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Figure 1: DeepPrivacy2 detects and anonymizes individuals via three detection and synthesis networks; (1) a CSE-guided
generator for individuals detected with dense pose (by CSE [30]), (2) an unconditional full-body generator for cases where
CSE fails to detect (note the segmented persons without color-coded CSE detections), and (3) a face generator for the
remaining individuals (marked in red). The original image is from Wider-Face [45].

Abstract

Generative Adversarial Networks (GANs) are widely
adopted for anonymization of human figures. However,
current state-of-the-art limits anonymization to the task
of face anonymization. In this paper, we propose a
novel anonymization framework (DeepPrivacy2) for real-
istic anonymization of human figures and faces. We in-
troduce a new large and diverse dataset for full-body
synthesis, which significantly improves image quality and
diversity of generated images. Furthermore, we pro-
pose a style-based GAN that produces high-quality, di-
verse, and editable anonymizations. We demonstrate
that our full-body anonymization framework provides
stronger privacy guarantees than previously proposed
methods. Source code and appendix is available at:
github.com/hukkelas/deep privacy2.

1. Introduction
Collecting and storing images is ubiquitous in our mod-

ern society, where a range of applications requires collect-
ing privacy-sensitive data. However, collecting such data
without anonymization or consent from the individual is
troublesome due to recently introduced legislation in many
areas (e.g. GDPR in EU). Traditional image anonymization
(e.g. blurring) is widely adopted in practice; however, it
severely distorts the data, making it unusable for future ap-

plications. Recently, realistic anonymization has been intro-
duced as an alternative to traditional methods, where gener-
ative models can generate realistic faces fitting into a given
context [7, 13, 26, 40]. However, current methods focus
on face anonymization, which does not prevent recognition
through identifiers outside the face, including both primary
(e.g. ears, gait [15]) and secondary (e.g. gender) identifiers.

Surface Guided GANs (SG-GAN) [14] propose a full-
body anonymization GAN guided on dense pixel-to-surface
correspondences from Continuous Surface Embeddings
(CSE) [30]. SG-GAN shows promising results for full-body
anonymization, but their method often includes visual arti-
facts, degrading the image quality. The authors attribute
the limited visual quality to the dataset, where they use
a derivate of COCO [23] containing 40K human figures.
Furthermore, the CSE segmentation used for anonymiza-
tion does not include accessories/hair on the human body;
thus, the anonymized individual often ”wears” these unseg-
mented areas (see fig. 3). Additionally, SG-GAN fails to
anonymize many individuals, as the CSE detector often fails
to detect persons that are further away from the camera.

In this work, we extend Surface Guided GANs to address
the limited visual quality and the insufficient anonymization
due to poor segmentation. Furthermore, we address cases
where the CSE detector fails to detect individuals. We sum-
marize our contributions in the following.

First, we introduce the Flickr Diverse Humans (FDH)
dataset. The FDH dataset consists of 1.5M images of human
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Figure 2: Examples from the FDH dataset. Each image is annotated with keypoints, pixel-to-vertex correspondences (from
CSE [30]) and a segmentation mask. The leftmost image shows annotations for the first image.

figures in diverse contexts extracted from the YFCC100M
[42] dataset. We show that the larger dataset greatly benefits
the visual quality of generated human figures.

Secondly, we propose a novel anonymization framework
that combines detections from multiple modalities to im-
prove the segmentation and detection of human figures.
Our anonymization framework divides image anonymiza-
tion into three individual anonymizers; (1) for human fig-
ures that are detected with a dense pose estimation (CSE),
(2) for human figures that CSE does not detect, and (3)
for the remaining faces (see fig. 1). For each category, our
framework employs a simple inpainting GAN that follows
established GAN training techniques for unconditional im-
age generation [17, 18]. We show that our GAN generates
high-quality and diverse identities with few task-specific
modeling choices.

Finally, we extend our GAN for face anonymization
on an updated version of the Flickr Diverse Faces (FDF)
dataset [13]. In contrast to previous face anonymization
techniques [7, 13, 26, 40], our GAN uses no pose guidance,
enabling it to anonymize individuals where pose informa-
tion is challenging to detect. Furthermore, we show that
our style-based generator can adapt methods from uncon-
ditional GANs to find global semantically meaningful di-
rections in the GAN latent space. This enables text-guided
attribute editing for our anonymization pipeline.

DeepPrivacy2 surpasses all previous state-of-the-art re-
alistic anonymization methods in terms of image qual-
ity and anonymization guarantees. We validate the
effectiveness of DeepPrivacy2 with extensive qualita-
tive and quantitative evaluation. Our code, pre-
trained models, and the FDH dataset is available at
github.com/hukkelas/deep privacy2.

2. Related Work
Image Anonymization Naive image anonymization (e.g.
masking, blurring, pixelation) is widely adopted in prac-
tice; however these methods severely degrade the quality
of the anonymized image, making the data unusable for
many applications. Early work focused on the K-same fam-
ily of algorithms [8, 16, 31], which provides better pri-

vacy guarantees and data usability than naive methods , but
generate highly corrupted images. Recent work on deep
generative models reflects that learning-based anonymiza-
tion can realistically anonymize data while retaining its
usability for downstream applications. These methods
anonymize face regions by either inpainting missing re-
gions [13, 26, 40, 41] or transforming [7, 35] the original
face. Our method anonymizes by inpainting, as inpainting-
based methods provide stronger privacy guarantees than
transformative methods, as they never observe the original
privacy-sensitive information. The majority of prior work
focuses on face anonymization, which compromises privacy
for many use cases, as they leave several primary (e.g. ears,
gait) and secondary (e.g. gender) identifiers on the human
body untouched. There is a limited amount of work fo-
cusing on full-body anonymization [2, 14, 26], where prior
methods are limited to low-resolution images [26] or gener-
ate images with visual artifacts [2, 14].

Full-body Synthesis Recent work on full-body synthe-
sis focus on limited tasks, such as transferring source ap-
pearances into new poses [1, 3, 22, 29, 38], with differ-
ent garments [9, 37, 38], or with new motion [3]. These
methods are often guided on dense pixel-to-surface corre-
spondences or sparse keypoints annotations. In contrast to
these methods, our anonymization approach does not rely
on a source appearance to transfer, and the majority of the
aforementioned methods do not handle large variations in
background contexts. Furthermore, a number of these meth-
ods focus on low-variance datasets (e.g. DeepFashion [24]),
which consists of a limited number of identities in simi-
lar poses and a close-to static context (white background).
There is a limited amount of work focusing on full-body
synthesis without a source appearance, where Ma et al. [25]
proposes a pose-guided GAN for novel full-body synthesis.

3. The Flickr Diverse Humans Dataset
The Flickr Diverse Humans (FDH) dataset consists of

1.53M images of human figures from the YFCC100M [42]
dataset. Figure 2 shows examples from the dataset. Each
image contains a single human figure in the center, with
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a pixel-wise dense pose estimation from CSE [30], 17
keypoint annotations from a keypoint R-CNN model [10],
and a segmentation mask. The segmentation mask is the
union of the mask from a CSE detector and Mask R-CNN
[10] trained on COCO. The dataset is automatically filtered
through confidence thresholding, automatic image quality
assessment, the number of body parts visible in the im-
age, and overlap between keypoint and CSE predictions
(see Appendix A for more details). Otherwise, we perform
no further filtering such that the dataset includes individu-
als in all various contexts. The resolution of each image is
288×160, and the dataset is split into 1,524,845 images for
training and 30K images for validation. Compared to previ-
ously adopted datasets for full-body synthesis [14, 24, 47],
FDH is much larger and contains a diverse set of individu-
als from in-the-wild images. Additionally, FDH is less cu-
rated than typical datasets for generative modeling, where
it includes human figures with unusual poses, perspectives,
lighting conditions, and contexts. This is to ensure that our
anonymization method can handle such conditions.

4. The DeepPrivacy2 Anonymization Pipeline
This section outlines the core technologies used for our

anonymization pipeline. First, we present our ensemble de-
tection pipeline, then our GAN-based synthesis method.

4.1. Detection

The main objective of the detection module is to ensure
that all individuals in the image are detected. DeepPrivacy2
uses an ensemble of three detection networks from differ-
ent modalities; DSFD [21] for face detection, CSE [30]
for dense pose estimation, and Mask R-CNN [10] for in-
stance segmentation. The pipeline categorizes the detec-
tions into three categories; individuals with dense pose esti-
mation (detection w/ CSE), individuals not detected by CSE
(detection w/o CSE), and faces that are not included in the
former categories. For each category, we propose individual
anonymization methods, introduced in section 4.2. For hu-
man figures, we anonymize the union of Mask R-CNN and
CSE segmentations, such that accessories/hair detected by
Mask R-CNN (but not CSE) are anonymized (see fig. 3).
Note that dense pose estimation is not essential for pri-
vacy, but it substantially improves synthesized image qual-
ity. Furthermore, the detections are tracked with a bound-
ing box tracker, such that the anonymization can retain the
same identity over a sequence of frames. Compared to SG-
GAN [14], the ensemble of detectors significantly improves
detection recall, as DeepPrivacy2 uses Mask R-CNN and
DSFD for fallback detection when the CSE detector fails.

Implementation Details. Instance segmentation and
CSE segmentation are combined via simple Intersection
over Union (IoU) thresholding, where we assume all detec-
tions with an IoU higher than 0.4 are the same individual.

Detection (Ours) SG-GAN [14] Ours

Figure 3: SG-GAN [14] anonymizes only the area from
a CSE segmentation (marked in blue tint), which does
not include accessories/hair. This results in SG-GAN [14]
anonymization often wearing the original hair/accessories
of the original identity (marked in red). In contrast, Deep-
Privacy2 anonymizes the segmentation from Mask R-CNN
(outlined), which includes hair and clothing.

All instance segmentations from Mask R-CNN not com-
bined with a CSE detection are categorized as a detection
without CSE. All face detections within the CSE or Mask R-
CNN segmentation are discarded. All detections are tracked
with simple Kalman filtering on bounding boxes, follow-
ing the implementation of motpy [28]. We use Mask R-
CNN and the CSE implementations from detectron2 [43],
specifically, the ResNeXt-101 FPN [44] Mask R-CNN, and
ResNet-101 [11] CSE. We adapt DSFD [21] from the offi-
cial implementation of the authors.

4.2. Synthesis Method

DeepPrivacy2 uses three independently trained genera-
tors for the three different detection categories introduced
in section 4.1 (detection w/ cse, detection w/o cse, faces).
While the tasks significantly differ in complexity, they share
training setup and architecture to a high degree. Here, we
first present our style-based generator, then present task-
specific modeling choices for full-body and face synthesis.
Each generator frame the anonymization task as an image
inpainting task, where we remove areas to be anonymized
and let a generator complete the missing region. Specifi-
cally, the input and output of each generator is given by 1,

Ĩ = G(I ⊙M,M, z)⊙M + (1−M)⊙ I, (1)

⊙ is element-wise multiplication, I the original image, and
M indicates missing regions (M is 1 for known pixels and
0 for pixels to be anonymized).

1For the CSE-guided generator, the CSE-embedding is concatenated
with I ⊙M to the input of the generator. See section 4.2.1.
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(a) Detections (b) Descending ordering (c) Ascending ordering

Figure 4: Anonymization results comparing our method with descending and ascending image stitching order. The ascending
ordering stitches foreground objects last, which improves image quality at detection borders (e.g. marked in red).

4.2.1 A Style-Based U-Net Generator

Our synthesis method follows the implementation of
Surface-guided GANs [14]. The generator is a U-Net [36]
with limited task-specific modeling choices, consisting of
a context encoder and a style-based decoder. The con-
text encoder uses a sequence of convolutions and down-
sampling layers, with residual connections at every feature
map resolution. We use no normalization layers in the en-
coder, as it performs similarly without it. However, we
find it essential to apply instance normalization for the fea-
tures in the U-net skip connections, where we combine fea-
tures from the encoder and decoder as additive residuals.
The decoder follows the design of Stylegan2 [18], with the
operation order instance normalization → convolution →
style modulation. Note that we replace the baked-in weight
demodulation in Stylegan2 with instance normalization, as
we find that normalization on expected statistics works
poorly when large areas of the input are missing.

Furthermore, we increase the depth of the U-net to 5
downsampling layers, such that the minimum feature res-
olution is 9 × 5. In contrast, SG-GAN has three downsam-
pling blocks, where most parameters are at the 36×20 reso-
lution. We observe no performance degradation by increas-
ing the depth while improving inference speed, as more pa-
rameters are located at lower resolution layers. Finally, we
remove V-SAM and discriminator surface supervision used
in SG-GAN. Appendix C includes further details.

Full-Body Synthesis The full-body generator is trained
on the FDH dataset at a resolution of 288 × 160. We train
two independent generators for full-body synthesis; one that
concatenates the CSE embedding to the input image and
one that does not. The CSE embedding has a resolution of
16×288×160, where we use the pixel-to-vertex embedding
map released in the official implementation of CSE [30, 43].

Face Synthesis In contrast to previous face anonymiza-
tion methods [13, 26, 40], we propose a generator that does

not use keypoints for synthesis. Removing the keypoint de-
tector improves detection recall in cases where keypoints
are difficult to detect. We train the face generator on an up-
dated version of the FDF dataset [13], which increases the
image resolution to 256× 256 from the original 128× 128.

4.3. Recursive Stitching

The final stage of our pipeline is pasting the anonymized
identities into the original image. Unlike face anonymiza-
tion, full-body anonymization has many detection overlaps.
If not handled correctly, these overlaps generates visually
annoying artifacts at the border between individuals.

Our stitching approach recursively stitches each individ-
ual in ascending order depending on the number of pixels
the person covers. The recursive stitching assumes that
the synthesis method handles overlapping artifacts when
generating each individual. Additionally, our ordering as-
sumes that objects in the foreground cover a larger area,
where foreground objects are stitched in last. The reverse
order (foreground objects first) results in background ob-
jects ”overwriting” foreground objects, as the detections can
overlap (see fig. 4). This naive ordering significantly re-
duces visual artifacts at borders between individuals.

5. Experimental Evaluation
We validate our proposed anonymization pipeline in

terms of synthesis quality, using anonymized data for fu-
ture development, and anonymization guarantees. There
are no standard baselines to compare against for realistic
anonymization of data. Thus, we compare against tradi-
tional anonymization techniques, and DeepPrivacy [13], a
widely adopted realistic face anonymizer. Additionally, we
compare our full-body generator to Surface Guided GANs
[14]. Appendix D includes random anonymized images on
Cityscapes [4], COCO [23], FDH, and FDF256.

Experimental Details. All models are trained with Py-
torch 1.10 [33] on 4 NVIDIA V100-32GB. For qualitative
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(a) Detected (b) No CSE (c) (d) (e)

Figure 5: Synthesis results on FDH. (a) is the original iden-
tity and the anonymization mask, (b) is the unconditional
generator, and (c-e) is the CSE-guided generator

examples, we use multi-modal truncation to improve image
quality while retaining diversity [27]. We report Fréchet In-
ception Distance (FID) [12] and FIDCLIP

2 [20] to evaluate
image quality using Torch Fidelity [32]. The three genera-
tors (for CSE-guided, unconditional and face) has 43M pa-
rameters each.

Datasets. For training, we use the FDH dataset (see sec-
tion 3) for full-body synthesis, and FDF256 for face synthe-
sis. The FDF256 dataset is an updated version of FDF [13],

2FIDCLIP is less sensitive to ImageNet classes. ImageNet-FID is in-
sensitive to faces and scores images containing ImageNet objects (e.g. tie)
higher [20].

Figure 6: Synthesis results on FDF256. First column shows
the original identity and the anonymization mask. Columns
2-5 shows generated identities from DeepPrivacy2.

where the image resolution is increased from 128 × 128 to
256 × 256 (see Appendix B). For evaluation, we use Mar-
ket1501 [47], Cityscapes [4], and COCO [23]. We follow
the standard train/validation split for all datasets.

Runtime Analysis. The DeepPrivacy2 architecture is
computationally efficient, where the CSE-guided generator
processes ∼ 11.6 frames per second (FPS), and the face
generator at ∼ 7.9 FPS on an NVIDIA 1080 8GB GPU. In
contrast, the SG-GAN [14] generator processes ∼ 7.3 FPS,
where our improved runtime originate from the removal of
V-SAM and moving the majority of parameters to lower res-
olution layers. The entire pipeline (detection, synthesis and
stitching) require ∼ 2.8 seconds to process an image with
12 persons on an NVIDIA 1080 8GB GPU.

5.1. Synthesis Quality

Full-Body Synthesis. Figure 5 shows diverse synthesized
examples on the FDH dataset. Our model generates high-
quality human figures that seamlessly transition into the
original image. Furthermore, the model can handle a
large variety of background contexts, poses, and overlap-
ping objects. We find CSE guidance necessary for high-
quality anonymization, where the unconditional generator
often generates human figures with unnatural poses (see
fig. 5). This is reflected in quantitative metrics, where
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(a) Original (b) Detections (c) Anonymized

Figure 7: DeepPrivacy2 anonymization result on an image from WIDER-Face. Appendix D includes random examples.

(a) Original (b) DeepPrivacy (c) Ours

Figure 8: Face anonymization comparison between our method and DeepPrivacy [13].

5M 10M 15M 20M

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

D
is

cr
im

in
at

or
lo

gi
ts

COCO-Body

FDH

5M 10M 15M 20M

4

5

6

7

8

9

F
ID

COCO-Body

FDH

Figure 9: Our generator overfits early when trained on the
small COCO-Body dataset (blue) [14], which consists of
∼ 40K images of human figures. Note that this occurs even
with the strong data augmentation used by [14]. No data
augmentation, other than horizontal flip, is used for FDH.

the CSE-guided generator (FID=5.6, FIDCLIP=1.7) substan-
tially improves over the unconditional generator (FID=6.1,
FIDCLIP=2.30). Furthermore, the primary improvement of
our model compared to Surface-guided GANs [14] is the
larger and more diverse FDH dataset. The same model
trained on the COCO-Body dataset [14] starts to overfit
early in training, reflected by the diverging discriminator
logits and increasing FID (fig. 9).

Face Synthesis. Figure 6 shows generated results on the
FDF256 dataset. Directly comparing our face anonymizer
to DeepPrivacy [13] is not straightforward, as we synthe-

size higher resolution images (256 × 256, not 128 × 128).
Additionally, the FDF256 dataset does not include the same
images as the original dataset, as FDF256 filter out lower
resolution images. Nevertheless, to validate our modeling
choices, we retrain our GAN for 128 × 128 synthesis on
FDF [13]. Our GAN achieves a FID of 0.56, a significant
improvement compared to DeepPrivacy (FID=0.68) [13].
Note that this is without using face keypoints, which the
original DeepPrivacy uses to improve quality.

Figure 8 compares the open-source DeepPrivacy [13] to
our method. Our method generates higher quality faces and
handles overlaps between detections better. Also, note that
DeepPrivacy does not anonymize all faces in the image, as
it is unable to detect keypoints for all individuals 3.

Attribute-Guided Anonymization DeepPrivacy2 allows
for controllable anonymization through text prompts by
adapting StyleMC [19]. StyleMC finds global semanti-
cally meaningful directions in the GAN latent space by
manipulating images towards a given text prompt with a
CLIP-based [34] loss. Figure 10 shows attribute-guided
anonymization, where the global directions are found over
256 images. As far as we know, DeepPrivacy2 is the first
to enable controllable anonymization through text prompts,
whereas previous methods are limited to no control or at-
tribute preservation from the original identity [7] .

3Even with confidence threshold of 0.05, DeepPrivacy is unable to de-
tect keypoints for all individuals.
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Original Anonymization Happy

Mustache Blue eyes

Figure 10: Latent manipulations with StyleMC [19].
The text prompt used for each edit is shown below
each image. See our video for an interactive demo:
https://youtu.be/faoNyaaORts.

Anonymization R1 ↓ mAP ↓
Original 94.4 82.5
Pixelation 8× 8 54.6 16.1
Pixelation 16× 16 70.3 36.6
Mask-out 45.5 8.0
SG-GAN [14] 74.4 30.2
Full-body anonymization (Ours) 44.7 8.5

Table 1: Re-identification mAP and rank-1 accuracy on
Market1501 [47] using OSNet [48].

5.2. Anonymization Evaluation

Anonymization Guarantee To evaluate the anonymiza-
tion guarantee of DeepPrivacy2, we evaluate how well au-
tomatic re-identification tools can identify anonymized in-
dividuals. Specifically, we evaluate the re-identification rate
of OSNet [48] by anonymizing Market1501 [47]. In this
case, a lower re-identification mAP and rank-1 accuracy
(R1) reflects worse re-identification, indicating improved
anonymization. Appendix C details the experiment further.

Train w/ Anon. Data Validate w/ Anon. Data
Dataset Box AP ↑ Kp. AP ↑ Box AP ↑ Kp. AP↑
Original 53.6 64.0 53.6 64.0

Masked Out 10.1 0.5 17.0 1.8
Pixelation 8× 8 10.4 1.0 29.1 2.2

Pixelation 16× 16 10.1 1.5 36.5 12.0
DeepPrivacy2 (w/o CSE) 21.4 10.2 49.9 11.5

DeepPrivacy2 26.0 31.9 49.4 48.4

Table 2: Keypoint (Kp.) AP on the COCO [23] validation
set with a Keypoint R-50 FPN R-CNN [10].

Table 1 reflects that pixelation enables re-identification
of several of the anonymized individuals. Our full-body
anonymizer yields similar anonymization guarantees as
masking out the area and significantly improve compared
to pixelation. Furthermore, the full-body anonymization of
SG-GAN [14] provides poorer anonymization results than
DeepPrivacy2. This is caused by the CSE detector failing in
several cases and the poor segmentation of accessories/hair
in SG-GAN, where the anonymized identity often ”wears”
parts of the original identity (see section 4.1).

5.2.1 Training and Evaluating on Anonymized Data

A typical use case for anonymization is collecting and
anonymizing data for the development of computer vision
systems. We evaluate DeepPrivacy2 on two established
computer vision benchmarks: COCO [23] person keypoint
estimation and Cityscapes [4] instance segmentation. We
evaluate two use cases; (1) using anonymized data for train-
ing, and (2) using anonymized data for validation with a
pre-trained model. For the former, we report evaluation
metrics on the original validation dataset.

COCO Person Keypoint Estimation. Table 2 analyzes
the effect of anonymization on the COCO dataset for person
keypoint estimation. Pixelation greatly affects model train-
ing for the fine-grained task of keypoint estimation, whereas
DeepPrivacy2 significantly improves over traditional meth-
ods. Note that CSE fails to detect many individuals in the
COCO dataset, which yields poor pose preservation for in-
dividuals anonymized by the unconditional generator.

Cityscapes Instance Segmentation. Table 3 analyzes
the effect of anonymization on the Cityscapes dataset.
DeepPrivacy2 improves over pixelation and mask-out, but
the gap is less prevalent than for keypoint estimation. We
believe this originates from model weight initialization 4.

Is surface guidance necessary? Section 5.1 established
that the CSE-guided generator improves image quality com-
pared to the unconditional generator. We now ask the ques-
tion; does the improved image quality translate to improve-
ments when using the anonymized data? In table 3 and ta-

4The Cityscapes model is initialized from a COCO pre-trained Mask
R-CNN, while the keypoint R-CNN from an ImageNet [5] backbone.
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Train w/ Anon. Data Validate w/ Anon. Data
Dataset mAP ↑ APperson ↑ mAP ↑ APperson ↑
Original 36.5 35.0 36.5 35.0

Masked Out 34.0 26.4 27.7 4.7
Pixelation 8× 8 34.7 27.1 29.4 10.2

Pixelation 16× 16 34.7 29.6 32.0 21.8
DeepPrivacy2 (w/o CSE) 33.4 27.5 33.1 27.8

DeepPrivacy2 35.2 30.3 33.2 27.3

Table 3: Instance segmentation AP on the Cityscapes [4]
validation set with a Mask R-CNN [10] R-50 FPN.

ble 2, we replace the CSE-guided generator with the un-
conditional generator, such that all persons are anonymized
without CSE-guidance (denoted DeepPrivacy2 w/o CSE).
Removing CSE-guidance severly hurts performance, espe-
cially when using the anonymized data for training.

6. Conclusion

DeepPrivacy2 is an automatic realistic anonymization
framework for human figures and faces, and is a practi-
cal tool for anonymization without degrading the image
quality. Compared to previously proposed anonymization
frameworks, we show that DeepPrivacy2 substantially im-
proves image quality and privacy guarantees. Furthermore,
we introduce the FDH dataset, a large-scale full-body syn-
thesis dataset that includes a wide variety of identities in dif-
ferent poses and contexts. Our new FDH dataset, combined
with our simple style-based GAN, improves image quality
and diversity of human figure synthesis for in-the-wild im-
ages. Furthermore, we show that our simple style-based
GAN generates high-quality human faces that are control-
lable through user-guided anonymization via text prompts.
We believe that our open-source framework will be a use-
ful tool for computer vision researchers and other entities
requiring anonymization while retaining image quality.

Societal Impact Recently introduced legislation in many
regions has complicated collecting privacy-sensitive data,
where consent from individuals is required for storing the
data. This can act as a barrier for developing applications
relying on high-quality images, such as computer vision
models. This paper proposes an automatic realistic im-
age anonymization framework that simplifies the collection
of privacy-sensitive data while retaining the original image
quality. We believe this will be a highly useful tool for
the computer vision field. Nevertheless, our work focuses
on synthesizing realistic humans, which has a potential for
misuse (e.g. DeepFakes). There is a large focus in the com-
munity to mitigate this, for example, the DeepFake Detec-
tion Challenge [6] and model watermarking [46].

Figure 11: The generator samples from a small subset of
different identities given the condition.

6.1. Limitations

DeepPrivacy2 generates a limited set of identities given a
particular input condition. The input condition is highly de-
scriptive of the shape of the original identity and the context
that the identity should fit into. Thus, the generator learns a
sampling probability of identities given the condition. For
example, if the generator observes a baseball field, the syn-
thesized identity is likely to be a baseball player (fig. 11).

As with any anonymization framework, DeepPrivacy2
cannot guarantee anonymization without human supervi-
sion, as the detector can fail. However, DeepPrivacy2 uses a
set of detectors from different modalities to improve detec-
tion in cases where one or more of the detectors fail. Also,
DeepPrivacy2 uses dense pose description for anonymiza-
tion, which allows identity recognition through gait [15].

Synthesis Quality DeepPrivacy2 significantly improves
full-body synthesis for in-the-wild images; however, it
struggles in several scenarios. First, DeepPrivacy2 relies on
dense pose estimation to synthesize high-quality human fig-
ures, where the image quality is severely degraded in cases
where the pose description is incorrect. Furthermore, we
find our full-body GAN harder to edit (e.g. attribute edit via
text prompts [19]), and we observe that common directions
in the latent space do not translate to semantically equiv-
alent transformations for different poses/background con-
texts.
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