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Abstract

While self-supervised learning has been shown to bene-
fit a number of vision tasks, existing techniques mainly fo-
cus on image-level manipulation, which may not generalize
well to downstream tasks at patch or pixel levels. Moreover,
existing SSL methods might not sufficiently describe and as-
sociate the above representations within and across image
scales. In this paper, we propose a Self-Supervised Pyra-
mid Representation Learning (SS-PRL) framework. The
proposed SS-PRL is designed to derive pyramid represen-
tations at patch levels via learning proper prototypes, with
additional learners to observe and relate inherent seman-
tic information within an image. In particular, we present
a cross-scale patch-level correlation learning in SS-PRL,
which allows the model to aggregate and associate infor-
mation learned across patch scales. We show that, with
our proposed SS-PRL for model pre-training, one can eas-
ily adapt and fine-tune the models for a variety of applica-
tions including multi-label classification, object detection,
and instance segmentation.

1. Introduction
To understand the complex relations in natural scenes

or explore rich information from an image, many real-
world visual recognition tasks (e.g., semantic scene clas-
sification [41], or medical diagnosis [1]) require the learned
model to predict more than one semantic label given a single
input image. The conventional single-label classification
methods mainly focus on assigning single class label to each
image without considering the multiple-object scenarios in
one image or handling the relations among distinct label se-
mantics. More particularly, the derived features are required
to describe the presence of multiple objects and semantic la-
bel dependencies in an image for tackling multi-label visual
analysis tasks. While existing [27, 32–34, 40, 43, 50, 52]
methods perform promising performance, they still acquire
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a large amount of multi-label annotated data for training.
Considering the labeling cost, collecting fully annotated
data for learning a model for multi-label tasks would be
computationally expensive.

To alleviate the huge burdens of collecting and annotat-
ing large-scale multi-label datasets, an effective approach is
to pre-train a general-purpose model in the self-supervised
learning (SSL) manner, followed by the fine-tuning process
to facilitate the learning of downstream tasks of interest.
Recent SSL pre-training approaches [3, 6, 9, 10, 14, 17,
19, 23, 30, 38] learn discriminative representations based
on image-level contrastive learning scheme, which pulls
the views from the same image together and pushes the
features from different images away. While such training
fashion significantly improves the performance on single-
label image classification, the above SSL methods are only
trained at image-level, which lacks the ability to describe
the multiple objects in an image. Hence, transferring the
learned knowledge from such SSL pre-trained models to
downstream multi-label visual analysis tasks remains un-
derexplored.

To perform pre-training for downstream multi-label
tasks, we aim at exploiting inherent semantic label depen-
dencies in a self-supervised manner. In this paper, we pro-
pose a unique self-supervised pyramid representation learn-
ing (SS-PRL) framework. Without observing any ground
truth labels at either image or object levels, our SS-PRL is
learned in a cross-scale patch-level SSL manner that derives
pyramid representations and semantic prototypes at patch
levels. This allows one to explore the presence of objects
and label dependencies in an image while leveraging the
correlation across multiple patch scales to associate and ag-
gregate the knowledge learned from different patch scales.

With the particular aim of exploiting fine-grained infor-
mation within an image for mimicking objects presented
at various scales, our proposed SS-PRL constructs multi-
ple branches to extract global image-level and local patch-
level features from the input image for learning the pyra-
mid representations and associated prototypes. These pro-
totypes are designed to serve as semantic cues for describ-
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ing label dependencies and thus are expected to improve
the model capability for downstream multi-label tasks (e.g.,
multi-label image classification, or object detection).

To further integrate the information from different patch-
level representations, we present cross-scale patch-level
correlation learning in SS-PRL. This enforces the corre-
spondence of output predictions from global image and
local patches, which guides the model to leverage multi-
grained information. To verify the effectiveness of our
SS-PRL for diverse downstream tasks, we consider multi-
label image classification, object detection, and segmen-
tation benchmarks in our experiments. We confirm that
our SS-PRL performs favorably against SOTA methods and
achieve promising performances.

The contributions of our work are highlighted below:

• To the best of our knowledge, we are among the first to
design pretext tasks in a self-supervised manner for fa-
cilitating downstream multi-label visual analysis tasks.

• We propose Self-Supervised Pyramid Representation
Learning (SS-PRL), deriving multi-scale patch-level
pyramid representations with semantic prototypes dis-
covered to exploit their inherent correlation.

• A unique cross-scale patch-level correlation is intro-
duced in our SS-PRL to leverage the learned knowl-
edge across multiple and distinct spatial scales, ensur-
ing sufficient representation ability of our model.

• In addition to a wide range of downstream tasks at ob-
ject instance and pixel levels, we qualitatively demon-
strate that the learned prototypes at different scales
would describe the associated visual concepts.

2. Related work
2.1. Multi-Label Image Classification

Multi-label image classification aims at assigning a set
of labels to each image. Due to the fact that pictures in ev-
eryday life are inherently multi-labeled and contain more
complex visual appearances and diverse label semantics,
multi-label visual analysis is more practical yet challeng-
ing compared with conventional single-label classification
tasks. Associating local image regions to labels has been
proven to be beneficial in multi-label classification since an
image is usually composed of objects with different scales
located in arbitrary regions. SRN [54] learns an attention
map that associates related image regions to each label in
order to portray the underlying spatial relation between se-
mantic labels. Gau et al. [18] improves the performance of
multi-label classification by introducing a consistency ob-
jective on visual attention regions under image transforma-
tions. In addition, Ridnik et al. [33] and Wu et al. [43]

propose asymmetric loss and distribution-balanced loss re-
spectively to mitigate the accuracy degradation from the
positive-negative imbalance. While promising, most exist-
ing works [18, 27, 32–34, 43, 54] generally learn the cor-
respondence between image regions and labels in a fully-
supervised fashion.

To mitigate the costly process of collecting and anno-
tating large-scale multi-labeled datasets, various settings
of multi-label classification with limited supervision have
been proposed. For example, multi-label learning with
missing labels [36] considers the case in which only a par-
tial set of labels is available; semi-supervised multi-label
classification [8] admits a few fully-labeled data and a large
amount of unlabeled data; partial multi-label learning [48]
discusses the setting that each instance is annotated with
a set of candidate labels. Different from the above set-
tings, we aim to tackle multi-label visual analysis in a self-
supervised fashion that pre-trains on unlabeled data while
only using a few labeled samples for further fine-tuning.

2.2. Self-Supervised Learning

Recently, self-supervised learning methods [2–4, 6, 7, 9–
11, 14, 16, 17, 19, 23, 24, 29, 30, 38, 39, 51] achieve
remarkable progress on single-label image classification
and narrow the performance gap compared with fully-
supervised counterparts. One group of SSL approaches
adopt the contrastive objective to perform instance discrim-
ination on a large amount of unlabeled data. For instance,
PIRL [29], SimCLR [9], and MoCo v1/v2 [10, 19] share
the same concept of pulling multiple views of an image
close while pushing different instances apart to derive the
compact yet discriminative representations. BYOL [17] and
SimSiam [11] claim that the use of asymmetry network
architecture and exponential moving average update strat-
egy are the crucial factors in preventing mode collapsing
when the training process only rely on positive pairs. Bar-
low Twins [51] tries to align the corresponding entities be-
tween the two embedded features from each positive pair by
Siamese network.

Another group of SSL works can be viewed as
clustering-based methods, which learn visual representa-
tions via pseudo-label prediction. DeepCluster [5] and
SeLa [2] apply k-means clustering and optimal transport re-
spectively to produce pseudo labels. In contrast to [2, 5],
SwAV [6] proposes an online clustering method that as-
signs the soft labels to the input image via the learned pro-
totype vectors. We note that the aforementioned SSL meth-
ods simply extract a single feature to represent an image
and thus do not handle the presence of multiple objects
from an image well. The ability to transfer the learned
knowledge from such pre-training tasks (i.e., image-level
contrastive learning or clustering) to downstream tasks with
multiple labels (e.g., semantic segmentation, object detec-
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Figure 1. Self-Supervised Pyramid Representation Learning. The input x is augmented into two pyramid views V = {Vs}Ss=0 and V ′ =
{V ′

s}Ss=0 with patch sets obtained at each scale. For scale s, we have fθ derive the pyramid representations Z, which are further transformed
into prototype-based representations P based on the learned/assigned prototypes Cs at that scale. With the prototype assignments Q
inferred from Z via S-K algorithm [12], we observe correlation between Q and the aggregated P across each scale via gϕ as cross-scale
patch-level self-supervision.

tion, or multi-label classification) remains challenging and
still underexplored.

To better finetune the pre-training models for facilitat-
ing downstream visual classification tasks, a number of
works [22, 28, 31, 35, 42, 45–47, 49, 53] design specific
pretext tasks which are consistent with the characteristics
of downstream tasks of interest. These methods are gener-
ally dedicated to constructing the pretext tasks that benefit
dense prediction like semantic segmentation, object detec-
tion, or keypoints detection. For example, DenseCL [42]
introduces a pairwise contrastive loss at the pixel-level fea-
tures between two views of an input image. DetCo [46]
jointly learns discriminative representations from global im-
ages and local patches via contrastive learning across multi-
ple scales and network layers. InsLoc [49] proposes a local-
ization pretext task with the contrastive loss by taking crops
of foreground images pasted onto different background im-
ages. MaskCo [53] contrasts region-level features with the
contrastive mask prediction task.

We note that, while [22, 28, 31, 35, 42, 46, 47, 49, 53]
integrate the local information into instance discrimination
scheme, they are not designed to observe the inherent re-
lations among objects and thus are sub-optimal for down-
stream multi-label visual analysis tasks. In this paper, we
design the pretext task for multi-label image classification
by deriving the pyramid representations across multiple
scales, producing multi-level semantic prototypes to exploit
the label relations from the observed training data.

3. Proposed Method
3.1. Problem Formulation

For the sake of completeness, we first define the prob-
lem setting considered in this work. Given an unlabeled
dataset Du = {x1, x2, ..., xN} of N images, we aim to
learn a feature extractor fθ on Du, facilitating downstream
tasks associated with multi-labels. As depicted in Fig. 1, we
present a Self-Supervised Pyramid Representation Learning
(SS-PRL) framework, which consists of a feature extractor
fθ and a cross-scale correlation learner gϕ = {gϕ,s}Ss=1 at
each patch scale s. We apply fθ to derive pyramid repre-
sentations Z from the pyramid of views V , which are then
transformed into prototype-based representations P based
on semantic prototypes Cs learned at each scale. To further
leverage multi-grained information from different scales,
cross-scale patch-level correlation is enforced between S-K
based prototype assignments Q and the aggregated P across
scales via gϕ. Once the learning is complete, one can apply
and fine-tune fθ for downstream tasks like multi-label im-
age classification, object detection, or segmentation.

3.2. Self-Supervised Pyramid Representation
Learning

As illustrated in Fig. 1, the framework of our proposed
Self-Supervised Pyramid Representation Learning contains
the stage of patch-based pyramid representation learning
and cross-scale patch-level correlation learning. The
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former is to derive pyramid representations via prototypes
learned at each patch level, aiming to handle the presence
of multiple objects while exploring the label dependencies
from unlabeled data. As for the latter stage, we further
associate and aggregate the learned knowledge across
different patch scales by enforcing the coherence between
the prediction of local patches and global images. We now
detail the designs for the above two stages below.

3.2.1 Learning of patch-based pyramid representation
As noted in Section 2.2, prior SSL works [2, 6, 9, 19, 29]
generally embed an image into a single feature and are not
designed for observing multiple objects presented in an im-
age. Hence, such derived models and representations can-
not be easily transferred to downstream multi-label visual
analysis tasks. To handle images with multi-objects/labels,
we derive pyramid representations at the patch level instead
of producing image-level features. This allows the model
to observe and capture more fine-grained information from
an image. In addition, our SS-PRL is designed to learn pro-
totypes at each patch level, which exploits potential label
dependencies in an unsupervised fashion.

As shown in Figure 1, we first build two pyramids
of views V = {Vs}Ss=0 and V ′ = {V ′

s}Ss=0, which
are generated with different augmentations from the
input image x. For each patch scale s, the image patch
group Vs = [vs,1, . . . , vs,Ms

] is produced by divid-
ing the image x into Ms non-overlapping patches and
randomly transforming each patch with data augmenta-
tions. Similar remarks can be applied to the derivation
of {V ′

s}Ss=0. To derive the patch-level pyramid rep-
resentations Zs = [zs,1, . . . , zs,Ms ] ∈ RD×Ms and
Z ′
s = [z′s,1, . . . , z

′
s,Ms

] ∈ RD×Ms , we feed the two
pyramid views {Vs}Ss=0 and {V ′

s}Ss=0 into feature extractor
fθ, which contains a shared backbone network and S + 1
independent projection heads corresponding to patch scale
s = 0, 1, ..., S.

Prototype-based self-supervised learning. With pyramid
representations Zs and Z ′

s obtained, we require our SS-PRL
to produce representations that are discriminative and be ca-
pable of capturing the inherent semantic dependencies ob-
served from training data, which is thus beneficial to down-
stream multi-labeled tasks. Inspired by [6], we learn a group
of patch-level semantic prototypes Cs ∈ RD×Ks at each
patch scale s (where Ks denotes the number of prototypes
at scale s) to mine and reflect the label semantics observed
from unlabeled training data. To allow the feature extractor
fθ and semantic prototypes Cs to be learned jointly in an
online fashion, we utilize the consistency between the prob-
ability distribution of zs,m and z′s,m as self-supervision [6].
To be more specific, such prototypes Cs can be viewed
as clustering centroids, and we then transform zs,m to

prototype-based representations Ps by assigning each rep-
resentation zs,m to prototypes Cs = [c1s, . . . , c

Ks
s ] at each

scale s. We derive the prototype-based representations
Ps = [ps,1, . . . , ps,Ms ] ∈ RKs×Ms from zs,m and Cs to
represent probability distribution as follows:

p⊤s,m = softmax (
1

τ
z⊤s,mCs), (1)

where τ is a temperature parameter as noted in [44].
However, simply aligning the prototype-based repre-

sentations Ps and P ′
s might lead to mode collapse prob-

lems [6]. To alleviate this issue, we further utilize the itera-
tive Sinkhorn-Knopp algorithm [12], denoted by S-K(·, ·),
to compute the prototype assignment vector qs,m =
S-K(zs,m, Cs) for two S-K based prototype assignments
Qs = [qs,1, . . . , qs,Ms

] and Q′
s = [q′s,1, . . . , q

′
s,Ms

], which
serve as the target of prediction by Ps. With the equal par-
tition property imposed by Sinkhorn-Knopp algorithm, the
consistency enforced between ps,m and q′s,m is capable of
alleviating the mode collapse problems [6]. As a result, the
objective for our pyramid representation learning Lpyr is
defined as:

Lpyr =

S∑
s=0

Ms∑
m=1

αs

Ms
(CE (q′s,m, ps,m) + CE (qs,m, p′s,m)),

(2)
where CE denotes the cross-entropy loss, and αs balances
each loss term at different patch scales s.

Although the above pyramid representations can be
learned without label supervision, self-supervision at each
scale is observed separately. As later verified in Table 4,
this would lack the ability to associate patch-level proto-
types across image scales and thus limit the downstream
classification tasks associated with multi-labels. This is
why the additional self-supervision across patch scales
needs to be enforced, as we introduce below.

3.2.2 Cross-scale patch-level correlation learning
As noted above, it would be desirable to train deep learn-
ing models which exploit semantic dependencies not only
at each patch scale but also discover such properties with in-
formation properly aggregated and leveraged across scales.
To achieve this goal and to benefit downstream multi-label
classification tasks, we uniquely observe the correlation ob-
served between the prototype/cluster assignments derived at
the coarsest image scale (i.e., Q0 or Q′

0) and the prototype-
based representations Ps aggregated at each scale s. With a
deployed cross-scale correlation learner gϕ, the above cor-
relation can be enforced and be served as cross-scale patch-
level self-supervision for training purposes.

More specifically, we perform average pooling across all
Ms representation vectors in Ps and P ′

s from level s, re-
sulting in µ(Ps) and µ(P ′

s), respectively. We then apply a
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Multi-Label Classification (mAP)

Pretrained on COCO Pretrained on ImageNet

Pre-training Method COCO VOC COCO VOC

Supervised 62.5 81.8 68.5 86.7

MoCo v2 [19] general-purpose
SSL

50.2 67.9 54.3 82.5
SwAV [6] 60.3 79.2 60.1 83.2
BYOL [17] 52.6 70.1 58.4 80.2

DenseCL [42]
dense prediction

SSL

57.0 75.2 60.5 82.9
DetCo [46] 52.7 70.6 60.0 81.3
MaskCo [53] 51.9 70.2 50.3 75.1
InsLoc[49] 45.0 61.8 49.5 74.8

SS-PRL (ours) 61.3 80.5 63.8 85.4

Table 1. Performance on multi-label classification tasks with fine-tuned linear classifiers on VOC and COCO. With the backbone
network (i.e. ResNet-50) pre-trained with different supervised/self-supervised methods, we report the mAP on COCO and VOC with
fine-tuned linear classifiers. All methods are pre-trained on COCO with 200 epochs or ImageNet with 100 epochs, respectively.

Multi-Label Classification on COCO (mAP)

Pretrained on COCO Pretrained on ImageNet

Pre-training Method
1%

labels
10%

labels
100%
labels

1%
labels

10%
labels

100%
labels

Random Init. 4.6 10.7 42.5 4.6 10.7 42.5

MoCo v2 [19] general-purpose
SSL

34.0 46.9 54.2 26.4 55.8 63.7
SwAV [6] 43.6 56.2 61.4 39.3 58.6 66.9
BYOL [17] 35.1 48.0 54.8 38.7 53.1 62.5

DenseCL [42]
dense prediction

SSL

42.9 54.8 62.2 43.4 59.4 65.8
DetCo [46] 32.0 48.3 54.7 37.9 56.2 62.7
MaskCo [53] 31.6 48.0 57.4 24.0 53.2 62.1
InsLoc[49] 29.0 43.9 53.5 36.1 56.6 66.5

SS-PRL (ours) 45.1 57.0 62.9 41.0 60.9 67.4

Table 2. Performance on multi-label classification tasks in semi-supervised settings on COCO. Methods listed are pre-trained on
COCO for 200 epochs or ImageNet for 100 epochs, respectively. Models are then fine-tuned on 1%, 10%, and 100% of labeled data
randomly chosen from COCO for 20 epochs. Note that, Random Init. denotes the model trained from scratch.

set of cross-scale correlation learners gϕ = {gϕ,s}Ss=1, one
for each scale, to project µ(Ps) and µ(P ′

s) onto the repre-
sentation space of p0 and p′0, i.e., at the global image level.
As a result, our cross-scale correlation loss Lcross can be
formulated as:

Lcross =

S∑
s=1

βs(CE (Q0, gϕ,s(µ(Ps)))+

CE (Q′
0, gϕ,s(µ(P

′
s))),

(3)

where CE is the cross-entropy loss, and βs balances cross-
scale correlation losses across different scales.

It is worth noting that, learning pyramid representations
for different patch-level scale pairs not only encourages the
feature extractor fθ to exploit the patch-level information
in an image, it also aggregates the fine-grained semantics
for matching the global ones (via gϕ) presented in an im-
age. As confirmed in our experiments, this self-supervised
learning strategy allows us to fine-tune fθ for downstream
tasks associated with multi-labeled images.

3.3. Pre-Training and Fine-Tuning Stages

Self-supervised pre-training of fθ and gϕ. Overall, the
full objective function L for pre-training feature extractor

fθ and the cross-scale correlation learner gϕ can be summa-
rized below:

L = Lpyr + λLcross, (4)

where λ acts as the weight to balance the two terms, and
is set as 1.0 throughout our work. On the other hand,
we select the same values for αs and βs in (2) and (3)
for simplicity (we set these hyperparameters as 1.0 for
s = 0 and 0.25 for other scales to balance the influence
of different levels). The effectiveness of each loss is later
confirmed by the ablation study in Section 4.3, and the
pseudo-code is summarized in the supplementary material.

Supervised fine-tuning for fθ. Once the feature extractor
fθ is pre-trained via our proposed SS-PRL, we then fine-
tune it to downstream tasks associated with multi-label im-
ages in a supervised fashion. For example, as presented in
Section 4, we adapt the pre-trained fθ (e.g., with the archi-
tecture as ResNet-50 [21]) to multi-label image classifica-
tion, object detection, and segmentation tasks using differ-
ent amounts of images with ground truth annotation. Please
see the next section for the thorough experiments on these
tasks and comparisons to state-of-the-art SSL methods.
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Mask R-CNN R50-FPN COCO 15k

Pretrained on COCO Pretrained on ImageNet

Method APbb APbb
50 APbb

75 APmk APmk
50 APmk

75 APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

Random Init. 11.5 21.3 11.3 10.8 19.7 10.7 11.5 21.3 11.3 10.8 19.7 10.7

MoCo v2 [19] general-purpose
SSL

17.0 30.6 17.2 15.9 28.4 15.9 21.1 36.7 21.8 19.9 34.4 20.4
SwAV [6] 18.1 33.7 17.6 17.3 31.5 17.1 23.1 41.2 23.4 22.1 38.6 22.5
BYOL [17] 17.4 31.5 17.4 16.2 29.2 16.1 21.4 37.5 22.1 20.1 35.1 20.6

DenseCL [42]
dense prediction

SSL

20.2 35.4 20.8 18.9 33.0 19.3 21.9 38.0 22.9 20.7 35.8 21.3
DetCo [46] 15.6 29.7 14.8 14.8 27.3 14.4 20.9 38.1 20.9 19.9 35.3 19.9
MaskCo [53] 18.5 32.9 18.7 17.3 30.7 17.4 20.6 35.6 21.5 19.5 33.4 20.0
InsLoc [49] 17.5 31.5 17.6 16.5 29.3 16.6 23.5 40.5 24.7 22.2 38.1 22.9

SS-PRL (ours) 20.2 36.7 20.2 19.1 34.3 19.0 23.6 42.5 24.0 22.7 39.7 23.1

Table 3. Downstream object detection and instance segmentation tasks on COCO. We report the bounding box AP (APbb) for object
detection and the mask AP (APmk) for instance segmentation on COCO. All methods are pre-trained on COCO for 200 epochs or ImageNet
for 100 epochs and then fine-tuned for the above tasks on COCO for 15k iterations. Note that Random Init. denotes the detector trained
from scratch (i.e. the encoder is randomly initialized without any pre-training). The best results in each category are in bold, and the
second-best ones are underlined.

Prototype mAP

Baseline 79.2

Shared across all scales 79.4
Learned & correlated across scales 80.5

Method mAP

Baseline 79.2

SS-PRL w/ Lpyr only 79.5
SS-PRL w/ Lcross only 79.8

Full SS-PRL (Lpyr + Lcross) 80.5

Table 4. Ablation Studies on the derived patch-level proto-
types (top) and the proposed loss functions (down). Note that
Shared across all scales indicates the same prototypes learned
across patch scales (i.e., same Cs at different patch scales in
Fig. 1). We see that prototypes learned from each scale and en-
forced by our cross-scale correlation would be desirable. And,
SS-PRL achieves the best results when both Lpyr and Lcross are
introduced.

4. Experiments

4.1. Datasets and Experimental Setups

Pre-training Dataset. We consider MSCOCO [26]
and ImageNet [13]. For MSCOCO [26],
COCO train2014 [26], which contains ∼83k images,
is used for SSL pre-training, and we train all methods for
200 epochs with a batch size of 128. As for ImageNet [13],
we utilize the training set with ∼1.28M training images for
SSL pre-training, and train methods for 100 epochs with a
batch size of 256. Our image pyramids contain three patch
scales (i.e., s = 0, 1, 2) in all experiments. The patch sets
consist of 4 patches (M1 = 4) at scale s = 1 and 9 patches
(M2 = 9) at scale s = 2. Further training details such as
data generation and hyperparameter selection are provided
in our supplementary material.

Evaluation protocol. We evaluate the pre-trained mod-

els by fine-tuning on downstream multi-label classifi-
cation, object detection, and segmentation tasks using
MSCOCO train2014 [26] and PASCAL VOC [15]. For
multi-label classification task, we follow the linear evalua-
tion setting [29] to train a linear multi-label classifier on top
of the fixed pre-trained backbone network (e.g., Resnet-50)
on COCO train2014 [26] and VOC trainval07 [15],
and then report mean average precision (mAP) on COCO
val2014 [26] and VOC test2007 [15]. We also follow
the semi-supervised setting and randomly sample 1%, 10%,
and 100% labeled data from COCO train2014 [26]
(which is ∼0.8k, ∼8k, and ∼83k images) to fine-tune the
whole network for 20 epochs, and then report mAP on
COCO val2014 [26].

As for object detection and instance segmentation tasks,
we pre-train and fine-tune a Mask R-CNN [20] detector
with FPN [25] backbone on COCO train2014 [26] and
evaluating on COCO val2014 [26]. Note that, synchro-
nized batch normalization is applied in the backbone net-
work, FPN, and prediction heads during training. We report
the results of detectors with 15k training iterations to com-
pare the transfer ability of each SSL pre-training method.
Due to page limitations, we provide quantitative compar-
isons on the downstream semantic segmentation task in our
supplementary material.

4.2. Quantitative Evaluation

Multi-label classification with fine-tuned linear clas-
sifiers. We first perform downstream multi-label image
classification with fine-tuned linear classifiers and compare
our results with existing general-purpose [6, 17, 19] and
dense prediction based [42, 46, 49, 53] self-supervised
learning methods on two commonly-used public bench-
marks, COCO train2014 [26] and VOC [15]. In Table 1,
we observe that our SS-PRL outperforms state-of-the-art
SSL approaches on multi-label classification benchmarks
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(a) Image Level (Scale 0) (b) Patch Level (Scale 2)

Figure 2. t-SNE visualization of the learned prototypes on COCO. We visualize the learned prototype at the corresponding scale, with
selected images associated with each prototype illustrated. (a) At scale s = 0, nearby prototypes show similar semantic meanings of scenes
(e.g. snowfield). (b) At scale s = 2, nearby prototypes are semantically related object-level information (e.g., cars).

when pre-trained on COCO dataset [26]. Moreover,
SS-PRL surpasses all SSL methods by a significant margin
when pre-trained on ImageNet [13] by obtaining 63.8%
and 85.4% mAP on COCO [26] and VOC [15], respec-
tively. With the proposed pyramid representation learning,
we are able to obtain better results than previous SSL
methods [6, 17, 19] that are not designed to handle patch
or object-level information. It can be seen that our method
also outperforms SSL methods that integrate local informa-
tion for exploiting data discrimination [42, 46, 49, 53] with
large margins.

Multi-label classification in semi-supervised settings.
Table 2 compares SS-PRL results with previous SSL
methods in the semi-supervised settings of multi-label
classification by sampling 1% and 10% labeled data.
SS-PRL significantly improves over the state-of-the-art
in most settings, showing the prowess when transferred
to datasets with limited annotation. We also provide
results when fine-tuned with 100% labeled data, where
we outperform the randomly initialized model by 20.4%
and 24.9% mAP. From this experiment, the effectiveness
of our model for multi-label image classification can be
successfully confirmed.

Object detection and instance segmentation. The re-
sults of object detection and instance segmentation tasks
on COCO [26] with 15k training iterations are reported
in Table 3. SS-PRL outperforms existing general-purpose
SSL methods and achieves comparable or even better re-
sults with dense prediction based SSL methods when pre-
trained on both COCO [26] and ImageNet [13]. The above
results exhibit the impressive ability of SS-PRL for down-
stream dense prediction tasks at object or instance levels.

4.3. Ablation Study

We now conduct ablation studies and parameter analysis
to better understand how each component of SS-PRL
contributes to the overall performance in downstream
multi-label classification tasks. We pre-train models on the
COCO [26] dataset and report the mAP on VOC [15] for
evaluation. We adopt SS-PRL trained with global images
only (i.e., s = 0) as our baseline.

Learning of patch-level prototypes. The patch-level pro-
totypes Cs introduced in Section 3.2 provide semantic cues
of inherited label dependencies observed in training data,
and ensure the feature extractor fθ to exploit meaningful
regional information at each patch scale from an image. In
Table 4, we report the linear evaluation results of SS-PRL
trained with prototypes Cs learned within and across scales
s. It can be seen that mAP drops by 1.1% when prototypes
are shared across different scales. This indicates that the
prototypes at different patch scales capture the hierarchical
semantic/label dependencies of the dataset that is crucial to
the downstream tasks with multi-labeled data. Additional
visualization for such learned prototype sets will be shown
in Figure 2, 3 and discussed in Section 4.4.

Loss functions. To analyze the effectiveness of each devel-
oped loss function (i.e., the pyramid representation learning
loss Lpyr and the cross-scale correlation loss Lcross), we
conduct an ablation study on the VOC dataset [15]. Table 4
reports the performance of multi-label image classification
tasks using linear evaluation protocol. We observe limited
performance improvement (+0.3%) when the model is only
trained with the pyramid loss Lpyr. This is due to the fact
that the objectives enforced at each scale are not guaranteed
to be mutually related, restricting the discriminative capa-
bility. When cross-scale correlation loss Lcross is included,
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Top-3 Predicted
Patch-Level Prototypes

Image-Level Prototype

Figure 3. Correlation between prototypes across different levels. We randomly choose an image-level (scale 0) prototype from COCO
(marked in green) and visualize its top-3 corresponding patch-level prototype predictions at scale 2 (marked in red, yellow and black). With
examples of the three selected patch-level prototypes shown at the bottom row, we observe that the patch-level prototypes distinctively
represent fine-grained visual concepts which are related to those of the image-level prototypes.

we observe the performance boosts up 0.6% mAP compared
to the baseline. This indicates the importance of exploring
the correspondence of pyramid features across each level to
derive discriminative yet coherent representations. The best
results (+1.3%) are obtained by our full SS-PRL which con-
siders both Lpyr and Lcross, exploiting semantic concepts
and correspondence within and across patch scales.

4.4. Visualization

Prototypes learned at each scale. To further visualize and
relate the prototypes learned at different scales, we visu-
alize the learned global image-level and local patch-level
prototypes using t-SNE [37] and show example results in
Figures 2 (a) and (b), respectively. In both cases, nearby
prototypes show semantically related visual concepts com-
pared to prototypes far apart. At the image level (a), nearby
prototypes share similar semantics of scenes (e.g. skiing and
snowboarding). At the patch level (b), prototypes close to
each other show related semantic concepts of objects (e.g.
two different parts of a car). On the contrary, two prototypes
far apart represent different semantic meanings at both lev-
els (e.g. snowfield vs. grassland and cars vs. ocean). This
demonstrates that our method would be able to discover se-
mantic dependencies at different patch scales.

Dependency of prototypes across different levels. Fi-
nally, we visualize the correlation dependency between an
image-level prototype and the associated patch-level pro-
totypes in Figure 3. Specifically, we divide all the im-
ages from a randomly chosen image-level prototype into
patches and generate their corresponding patch-level proto-
type predictions by SS-PRL. All the results of predictions
are counted and the top-3 patch-level prototypes that are
most frequently predicted will be visualized. The patch-

level prototypes correspond to three different iconic ele-
ments (i.e., fields, audience, and players) that further mine
the fine-grained semantics from the image-level prototype
(i.e., baseball games), showing the semantic correspon-
dence of predictions across image and patch levels.

5. Conclusion

In this paper, we presented Self-Supervised Pyramid
Representation Learning (SS-PRL) for pre-training deep
neural networks, with the goal to facilitate downstream vi-
sion tasks at object, instance, or pixel levels. By deriv-
ing pyramid representations and learning prototypes at each
patch level, our SS-PRL is able to exploit the inherent se-
mantic information within and across image scales via self-
supervision. This is achieved by our introduced cross-scale
patch-level correlation learning, which aggregates and as-
sociates the knowledge across different scales, observing
and enforcing the dependency between pyramid represen-
tations across patch levels. We conduct a wide range of ex-
periments, including the tasks of multi-label image classifi-
cation, object detection, and instance segmentation, which
support the use of our SS-PRL as a desirable pre-training
strategy. With visualization of the learned representations
and ablation studies, the design of the proposed SS-PRL
can be properly verified.

Acknowledgement This work is supported in part by the
Ministry of Science and Technology of Taiwan under grants
MOST 110-2634-F-002-052. We also thank to National
Center for High-performance Computing (NCHC) for pro-
viding computational and storage resources.

2703



References
[1] Qaisar Abbas, M Emre Celebi, Carmen Serrano, Irene Fon-

don Garcia, and Guangzhi Ma. Pattern classification of der-
moscopy images: A perceptually uniform model. Pattern
Recognition, 46(1):86–97, 2013.

[2] Yuki M. Asano, Christian Rupprecht, and Andrea Vedaldi.
Self-labelling via simultaneous clustering and representation
learning. In International Conference on Learning Repre-
sentations (ICLR), 2020.

[3] Philip Bachman, R Devon Hjelm, and William Buchwalter.
Learning representations by maximizing mutual information
across views. Advances in neural information processing
systems, 32, 2019.

[4] Adrien Bardes, Jean Ponce, and Yann LeCun. Vi-
creg: Variance-invariance-covariance regularization for self-
supervised learning. arXiv preprint arXiv:2105.04906, 2021.

[5] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. Deep clustering for unsupervised learning
of visual features. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 132–149, 2018.

[6] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. 2020.

[7] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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