2.2. RL Limits Vocabulary

Despite its effectiveness, RL has been found not to im-
prove discriminativeness and somehow decrease the num-
ber of unique n-grams in output captions [39, 62]. As the
relation between RL and these two negative effects is not
obvious, it has been just considered a curious case.

We elucidate for the first time the relation between RL
and limited vocabulary by combining two recent findings.

(1) RL has been shown to make the output distribution
peaky [8, 30]. RL samples sequences from policy pg (See
Eq. (1)). Typically, pg is initialized with a text-generation
model pre-trained with the Cross-Entropy (CE) loss on
ground-truth text. In text generation, however, the initial-
ized py outputs peaky distributions, and thus, RL samples
and rewards the words at the peak only, shaping more peaky
distributions [8]. Then, where does pyg tend to be peaky?

1125



(2) Text-generation models have been theoretically and
empirically shown to output distributions peaky at high-
frequency words in the training corpus [46, 49, 13, 24].
These two findings conclude that RL shifts the probability
mass from low-frequency words to high-frequency words by
only sampling and rewarding the latter.

Figure 2 confirms the above by plotting the relative fre-
quency of the words sampled for the training images. The
words are sorted by their frequency in ground-truth captions
and divided into 200 bins. Compared to the ground-truth
captions and the sequences sampled with a CE model, the
sequences sampled with an RL model are clearly limited to
the high-frequency words, forming a peaky distribution?.

2.3. Vocabulary Limits Discriminativeness

Neural captioning models typically generate captions us-
ing sequential vocabulary-size classification [01]. How-
ever, the actual vocabulary a model can generate is much
smaller than the entire vocabulary as the output distribution
is highly skewed towards high-frequency words. If the ac-
tual vocabulary cannot cover the details of an image, the
model is forced to avoid those details and output only the
information that high-frequency words can describe. For
example, the blue words in Figure 1 are not in the actual
vocabulary of the RL model; these words have never been
generated during evaluation. As a result, the RL model had
to ignore the characteristic relations tied and docked and
ended up describing exactly the same for all four images.

Based on the observations, now we can hypothesize that
the unexpectedly low discriminativeness of RL models has
been rooted in the limited vocabulary. This identification of
the bottleneck is a key contribution as it allows us to address
the low discriminativeness directly at the root.

3. Methods to Relieve the Bottleneck

We have shown that RL results in the limited vocabulary
as it steals the probability mass from low-frequency words.
Thus, increasing those low-frequency words is the easy yet
critical solution to the bottleneck. One way to achieve this
is to jointly optimize both the RL loss and the CE loss on
ground-truth captions so that the low-frequency words in
ground-truth captions would be more likely to be sampled
during RL training [64]. However, this approach still relies
on the sampling from a skewed policy and requires retrain-
ing from scratch.

To increase the actual vocabulary more effectively and
efficiently, we refine the mapping from encoded features to
low-frequency words. This refinement can be applied to any
RL models and can be achieved by modifying only the map-
ping function parameters with a single-epoch fine-tuning.

2 Although Figure 2 shows only the results obtained with the Trans-
former captioning model, we also confirmed that other models output
peaky distributions [50, 2]. See Appendix 3 for the details.

3.1. Simple Fine-Tuning (sFT)

The first method is a simple fine-tuning (sFT). It is
based on a decoupled two-stage training [27], which is
a current strong baseline model for long-tail classifica-
tion [56, 44, 65]. [27] decoupled the learning procedure into
representation learning and classification, and then found
that classification, i.e., the mapping from representations
to label distributions, is critical for long-tail classification.
They decoupled the classification model fy(-) into an en-
coder gy, (-) and a classifier consisting of weight and bias
parameters: fo(z) = W T go_(z)+b. Representation learn-
ing is the first stage of training, where they trained the entire
classification model fy(-) on a full training dataset. The sec-
ond stage is classification, where they fixed the encoder pa-
rameters 6. and adjusted only the classifier parameters. For
the second-stage adjustment, they applied class-balanced
sampling to encourage learning on low-frequency labels.

Following [27], we decouple a captioning model into
an encoder and a classifier. In image captioning, the first-
stage training of [27] corresponds to RL training on the
full training dataset. The second-stage training corresponds
to adjusting the classifier parameters on the vocabulary-
balanced sequences. However, sampling from the skewed
policy of text-generation models cannot provide sequences
containing low-frequency words (Section 2.2). Thus, we
use ground-truth captions as relatively vocabulary-balanced
samples. sFT simply fine-tunes the classifier parameters of
a pre-trained RL captioning model by minimizing the CE
loss on ground-truth captions:

T

1
=7 Zlogpé(wf | wl,, 1), 3)

t=1

Lcr(0)

where w9 = (wf,...,w}) is a ground-truth caption of im-
age I and 0 denotes the model parameters 0 that are ini-

tialized with RL training. Let the softmax function ¢(-) be

exp(Bzu,)
2w ew eXp(Bzu;)’

where z,,, indicates the element of a vector z € RIWI at
the index of a word w; € W. W is the entire vocabulary. 8
is an inverse-temperature hyperparameter that controls the
steepness of the softmax distribution. Then, the conditional

(bwi,ﬁ (Z) = (4)

probability pp(w{ | w?,,I) is computed as follows:
pQ(wiq | witﬁl) :d)wf,ﬁ(sé(wgal))? (@)
sh(w9, 1) =W 'go (wl,,I)+b, (6)

where W € Rl and b € R™WI. d is the dimension of
the hidden states of an encoder gy, (-). We use LSTM [23]
or Transformer [57] for gy, (). During fine-tuning, only the
classifier parameters {W , b} € 0 are updated with the gra-
dients VWECE(é) and VbECE(é), respectively.
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3.2. Weighted Fine-Tuning (WFT)

Ground-truth captions contain more low-frequency
words than sampled sequences, but some low-frequency
words are still difficult to learn because of their low fre-
quency. Our second method is weighted fine-tuning
(wFT), which further pursues vocabulary balance by rebal-
ancing the loss of high-frequency words and low-frequency
words in ground-truth captions.

To rebalance the loss, we exploit the frequency bias
of RL models: RL models overly assign the probability
to high-frequency words but not to low-frequency words.
Given the properties of the frequency bias, fine-tuning for
discriminativeness should focus more on the words that an
RL model is not confident of but should be avoided on the
words that an RL model is confident of. wFT incorporates
these heuristics by modifying the probability py of Lcg to
the bias product (BP) [9, 20, 22] probability, pg e :

po.or(wi | wl,, I) =

buz 1| l0g 6.5(sh( D)) +1log ¢(sh (D)) |,

po(- [ wly, I) por (| wly, 1) D
where ¢. 5(z) € RMI. By inserting Po,gr into Lcp, we
define the objective function of wFT as follows:

T
A 1
Lep(0) = = D logpy g (wf [wly, ). (8)

t=1

Similar to SFT, the parameters 6 and 0’ are initialized with
the same RL model to be 0 and 6'. The difference is that, al-
though the classifier parameters of 6 are updated, all the pa-
rameters of 0" are fixed during fine-tuning’. Figure 3 shows
the change in the BP loss compared to the CE loss. The
BP severely suppresses the loss when the frequency-biased
policy pg- is confident, and largely increases the loss when
pe is not confident. In this way, the BP allows models to
unlearn the frequency bias learned with RL. As with sFT,
only the classifier parameters {W, b} € 0 are updated with
the gradients Vyy Lpp (é) and VbEBp(é), respectively.
The previous BP methods used the probability py during
evaluation to avoid incorporating the bias of py- into the pre-
dictions [9, 20]. Although it worked well in their classifica-
tion tasks, we found this train—test gap makes the decoding
unstable in text generation. To mitigate the train—test gap,
we use two variants of decoding: (1) decode with py but use

3[5] also utilized fixed pre-trained models to reweight their loss for
stylized image captioning. However, their method is designed to train new
models from scratch and is not applicable to refining pre-trained models;
their loss function (Eq. (6) in [5]) is stuck at zero when we initialize the
parameters with the same pre-trained model. This requirement for retrain-
ing from scratch is a fundamental deviation from our goal of improving the
discriminativeness of off-the-shelf RL models.

Loss Function
-—— CE
8 BP pg(w;) =0.9
—— BP pg(w;) =0.1
—— BP pg(w;) =0.01

Loss

0.0 02 0.4 0.6 08 1.0
Polw;)

Figure 3. Visualization of the CE loss — log pg(w;) and BP loss
—log pg,e’ (ws). To compute the BP loss, we need the entire dis-
tribution of {pg (w;) }w,ew and {pe’ (w;) }w, cw. Here, we set the
index i to 1 and assigned £ (1 — pg(w1)) to the words of the next
five indices, w2, ..., we. This is because we observed that the five
most probable words occupied 99% of the probability in the out-
put distribution of the RL models. We assumed that the five most
probable words were the same between pg and py- as the parame-
ters were initialized with the same RL model. Thus, we assigned
1(1 — pgs(w1)) to the words of the next five indices, w2, ..., we,
likewise pg. Here, 3 and 3" were set to 1.

asmall 8 for pg: during training to ease the gap between py
and pg ¢, or (2) use pg ¢+ during both training and decoding
(BP decoding) as py ¢ itself is already less biased than pg:.

4. Experiments
4.1. Setup

Dataset and Metrics. We used the MS COCO caption-
ing dataset* [38, 6] with Karpathy splitting [28]. After
preprocessing, the entire vocabulary size |W| was 9,487°.
In the evaluation, the captions were decoded using a beam
search of size 5 and evaluated using various evaluation met-
rics. Specifically, we used CIDEr [59] SPICE [1], Im-
proved BERTScore (BERTS+) [74], TIGEr [25], CLIP-
Score (CLIPS), and RefCLIPScore (RefCLIPS) [21]. Note
that the correlation with human judgments increases in
the above order, with RefCLIPS indicating the state-of-
the-art correlation [21, 29]. Following the previous stud-
ies [39, 62, 54], we evaluated discriminativeness with R@K
scores: the percentage of captions with which a pre-trained
image—text retrieval model [15] could correctly retrieve
the original images from the entire validation/test images
within the rank of K € {1,5,10}. A higher R@K indicates

4Each split of training/validation/test contained 113,287/5,000/5,000
images, and each image had around five ground-truth captions.

5The words that occur less than five times in the training captions were
converted to (unk) token.
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Vocabulary Standard Evaluation Discriminativeness
Unique-1 Unique-S Length CIDEr SPICE BERTS+ TIGEr CLIPS RefCLIPS R@1 R@5 R@I10

Att2in RL 445 2,524 9.3 117.4 20.5 43.6 73.9 73.0 79.7 163 419 572
+sFT 880 3,156 9.0 115.4 20.4 439 74.3 73.7 80.3 20.1 48.0 628
+wFT 1,197 3,732 8.9 104.3 19.5 43.1 74.2 73.9 80.2 206 497 645
5+ wFT (BP decoding) 1,102 3,615 9.4 109.3 20.1 43.7 74.4 74.0 80.2 21.1 505  64.8
S CIDErBtw 470 2,630 9.3 119.0 20.7 43.8 74.1 73.1 79.8 172 441 58.7
2 NLI 465 2,626 9.2 118.9 20.6 43.8 74.1 732 79.9 176 444 598
DiscCap’ 3,093 9.3 114.2 21.0 21.6 503 654
Joint CE 700 2,907 9.1 111.7 19.9 435 74.0 733 80.0 19.1 467 615
Only CE 689 2,845 9.2 110.7 20.1 43.5 74.0 73.3 79.9 190 466  6l1.1

© " Visual Paraphrase’ ~ 7 7 4576~ 129 869 201 T T 263 572 708
UpDown RL 577 3,103 9.5 122.7 21.5 442 74.6 74.0 80.5 21.1 499 646
+ sFT 1,190 3,788 9.2 115.9 21.0 442 74.9 74.8 80.9 250 568 712
o  +WFT 1,479 4,268 9.1 101.8 19.5 43.1 74.6 74.9 80.7 260 576 722
£ +wFT (BP decoding) 1,275 4,177 9.6 110.0 20.6 44.1 74.9 75.0 80.8 267 587 724
2, CIDErBtw 582 3,108 9.4 123.0 21.5 44.4 74.6 74.2 80.7 219 509 659
> NLI 575 3,144 9.4 122.4 21.4 444 74.6 74.1 80.6 21.5 507  65.6
Joint CE 857 3,120 9.4 111.8 20.5 43.7 74.3 73.8 80.2 21.8 512 652
Only CE 878 3,126 9.4 109.2 20.1 434 74.2 73.6 80.0 21.8 499 645
Transformer RL 753 3,433 9.2 127.7 225 45.1 75.0 75.0 81.3 266 562 705
R sFT 1,458 3,959 9.1 118.7 21.7 44.8 75.2 75.6 81.5 306 623 757
EF wFT 1,776 4,274 9.1 103.1 20.0 433 74.8 75.8 81.2 325 645 771
S+ wFT (BP decoding) 1,964 4,373 9.4 107.2 21.1 442 75.2 76.1 81.5 335 659 782
@ CIDErBtw 837 3,609 9.5 128.2 22.6 45.1 75.2 75.0 81.2 277 576 716
o NLI 876 3,744 9.5 129.1 23.0 454 75.3 755 81.5 298 599 734
& Joint CE 1,083 3,491 9.3 123.8 21.9 45.0 74.8 75.0 81.2 273 572 708
Only CE 935 3,599 9.4 112.2 20.8 44.0 74.5 74.8 80.9 265 558  69.7

Table 1.

Comparison of baseline models, our models , and state-of-the-art discriminativeness-aware models. Automatic evaluation

results on the MS COCO test set. Unique-1 and Unique-S indicate the number of unique unigrams and sentences, respectively. Length is

the average length of the output captions. Scores with } were reported in [

that the model generates more discriminative captions with
characteristic information of images. Evaluation was con-
ducted in a single run for each model. See Appendix 4 for
the libraries and settings we used for these evaluations.
Comparison Models. Following [62], we used Att2in [50],
UpDown [2], and Transformer [57] as the baseline mod-
els. The models were pre-trained with the standard
RL [50] and are publicly available®. In addition to the
baseline models, we compared our models with state-of-
the-art discriminativeness-aware models: CIDErBtw [62],
NLI [54], DiscCap [4 1], and Visual Paraphrase [39]. The
first three created new discriminativeness rewards to be op-
timized with RL. Visual Paraphrase introduced a new model
architecture to paraphrase simpler captions to more com-
plex captions. See Section 5 for more details of these mod-
els. As we mentioned in the beginning of Section 3, the CE
loss on ground-truth captions can be utilized in a different
way from our methods. We report the results of jointly op-
timizing the RL loss and CE loss (Joint CE [64, 14]). It
optimizes Ljoint(0) = ALrL(0) + (1 — A)Lcr(0) during
RL training. We also tested Only CE, which sets A = 0 to
solely optimize the CE loss, as the baseline without RL. See
Appendices 12 and 13 for more comparisons [76, 36, 7].
Hyperparameters. Our models used the same hyperpa-
rameters as the baseline models, except for the epoch size,

Shttps://github.com/ruotianluo/self-critical.py
torch:{AttZin, UpDown, Transformer}+self,critical

]. Other scores were reproduced by us.

learning rate, and ' in Eq. (7). We set the epoch size
for fine-tuning to 1 and searched for the best learning rate
from {le-3, le-4,1e-5,1e-6}. For BP in Eq. (7), we set
B = 1 and searched for the best 5’ from {0.1,1}. As with
our models, we set all hyperparameters of the CE-based
models to the same as the baseline models except for the
A € {0,0.2,0.5,0.8}. We disabled scheduled sampling [4]
for our fine-tuning and the CE loss to separate them from
the RL loss strictly. We took the best hyperparameters ac-
cording to the R@1 scores in the validation set. Note that
we used different hyperparameters for the wFT with differ-
ent decoding methods (See Section 3.2). Appendix 5 shows
the best hyperparameters. We followed the previous work
for the hyperparameters of the other models.

All the models except Visual Paraphrase had the same
size of trainable parameters as their baselines. See Ap-
pendix 6 for the exact number of parameters. Our fine-
tuning was completed in around 10 minutes using a single
GPU of 16 GB memory. See Appendix 7 for the exact time
for training and comparison with other methods.

4.2. Comparison with Baseline Models and
Discriminativeness-Aware Models

Table 1 shows the results compared to those ob-
tained with the baseline models and state-of-the-art
discriminativeness-aware models.

Vocabulary. First, we observe that our methods (sFT and
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wFT) successfully increase the actual vocabulary size: both
of them considerably increased Unique-1 compared to all
the baseline models. wFT increased the vocabulary more
than sFT, indicating that rebalancing the loss further en-
couraged low-frequency word generation. The increased
vocabulary resulted in more specific captions to each im-
age: Unique-S also increased significantly. Consistent with
previous studies [64, 39, 62], the models trained with the CE
loss (Joint CE and Only CE) achieved the larger vocabulary
than the baseline RL models. However, the improvement
of our methods was even larger than these CE-based mod-
els. Despite the significant increase in the vocabulary size,
our method kept the captions concise: the average sentence
length was close to those of the baseline models.

Discriminativeness. Our goal is to enhance the discrimina-
tiveness of RL models by addressing their limited vocabu-
lary. As expected, our methods successfully improved the
discriminativeness: the R@K scores of our models were
considerably higher than those of the baselines. Corre-
sponding to the better improvement in vocabulary size, wFT
increased discriminativeness more than sFT. These results
confirm our hypothesis that the limited vocabulary of RL
models has been a major bottleneck for discriminativeness.

Among the Att2in-based models, Visual Paraphrase

achieved the highest discriminativeness. However, this
model is not directly comparable to the others because it
increases the trainable parameters for its specialized model
architecture. Moreover, its improvement in discriminative-
ness was achieved at the expense of conciseness, which
is another desirable property for discriminative image cap-
tions [51]: its sentence length was substantially longer than
the other models. DiscCap performed comparably with our
models, but its reward requires high computational costs.
CIDErBtw and NLI proposed more lightweight rewards to
be applicable to larger models, but they still need retrain-
ing from scratch. Among the larger models (UpDown and
Transformer), our models achieved the highest discrimina-
tiveness despite the small computational cost.
Standard Evaluation. As our methods increase low-
frequency words in outputs, the outputs are likely to include
the words that are out-of-references (OOR). That is, low-
frequency words may not be covered by reference captions
regardless of their correctness due to the low frequency.
These low-frequency OOR words unfairly decrease scores
in conventional evaluation metrics because those metrics
count exact matches in the surface form of text’.

To fairly evaluate the OOR words, recent metric re-
search has focused on soft matching metrics [26, 21]. Soft-
matching metrics can evaluate the semantic similarity be-
tween target captions and reference captions beyond the
surface form of text by utilizing pre-trained language mod-

7Some metrics use stemming, lemmatization, and/or WordNet synsets
to evaluate synonyms but their coverage is limited.

els (PLMs) [74, 77] or pre-trained cross-modal models
(PCMs) [25, 33, 21]. Their correlation with human judg-
ments is significantly higher than that of exact-matching
metrics in both precision and recall [29]. In particular,
PCM-based metrics, which can utilize image features in ad-
dition to reference captions, have substantially enhanced the
evaluation performance and have achieved the state-of-the-
art correlation with human judgments [2 1, 29].

Given the above advantages, we employed soft-matching
metrics in addition to conventional exact-matching metrics.
Not surprisingly, our models decreased the scores in the
exact-matching metrics (CIDEr and SPICE). However, our
models scored comparably with the baselines in the PLM-
based metric (BERTS+) and rather outperformed them in
the state-of-the-art PCM-based metrics (TIGEr, CLIPS, and
RefCLIPS). The higher performance in the superior soft-
matching metrics indicates that our methods do not degrade
the overall quality of captions. To further validate the over-
all quality of our output captions, the following Section 4.3
analyzes the cause of this performance gap in more detail.

4.3. Analysis of the Performance Gap

Properties of OOR Words. The critical difference be-
tween the conventional exact-matching metrics and the re-
cent soft-matching metrics is the (in)ability to evaluate
OOR words®. Based on the difference, we hypothesize that
the performance gap is caused by a difference in the prop-
erties of OOR words. We analyzed the OOR words of our
models, comparing with those of RL baselines and Only
CE, which scores similarly to our models in exact-matching
metrics but decreases soft-matching scores in contrast to our
models. Table 2 shows the number of OOR words and their
average frequency rank. The frequency rank refers to the
order of words when sorted by their frequency in training
captions; the most frequent word ranks 1st, and the value
of rank increases as the frequency decreases. Although our
models and Only CE output the similar number of OOR
words, the significant difference in the frequency rank in-
dicates that the properties of our OOR words are different
from those of Only CE; that is, the OOR words of our mod-
els consist of much more low-frequency words than those
of Only CE. Low-frequency words are likely to be OOR by
the nature of their frequency, regardless of their correctness.

The soft-matching metrics could tell this difference and
scored our models higher than Only CE models and even
higher than baseline RL models. Especially, this tendency
was more clear in the state-of-the-art PCM-based metrics

8Note that this difference does not mean that exact-matching metrics
represent precision, and soft-matching metrics represent recall. Exact-
matching metrics cannot represent precision because the reference cap-
tions do not cover all correct descriptions. That is, exact-matching met-
rics can only represent the flawed precision with false negatives. Actually,
exact-matching metrics correlate with human judgments worse than soft-
matching metrics not only in recall but also in precision [29].
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Text-Based Text-and-Image-Based

Repetition OOR Exact-Matching Soft-Matching
Rep (%)) Number| Rankt CIDEr SPICE BERTS+ TIGEr CLIPS RefCLIPS
Att2in RL 4.1 8,665 79.4 117.4 20.5 43.6 73.9 73.0 79.7
+ sFT 3.8 8,813 1640 1154 20.4 439 74.3 73.7 80.3
+ wFT 3.2 10.454 2379 1043 19.5 43.1 74.2 73.9 80.2
+ wFT (BP decoding) 3.6 10,386 2047  109.3 20.1 437 74.4 74.0 80.2
Only CE 39 9,913 133.1 110.7 20.1 435 74.0 73.3 79.9
UpDown RL 39 8,463 100.1 122.7 21.5 44.2 74.6 74.0 80.5
+ sFT 3.6 9,252 225.8 115.9 21.0 44.2 74.9 74.8 80.9
+ wFT 3.0 11,478 301.0 101.8 19.5 43.1 74.6 74.9 80.7
+ wFT (BP decoding) 34 11,065 236.9 110.0 20.6 44.1 74.9 75.0 80.8
Only CE 3.7 10,874 1529  109.2 20.1 434 74.2 73.6 80.0
Transformer RL 3.6 7,824 129.8  127.7 22.5 45.1 75.0 75.0 81.3
+ sFT 3.2 9,397 296.0 118.7 21.7 44.8 75.2 75.6 81.5
+ wFT 2.6 11,930 379.7  103.1 20.0 433 74.8 75.8 81.2
+ wFT (BP decoding) 2.9 11,673 4610 107.2 21.1 44.2 75.2 76.1 81.5
Only CE 33 10,661 165.6 112.2 20.8 44.0 74.5 74.8 80.9
Human 24 17,963 815.6 88.4 21.2 429 73.3 77.7 82.0

Table 2. Comparison of OOR words and the resulting difference in exact-matching and soft-matching metrics. We report the results on
the MS COCO test set. A higher value in Rank indicates a lower frequency rank of the OOR words. We also report the rate of repetition.

Discriminativeness ~ Correctness  Fluency
Transformer RL  3.00 4.42 4.83
+ wFT 3.34% 4.45 4.84
NLI 3.18** 4.54 4.76

Table 3. Human evaluation results on the subset of the MS COCO
test set. The discriminativeness score of Transformer RL was fixed
at 3.00 because we set it as the baseline. */** indicates that a
score is statistically significantly different from that of the baseline
model (t-test with p < 0.05/0.01); one-sample t-test for discrimi-
nativeness and independent two-sample t-test for the other criteria.

(TIGEr, CLIPS, and RefCLIPS). On the contrary, the exact-
matching metrics (CIDEr and SPICE) could not tell the dif-
ference by definition and decreased the scores roughly in
proportion to the number of OOR words. Appendix 8 shows
the qualitative analysis of the underrated captions.
Comparison with Human-Annotated Captions. Human-
annotated captions are known to show low exact-matching
scores despite their high quality [29, 39, 11]. In Table 2,
we observe that human-annotated captions (Human)’ have
similar properties to ours: a large number of low-frequency
OOR words, low exact-matching scores, but high scores in
the state-of-the-art metrics (CLIPS and RefCLIPS).
Repetition. We also confirmed that the decrease in exact-
matching scores was not caused by repetition, which is a
typical side effect of heavily maximizing discriminativeness
rewards [64, 60]. Table 2 shows that our models’ repetition
rates'” were rather lower than those of baselines.

Following [39, 11], we randomly sampled one reference caption for
each image and evaluated the similarity against the rest of the references.

10 et C be a set of captions; f™(-) and u™(-) be the functions to return
n-grams and unique n-grams, respectively. We computed the repetition
rate (Rep) by ﬁ Zlgl SN 1- 1%221;; , where we set N = 4.

Conclusion. From the above results, we conclude that
the lower exact-matching scores of our models are caused
by the nature of low-frequency words and the deficiency
of exact-matching metrics, not by the degeneration of our
models. The results of the human evaluation in the follow-
ing Section 4.4 further support this conclusion.

4.4. Human Evaluation

As discussed in Sections 4.2 and 4.3, automatic evalu-
ation of our models has difficulty due to the OOR words
caused by the low frequency. To further validate the per-
formance of our models, we conducted human evaluations
using Amazon Mechanical Turk (AMT) on three criteria:
discriminativeness, correctness, and fluency. Correctness
and fluency are absolute scores: we instructed workers to
give a maximum score 5 to the captions that did not contain
incorrect information (ungrammatical or unnatural expres-
sions) in terms of correctness (fluency). In contrast, dis-
criminativeness is designed as a relative score because it is
difficult to set an absolute standard for discriminativeness;
unlike correctness or fluency, we cannot define the perfectly
discriminative captions. Following [62], we instructed the
workers to determine the discriminativeness of a caption by
comparing the caption with that of a baseline model''.

We evaluated the Transformer-based models, which per-
formed the best in the automatic evaluation. Although wFT
with BP decoding performed better, here we picked up wFT
with py decoding to set the total number of parameters for
decoding strictly the same across the models. Following

11f a target caption describes the same information as a baseline cap-
tion, the workers give the target caption a score of 3; if the target caption
describes more (less) characteristic information than the baseline caption,
the workers give the target caption a score of 4 or 5 (1 or 2).
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[62], we randomly selected 50 images from the MS COCO
test set and assigned five workers to each image. See Ap-
pendix 9 for more details on the AMT instruction. Table 3
shows the results. wFT, which had the highest R@K scores,
also achieved the highest discriminativeness here. wFT
achieved the same or higher correctness and fluency than
the baseline model, in contrast to the exact-matching scores
in Table 2. These results are consistent with the results of
the state-of-the-art soft-matching metrics, confirming again
that our methods do not degrade the quality of captions.

5. Related Work

Image Captioning is the task of describing images in nat-
ural languages. The quality of captions has been remark-
ably improved by recent advances such as the encoder—
decoder captioning model [61], attention mechanism [73],
RL training [48, 50], attention over bounding box fea-
tures [2], large-scale pre-training [36], and large-scale cap-
tioning datasets [75, 38, 6, 32, 52]. Despite these advance-
ments, current captioning models generate overly generic
captions [12, 11, 64, 66].
Discriminative Image Captioning has been explored to
generate more informative captions. [51] was the first to
study it. They defined the more informative captions as the
captions that concisely describe the information discrimina-
tive from distractor images, i.e., images similar to an input
image. [3] proposed neural listener and speaker models that
cooperate to generate discriminative captions for abstract
scenes. [45] adapted the models to single-colored images.
[58, 10] extended the domain to real images and improved
inference efficiency. [63] proposed a memory attention net-
work to describe unique objects among distractor images.
[43] introduced a dataset with harder distractor images.

These approaches require selecting distractor images for
inference. [41] and [40] proposed the methods that do not
require this step. Their models learn to generate discrim-
inative captions by maximizing the R@K scores for sam-
pled captions using RL [50]. The R@K scores are com-
puted with a pre-trained image—text retrieval model [15]
over images in a mini-batch. [60] proposed a method to
jointly train the image—text retrieval model and captioning
model. Despite their effectiveness, R@K scores are asso-
ciated with high computational costs and require a large
batch size. Recently, CIDErBtw [62] and NLI [54] achieved
state-of-the-art discriminativeness with more lightweight
rewards. They weighted the contribution of ground-truth
captions for the CIDEr reward according to their differences
from similar but different captions [62] or their entailment
scores against other ground-truth captions [54]. Another
approach exploited unrelated captions as negative exam-
ples and trained caption generators with contrastive learn-
ing [12] or GAN [12, 17].

Visual Paraphrase [39] and [70] are related to our work

in that they exploited low-frequency n-grams to enhance
discriminativeness. [39] divided ground-truth captions into
two subsets according to n-gram TF-IDF scores and pro-
posed a new model to paraphrase low TF-IDF captions into
high TF-IDF ones. [70] proposed the use of n-gram TF-IDF
scores as an additional reward to a variant of R@K reward.
Different from above approaches, our objective is set to
remedy the low discriminativeness of existing RL models.
Our models can be achieved with single-epoch fine-tuning
of pre-trained RL models, without requiring either drastic
changes in the model architecture [39], additional computa-
tional costs of rewards [70], or retraining from scratch.
Diverse Image Captioning is the task of generating a set
of diverse captions for a given image [67]. Diverse image
captioning is aimed at enumerating various pieces of infor-
mation with a set of captions, whereas discriminative image
captioning aims to concisely describe the most characteris-
tic information with a single caption. Similar to this study,
some studies utilized captions that contained more low-
frequency words, such as ground-truth captions [64, 42] or
captions sampled from CE models [53]. Their models learn
to generate these captions in addition to the captions sam-
pled from RL models. However, these approaches still rely
on sampling from skewed policies and require retraining of
a model from scratch.
Long-Tail Classification has been studied extensively
in various tasks as label imbalance is prevalent across
datasets [78, 35]. In text-generation tasks, label imbal-
ance exists in the frequency of words. Previous approaches
have addressed the imbalance by normalizing classifier
weights [46, 49] or using variants of Focal loss [49, 18, 26,
, 37]. In contrast to these approaches, we adapted long-
tail classification to mitigate the side effects of RL in the
context of discriminative image captioning. Appendix 10
shows that our methods outperformed these approaches.

6. Conclusion

We have investigated the cause of overly generic cap-
tions of RL models and found out that RL decreases the
discriminativeness by limiting the output words to high-
frequency words. We propose the lightweight fine-tuning
methods to address the bottleneck directly and achieve sig-
nificantly higher discriminativeness with only the slight
modification on off-the-shelf RL models. Our identification
of the bottleneck and practical solutions will significantly
impact future research on discriminative image captioning.

As an additional practical advantage, our models can
control the granularity of descriptions from coarse to fine by
just switching the off-the-shelf/fine-tuned classifier param-
eters. In terms of broader impact, our methods can be eas-
ily applied to the RL models in other text generation tasks,
such as machine translation [71], summarization [47], and
dialogue generation [34] to enrich the output vocabulary.
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