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Abstract

This paper proposes a self-supervised learned local
detector and descriptor, called EventPoint, for event
stream/camera tracking and registration. Event-based cam-
eras have grown in popularity because of their biological
inspiration and low power consumption. Despite this, ap-
plying local features directly to the event stream is difficult
due to its peculiar data structure. We propose a new time-
surface-like event stream representation method called Ten-
code. The event stream data processed by Tencode can ob-
tain the pixel-level positioning of interest points while also
simultaneously extracting descriptors through a neural net-
work. Instead of using costly and unreliable manual an-
notation, our network leverages the prior knowledge of lo-
cal feature extraction on color images and conducts self-
supervised learning via homographic and spatio-temporal
adaptation. To the best of our knowledge, our proposed
method is the first research on event-based local features
learning using a deep neural network. We provide compre-
hensive experiments of feature point detection and match-
ing, and three public datasets are used for evaluation (i.e.
DSEC, N-Caltech101, and HVGA ATIS Corner Dataset).
The experimental findings demonstrate that our method out-
performs SOTA in terms of feature point detection and de-
scription.

1. Introduction
In comparison with conventional standard frame-based

cameras, the bio-inspired event camera offers significant ad-
vantages of microsecond temporal resolution, low latency,
very high dynamic range, and low power consumption.
These revolutionary features enable some new robotics ap-
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plications in extremely challenging conditions, e.g. in low-
illumination scenarios and high-speed flying robot applica-
tions. The event-based cameras, e.g. DVS [20], Davis [5]
and ATIS [28] can capture the event points in the corre-
sponding pixel position when sensing the pixel brightness
changes over a temporal resolution. More precisely, the
event camera asynchronously measures changes in bright-
ness of each pixel within a certain threshold in a high dy-
namic range from 60 dB to 140 dB. The sign of events
(positive or negative) is also known as polarity.

Although event-based cameras have numerous advan-
tages, dealing with some standard computer vision tasks di-
rectly on the event stream, e.g. local feature extraction, is
challenging due to the spatio-temporal data structure. Local
feature detection and representation [27], is the core tech-
nology for a variety of applications, e.g. visual odometry,
place recognition, 3D reconstruction, etc. The image-based
local feature extraction and description can be grouped into
hand-crafted [22, 6, 32] and deep-learned [9, 40, 13, 35, 31]
methods. Compared to hand-crafted features, the deep-
learned features demonstrate significant advances in terms
of performance on several benchmarks [34, 18].

Local feature extraction methods on image data cannot
be applied to event-based data straightforwardly due to the
domain variance between the traditional image and event-
based data. Furthermore, the great sensitivity of the event
camera creates a lot of noise, making the work more chal-
lenging [2, 39]. Some recent research [38, 24, 1, 23, 4]
explore the corner points detection on the event stream.
However, most of them only include interest point detec-
tion without describing the detected feature points due to
the monotonic event-based data structure. Some further
event-based local descriptor methods [30, 11] are evaluated
using the toy or simulated event data, while the effective-
ness, and robustness in large-scale realistic scenes have not
been verified. Additionally, the existing methods are hand-
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crafted rather than deep-learned, which shows weakness in
noise filtering, semantic-level understanding and adaptation
of sensing data and hyper-parameters.

To overcome the limitations above, our research makes
the following contributions:

• We propose a deep-learning-based local detector
and descriptor, i.e., EventPoint, tailored for event
stream/camera.

• We propose a simple but effective events representa-
tion method, called Tencode, which significantly facil-
itates the feature point’s representation learning.

• Our approach is delicately designed to learn spatio-
temporal and homography invariant local descriptors
in a self-supervised way without extra human annota-
tions.

• We conduct a comprehensive evaluation in terms of
feature detecting and feature matching on three differ-
ent public benchmarks, and the experimental results
show that our approach is superior to existing meth-
ods.

2. Related Work

2.1. Local Feature on Image Data

The hand-craft-based local features [22, 3, 33] are well-
studied and are still the priority in real industrial applica-
tions.

Recently, the emerging deep-learned-based local fea-
tures have become the dominating steam of methods.
LIFT [40] is an early-stage work that firstly investigates the
use of CNN to extract local features with a full pipeline of
detection, orientation estimation, and feature description in
a unified manner. A lightweight deep-learned local descrip-
tor, SuperPoint [13] proposes a self-supervised learning
method using pseudo-ground-truth correspondences gener-
ated by homographic transformation. It designs a dual-head
network for interested point detection and description sep-
arately. Unsuperpoint [10] proposes a siamese network to
learn the detector and descriptor, the interest points’ posi-
tions are learned in a regression manner. R2D2 [31] learns
both keypoint repeatability and a confidence for interest
points reliability from relevant training data, where style
transfer method is used to increase robustness against dy-
namic illumination change such as day-night. By leverag-
ing implicit semantic understanding, the learning-based lo-
cal features [40, 13, 10, 31] show extraordinary advances
in dealing with long-term variation in real-world condi-
tions [34, 18].

2.2. Local Feature on Event-based Data

Recently, the event-based local feature has been attract-
ing a lot of attention from the computer vision community.
EvFast [24] employs the FAST corner point detection [37]
to select the interesting event points via timestamp differ-
ence. EvHarris [38] transforms the raw event stream to a
Time-surface [4] representation, and further detects inter-
esting points by Harris corner detector [12]. A more ef-
ficient Harris corner detector [17] on event-stream is de-
signed by tuning throughout of Time-surface and refactor-
ing the conventional Harris algorithm. In [23], a random
forest is employed to extract corner interesting point, and,
Speed-invariant Time-surface feature is used for training.
The above methods only achieve event-based local feature
detection, however, local feature description is not consid-
ered. DART [30] uses the log-polar grid of the event camera
to encode the structure context to describe the interesting
points. Currently, most of the event-based local features
require elaborate human design, which shows limited abil-
ity to handle complex situations such as significant motion
changes or high-speed motion. Most recent research [23]
learns a local feature from the event data stream, but a large-
scale human annotation is required.

3. Methodology
An overview of our method is given in Fig. 1.

3.1. Event Stream Representation

Event-stream data consists of four dimensional informa-
tion (x, y, t, p), where x, y are the event’s location, t for the
timestamp, and p for the event’s polarity. The mainstream
event stream representation methods can be grouped into
two categories, i.e., Time-window-based representation and
Time-surface-based representation.

Time-window-based methods use a constant temporal
resolution ∆t, then accumulate all events under a time win-
dow (T, T + ∆t) to generate a single frame representation
F .

F [x, y] = p← (x, y, t, p), (1)

Time-window-based representation mainly considers the
polarity of events but ignores the timestamp information.
i.e., the asynchrony of event-based data, which is frequently
used in global feature extraction or multi-modality fusion.
The Time-surface-based representation [4] transforms the
spatio-temporal event stream into a frame-like representa-
tion F by normalizing the timestamps, however the events’
polarity is ignored.

F [x, y] = t← (x, y, t, p). (2)

Time-surface is widely-used in tasks that require accurate
local information.
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Figure 1. Overview of our proposed method: (a) event camera captures asynchronous event stream with binary polarity; (b) the event
stream is sliced temporally and represented via Tencode; (c) spatio-temporal adaptation is used to generate the supervisory signal required
for neural network training; (d) EventPoint uses SuperPoint-like architecture for local feature extraction; (e) two decoder heads, i.e. detector
head and descriptor head, are trained separately in our proposed self-supervised manner.

Figure 2. Visualization of different event-stream representation
methods. A local patch of a corner is shown as an example:
(a) In a raw event stream, the corner point experiences a sudden
change over timestamps; (b) Time-window-based representation
maps events into a fixed temporal resolution to a single frame
and only the polarity is presented (it ignores the magnitude of the
time difference within this time window); (c) Time-surface-based
representation captures the gradient of time information for each
event, but either ignores the polarity or handles different polari-
ties separately; (d) The proposed Tencode representation considers
both the polarity and the gradient of timestamp.

Instead, we propose a new representation, named Ten-
code, taking both polarities and timestamps of event steam
into account. Firstly, a maximum temporal resolution ∆t
is defined to discretize the continuous events to separate

frames. Then, all events falling in this temporal window
will be mapped into a frame F according to polarity and
timestamp information by,

F [x, y] = (255,
255 ∗ (tmax − t)

∆t
, 0)← (x, y, t,+1),

F [x, y] = (0,
255 ∗ (tmax − t)

∆t
, 255)← (x, y, t,−1),

(3)
where tmax represents the timestamp of the latest event in
the temporal resolution [tmax − ∆t, tmax], and +1, −1
are positive and negative events respectively. The three-
dimensional vector F [x, y] refers to the per-pixel informa-
tion of the mapped frame F at location [x, y]. Following the
expression of Time-window [7], we set the first and third
dimensions of the channel information to 255 or 0. Specif-
ically, 255 for the first channel and 0 for the third channel
when dealing with events with positive polarity, similarly,
0 for the first channel and 255 for the third channel when
dealing with events with negative polarity. Fig. 2 visual-
izes the two mainstream event stream representation meth-
ods (i.e. Time-surface and Time-window) and the proposed
Tencode.

3.2. The Neural Network Input

Given a visual landmark that appears during a small tem-
poral resolution [T c

s , T
c
e ], we believe that any reasonable

segment of the event stream Ev within this temporal reso-
lution can consistently detect the feature point and describe
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it,
Ev[T 1

s , T
1
e ] ≡ Ev[T 2

s , T
2
e ], (4)

where Ev[Tn
s , T

n
e ] refers to whole events with timestamps

greater than Tn
s and less than Tn

e . The constraint for this
formula to hold is, δmax > T i

e − T i
s > δmin, T i

e <= T c
e ,

and T i
s >= T c

s . We name this equivalence property the
spatio-temporal consistency of the event stream. δmax and
δmin are the maximum duration and the minimum dura-
tion to hold the spatio-temporal consistency hypothesis. We
need this lower-bound to guarantee sufficient events accu-
mulated to detect and describe the local feature. While the
upper-bound eliminates the random walk of the absence of
the local descriptors. The purpose of our method is to use a
network to learn the spatio-temporal invariant feature point
positions and descriptions given the above consistency hy-
pothesis. The physical meaning of this hypothesis is to
achieve the speed-invariant representation of landmarks in
the real world.

Based on the above assumption, we used Tencode to
generate 3 event frames using different temporal resolu-
tions as the neural network inputs. For each base times-
tamp tbase, we choose a temporal resolution ∆t and get
the latest event’s timestamp tmax in the temporal window
[tbase−∆t/2, tbase+∆t/2]. The events in 3 different tem-
poral resolutions are further mapped via Tencode with pa-
rameter tmax and ∆t:

Ev[tbase −
∆th

2
, tbase +

∆th

2
]

Tencode−−−−−→Fh,

Ev[tbase −
∆tm

2
, tbase +

∆tm

2
]

Tencode−−−−−→Fm,

Ev[tbase −
∆tl

2
, tbase +

∆tl

2
]

Tencode−−−−−→Fl,

(5)

where ∆tl < ∆tm < ∆th. As shown in Fig.2 (d), for
the same patch, Tencode encodings of different temporal
resolutions are distinct. We leverage the neural network to
learn invariant representations over these distinct Tencode
encodings.

3.3. EventPoint Network Architecture

We employ the SuperPoint-like [13] architecture con-
sisting of a shared encoder and two heads, i.e., interest
point detection and description. The detailed architecture
of the network is provided in Tab.1. The VGG-style [36]
encoder transforms the gray-scale Tencode representation
F ∈ ℜH∗W to a low-resolution and high-dimensional fea-
ture map f ∈ ℜH/8∗W/8∗128. Then the feature map is fed
into two heads: one for interest points detection and the
other one for description. The interest point detector head
outputs a heatmap h ∈ ℜH/8∗W/8∗65 to give the probability
of that pixel laying in an 8 ∗ 8+ 1 sized bin via a Softmax
function. The last channel value represents whether the bin

Table 1. Detailed EventPoint Architecture
Encoder

1a ReLU(Conv2d(1,64))
1b ReLU(Conv2d(64,64))

MaxPool2d(kernel size=2, stride=2)
2a ReLU(Conv2d(64,64))
2b ReLU(Conv2d(64,64))

MaxPool2d(kernel size=2, stride=2)
3a ReLU(Conv2d(64,128))
3b ReLU(Conv2d(128,128))

MaxPool2d(kernel size=2, stride=2)
4a ReLU(Conv2d(128,128))
4b ReLU(Conv2d(128,128))

Detector head Descriptor head
cPa Conv2d(128,256) dDa Conv2d(128,256)

ReLU ReLU
semi Conv2d(256,65) desc Conv2d(256,256)

presences a feature points or not. The heatmap h will be
further restored to the original size through the Reshape
operation,

h ∈ ℜH/8∗W/8∗65 Softmax−−−−−−→
65

Reshape−−−−−→ hout ∈ ℜH∗W . (6)

The point’s probability larger than a certain threshold τ is
regarded as interest points. The description head firstly out-
puts a dense grid of descriptors d ∈ ℜH/8∗W/8∗128, and
then obtain a dense descriptor of the same size of the origi-
nal frame through bi-cubic interpolation:

d ∈ ℜH/8∗W/8∗128 bi−cubic−−−−−→ dout ∈ ℜH∗W∗128. (7)

No deconvolution operation is used to guarantee the real-
time performance. In order to transferring the learned
weights from pretained model, we use the same architecture
with SuperPoint. We further train the detector and descrip-
tor via the spatio-temporal correspondences.

3.4. EventPoint Network Training

3.4.1 Detector Learning

As mentioned in Sec 3.2, we have 3 Tencode frames Fh,
Fm, and Fl as inputs of the network. In the detector learn-
ing step, the interest point position is firstly obtained by
the detector of a pretrained SuperPoint on Fl with the low-
est temporal resolution. Then more pseudo-label label ∈
ℜH/8∗W/8∗65 of interest point position is generated via ho-
mographic adaptation [13]. To guide the detector training
more effectively, we set predictions, of which probabilities
are greater than a certain threshold τ , as 1 (positive labels)
and other values to 0 (negative labels). The detector learn-
ing pipeline is shown in Fig. 3.

Since the number of detected interest points is much
smaller than that of non-interest points, different from Su-

5399



perPoint, we employ focal loss [21] rather than cross-
entropy loss to balance the training examples. The de-
tection loss Losskp is defined as:

Losskp =
∑

t=h,m,l

wtlp(Softmax(ht), label), (8)

where wt refers to scale weights, and ht refers to the
heatmaps generated through detector head of each Tencode
frame input. The detailed lp can be described as:

lp =
1

65HcWc

Hc∑
i=1

Wc∑
j=1

65∑
k=1

Focal(hijk, labelijk), (9)

where Hc and Wc are 1/8 of the height and width of the
original image resolution and the focal loss can be described
as:

Focal(℘,ℸ) =
{
α(1− ℘)γ ln(1− ℘) ℸ = 1
(1− α)(℘)γ ln(℘) ℸ = 0

(10)

where ℘ refers to the predict label, ℸ refers to pseudo-
label, α and γ are hyper-parameters used to balance
loss [21].

Figure 3. Spatio-temporal-based self-supervised detector
learning: we initially apply homographic adaptations to automati-
cally annotate Fl using SuperPoint’s pretrained detector. Then, the
inconsistency between the results of input and label is penalized.

3.4.2 Descriptor Learning

After training the detector head, the descriptor head is fur-
ther trained based on the detected interest points. Firstly, the
spatio-temporal correspondences of interest points between
the Tencode frame triplets are defined as:

si
′j′

ij =

{
1, L2(ij, i

′j′) < ϵ
0, otherwise

(11)

Given an interest point position (ih, jh) in Fh and another
one (il, jl) in Fl. If the Euclidean distance between (ih, jh)
and (il, jl) is less than a distance threshold ϵ, we regard

them as the correspond points, vice versa. The descriptor
learning pipeline is shown in Fig. 4.

The Hinge-style loss is employed for the descriptor
training:

Lossdesc =
∑

t1,t2=h,m,l

wtldesc(dt1 , dt2), (12)

where wt refers to scale weights, and dt refers to the fea-
ture map of descriptors generated through descriptor head
of each Tencode frame input. The detailed ldesc can be de-
scribed as:

ldesc =

1

(HcWc)
2

Hc,Wc∑
i,j=1

Hc,Wc∑
i′,j′=1

ld(d
ij
t1 , d

i′j′

t2 ; si
′j′

ij ),
(13)

where Hc and Wc are 1/8 of the height and width of the
original image. And ld is defined as:

ld(d, d
′
; s) =λ ∗ s ∗max(0,mp − dT d′)

+ (1− s) ∗max(0, dT d′ −mn),
(14)

where mp and mn refers to positive and negative margins
respectively. λ is used to balance the potential number of
negative and positive correspondences.

4. Experiments
We evaluate the EventPoint comparing with baselines in

local feature detecting and matching tasks on three pub-
lic datasets, i.e., DSEC [15, 16], N-Caltech101 [25] and
HVGA ATIS Corner Dataset [23].

4.1. Network Training Details

EventPoint is trained under two event stream represen-
tation methods as shown in Fig. 2(b), and Fig. 2(d), and
distinguished by EventPoint and EventPoint− T iden-
tification. The basic model is trained on the DSEC dataset.
During training, ∆th and ∆tm are randomly generated in
a fixed temporal resolution, 50ms ⩾ ∆th ⩾ 35ms ,
35ms ⩾ ∆tm ⩾ 20ms, and ∆tl is set to 20ms. In the
detection loss function, τ is set to 0.005. The points with a
value greater than 0.005 in the heatmap are regarded as in-
terest points in training and 0.015 in testing. The parameters
α and γ in focal loss are set to 0.75 and 2.0, respectively.
The weights wh,m,l in the loss function is set to 0.5, 0.5 and
1.0 respectively. The distance threshold ϵ is set to 8. The
value of λ used to balance in descriptor loss is 0.001. The
positive margin mp and negative margin mn are set to 1 and
0.2 respectively.

The network is implemented under PyTorch [26] frame-
work. It is trained with batch sizes of 8 and each batch
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Figure 4. Spatio-temporal-based self-supervised descriptor training: the association of detected interest point is decided according to
their locations. Then the network learns to make the descriptor distance of correspondence pairs closer and that of non-correspondence
pairs farther.

contains 3 event frames. The SGD solver with default pa-
rameters of lr = 0.001 is used during training. The input
size is cropped to 320 ∗ 240 for the network training. Dur-
ing inferring, the size is set to 640 ∗ 480 on the DSEC and
HVGA ATIS Corner datasets. But the size is set to 320∗240
when dealing with the N-Caltech101 dataset because of its
low resolution. The detector and descriptor branches are
trained for around 10 epochs respectively.

For the run-time performance, the EventPoint takes
about 0.1s to load the network and about 0.02s to pro-
cess a single picture on an Intel(R) Core(TM) i9-9900KF
CPU which achieves real-time performance similar to Su-
perPoint.

Figure 5. Iterative detector training: with the help of detector
training, EventPoint can find more clear and more accurate interest
points. Red dots represent the value greater than threshold τ in
heatmaps. The red dots, i.e., interest points changes from large
patches to stable positions gradually.

4.2. Datasets Details

The DSEC [15, 16] dataset provides a set of sensory data
in demanding illumination conditions. Moreover, DSEC
also provides the high resolution and large-scale stereo
event camera dataset. It contains 53 sequences collected by
driving in a variety of illumination conditions and provides
ground-truth disparity map for the evaluation of event-based
stereo algorithms.

The N-Caltech101 dataset [25] is the event format of the
Caltech101 dataset [14]. It consists of 101 object categories,
each with a different number of samples ranging from 31
to 800. We followed the standard experimental setting of
the dataset [19] and [29], which conducts feature matching
evaluation by IOU matching score on up to 50 images in
each category.

The HVGA ATIS Corner Dataset [23] is composed of 7
sequences of planar scenes acquired with an HVGA event
sensor. We use the same evaluation metrics used in [23, 8],
i.e., the reprojection error which is computed by estimating
a homography from two different timestamps.

4.3. Ablation Study on DSEC

DSEC provides disparity maps corresponding to event
frames under 50ms temporal resolution in urban-driving
scenes. We selected several sequences with different bright-
ness conditions to evaluate local feature matching quality
via disparity map as a ablation study. The brightness con-
ditions are directly related to the density of events and the
number of noise. In the DSEC dataset, the number of events
and noise in a dark environment is much more than that with
better lighting conditions.

The value d of (x, y) in the disparity map represents that
the pixel points at the left frame (x, y) correspond with the
pixel points at the right frame (x − d, y). For a matched
pair left(x, y), right(x′, y), if x − x′ < σ, we regard it
as a correct match. The σ is set to 3, 6 ,and 9 in our ex-
periment. The matching accuracy of each event data pair
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Figure 6. Qualitative results of feature point detection on HVGA ATIS Corner dataset with baselines. Events are mapped under 10ms
temporal resolution with feature points detected. EventPoint can detect stable and accurate feature points and is more robust to noise.

Table 2. Ablation Study on DSEC dataset
zurich city 10 b(dark)

< 3 < 6 < 9

EventPoint-T(ours) 42.34 88.97 96.70
EventPoint(ours) 43.72 85.07 93.52
Pretrained Weights[13] 35.11 56.91 70.25

zurich city 11 c(overcast)
< 3 < 6 < 9

EventPoint-T(ours) 65.47 97.18 99.48
EventPoint(ours) 66.09 96.69 99.23
Pretrained Weights[13] 25.38 44.60 60.15

Inter laken 00 c(sun)
< 3 < 6 < 9

EventPoint-T(ours) 82.86 98.41 99.30
EventPoint(ours) 67.52 90.33 94.35
Pretrained Weights[13] 19.47 14.39 22.92

Inter laken 00 d(sun)
< 3 < 6 < 9

EventPoint-T(ours) 77.26 93.96 96.07
EventPoint(ours) 67.46 91.88 94.61
Pretrained Weights[13] 19.47 35.04 46.91

is calculated as the number of correct matches divided by
the number of valid matches since the disparity map is rel-
atively sparse. The average matching precision on each se-

quence is reported as,

Precision =
1

N

N∑
i=1

M∑
j=1

[|x− x′| < σ]

M
, (15)

where N refers to the number of samples in a single se-
quence, M refers to correct matches in event data pairs, and
[·] is the Iverson bracket.

From Tab. 2, it can be seen that the performance of the
trained EventPoint significantly outperforms the initial net-
work parameters, i.e., SuperPoint’s pretrain weights. In this
ablation study, accurate position detection of feature points
is an important step. It shows our self-supervised detector
training improves the detection performance. We visualize
the heatmaps’ change during detector training in Fig. 5. On
the other hand, the proposed Tencode method introduces
more rich timestamp cues into the training data to improve
EventPoint’s performance, especially in sunny times.

4.4. IOU Matching Evaluation on N-Caltech101

DART [30] provides an evaluation metric, i.e., IOU
matching score, for feature matching on the N-Caltech101
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Table 3. Feature Matching IOU comparing with DART
Methods IOU

EventPoint-T(ours) 0.83
EventPoint(ours) 0.79
DART(FIFO size=2000)[30] 0.72
DART(FIFO size=5000)[30] 0.67

dataset. Given two event sequences with a length of about
300ms, the global matching within the object contour is
regarded as correct matching, otherwise as wrong match-
ing. To compare with work on descriptors on event streams,
EventPoint is trained on N-Caltech101 and evaluated fol-
lowing the DART’s experiment settings.

From Tab. 3, we can see the performance of EventPoint’s
deep-learning based description outperforms slightly the
baselines DART’s handcraft description. It also shows the
proposed Tencode method is more useful than the con-
ventional encoding method even in single-objective-based
datasets. Fig. 7 visualizes several samples of feature match-
ing on N-Caltech101.

Figure 7. Qualitative results of feature matching on N-Caltech101.
EventPoint is robust to view-point change, scale change, contex-
tual background, and temporal resolution change.

4.5. Reprojection Evaluation on HVGA ATIS

HVGA ATIS Corner Dataset provides 7 sequences of
planar scenes. We compute reprojection error by estimating
a homography between two different timestamps as used
in [23, 8]. In detail, given two timestamp T1, T2, and a
temporal resolution δt, we firstly use Tencode represents
events fall (T1, T1+∆t) and (T2, T2+∆t) into two frames,
then homographic transform is estimated by matching fea-
tures of this two frames. Once the homography is com-
puted, we reproject points from time T2 to the reference
time T1 and further compute the average distance between
the reference points and the projected ones. The points de-
tected outside the planar pattern are excluded. We com-
pare most of the current mainstream corner detection meth-
ods [38, 24, 1, 23, 8, 4], as well as some image-based lo-
cal feature extracting methods [22, 13] on the event stream.

Table 4. Reprojection Error on HVGA ATIS Corner Dataset
Methods Representation 25ms 50ms 100ms

evHarris[38] Time-surface 2.57 3.46 4.58
Arc[1] Time-surface 3.8 5.31 7.22
evFast[24] Time-surface 2.12 2.63 3.18
SILC[23] Speed-invariant 2.45 3.02 3.68
SILC[23] Time-surface 5.79 8.48 12.26
Chiberre et al.[8] Image gradients 2.56 - -
EventPoint(ours) Time-surface 1.46 1.57 1.89
EventPoint(ours) Time-window 1.41 1.61 2.39
EventPoint(ours) Tencode 1.27 1.41 1.72

Most of the existing works are limited to corner detection
without description, or only the local region around the de-
tected corner event is considered a description. In this eval-
uation experiment, ∆t is set to 10ms, and the margin of
two timestamp, i.e., T2 − T1 is set to 25ms, 50ms, 100ms.
The DSEC and HVGA ATIS Corner datasets have the same
resolution of 360 ∗ 480. In order to verify the generaliza-
tion ability of EventPoint, we train it only using the DSEC
dataset but test on the HVGA ATIS Corner Dataset. To
prove the impact of different event stream representations,
EventPoint is trained and tested under three different rep-
resentations, i.e. Time-surface, Time-window, and the pro-
posed Tencode. We use an OpenCV implementation, i.e,
findHomography() and RANSAC, with all the matches
to compute the final homography estimation.

From Tab. 4, it can be seen that our method achieves the
lowest reprojection error among all methods, and remains
stable as the margin increasing between the two timestamps.
The experimental results show that our network learns a
temporal representation invariance of corners on the event
stream. Fig. 6 visualizes the detection result comparing the
baselines. We use the proposed representation method Ten-
code with non-polarity separation avoiding the problem of
detecting redundant corners at the polarity junction by the
Time-surface-based methods. Thereby the reprojection er-
ror is further reduced.

5. Conclusion
In this paper, we present a novel self-supervised local

feature EventPoint, including an interest point detector and
a descriptor, for the event stream data. We first represent the
event stream under a temporal resolution by the proposed
Tencode representation. Then the EventPoint provides
pixel-wise interest point locations and matches the corre-
sponding descriptors from two dense Tencode representa-
tions. The proposed network is end-to-end trained in a self-
supervised manner via homographic and spatio-temporal
adaptation without expensive human annotation. The exper-
imental evaluations demonstrate that EventPoint achieves
the SOTA performance of event feature point detection and
description on DSEC, N-Caltech101, and HVGA ATIS Cor-
ner datasets.
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