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Abstract

Light field (LF) camera captures rich information from
a scene. Using the information, the LF de-occlusion (LF-
DeOcc) task aims to reconstruct the occlusion-free center
view image. Existing LF-DeOcc studies mainly focus on
the sparsely sampled (sparse) LF images where most of
the occluded regions are visible in other views due to the
large disparity. In this paper, we expand LF-DeOcc in more
challenging datasets, densely sampled (dense) LF images,
which are taken by a micro-lens-based portable LF camera.
Due to the small disparity ranges of dense LF images, most
of the background regions are invisible in any view. To apply
LF-DeOcc in both LF datasets, we propose a framework,
ISTY, which is defined and divided into three roles: (1) ex-
tract LF features, (2) define the occlusion, and (3) inpaint
occluded regions. By dividing the framework into three spe-
cialized components according to the roles, the develop-
ment and analysis can be easier. Furthermore, an explain-
able intermediate representation, an occlusion mask, can be
obtained in the proposed framework. The occlusion mask is
useful for comprehensive analysis of the model and other
applications by manipulating the mask. In experiments,
qualitative and quantitative results show that the proposed
framework outperforms state-of-the-art LF-DeOcc methods
in both sparse and dense LF datasets.

1. Introduction
In various computer vision tasks such as image classifi-

cation [7, 26], semantic segmentation [25, 1, 8], and object

detection [21, 22, 23], the performance becomes unstable

and degrades by the foreground objects which occlude the

region of interest. To diminish such performance drop, the

de-occlusion task aims to capture the foreground occlusion

object in the image and fill the region with the backgrounds.

*Equal contribution.
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Figure 1. The framework of the existing LF-DeOcc methods

(top) and the proposed method (bottom). While the existing meth-

ods consist of a single black-box model, the proposed method is

composed of three separate components, generating the occlusion

mask as an intermediate representation of the framework which is

useful for the analysis and other applications. Note that the pro-

posed LF-DeOcc framework also works in an end-to-end manner.

Recently, light fields (LFs) are utilized in the de-

occlusion task (LF-DeOcc) [30, 37]. As LFs can capture

the scene in various views with different angular informa-

tion, they can offer guidance of the background object, the

key goal of the de-occlusion task. While the existing deep

learning-based LF-DeOcc methods show reasonable perfor-

mance, they mainly focus on the sparsely sampled (sparse)

LFs, which are collected through a camera array and have

large disparity ranges. In other words, most of the occluded

region can be seen in the other views of sparse LFs. Contrar-

ily, the densely sampled (dense) LFs are collected through a

micro-lens-based portable LF camera [2] which has narrow

disparity ranges consisting of scarce information about the

backgrounds. In summary, while it is easy for the sparse

LFs to obtain visible background information beyond the

occlusion, it is hard for the dense LFs to obtain visible back-

ground information beyond the occlusion. However, from a

practical perspective, whereas it is easy for the dense LFs to

obtain various scenes by being portable and affordable, it is
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relatively hard for the sparse LFs to collect various scenes.

The detailed statistics of the dataset and different character-

istics of both LFs are provided in supplementary materials.

In this paper, different from the existing LF-DeOcc

methods, we considered two scenarios to make a model

work on both sparse and dense LFs. First, if the occluded

region is visible in the other views, the visible information

should be used to fill the region. Second, if not, the con-

text information around the occluded region should be used

to fill the region. Although both scenarios are presented

in both LFs, the first scenario dominates in the sparse LFs

whereas the second scenario dominates in the dense LFs.

Since each scenario requires quite different solutions, we

divide the framework and define the separate roles and func-

tions in the proposed framework (Fig. 1). For the first sce-

nario, likewise DeOccNet [30], a component for extracting

the LF features from the sub-aperture images (SAIs) is pre-

sented in the proposed framework. For the second scenario,

a component for inpainting a single image is modified with

an additional component to define the occlusion mask in

the proposed framework. Contrary to the existing methods

which implicitly have those roles in their models, the pro-

posed framework explicitly divides the roles and connects

them. By explicitly dividing the roles, the proposed method

not only shows better performance but also makes the de-

velopment and analysis easier than the existing methods.

In addition, because the occlusion is explicitly repre-

sented in the proposed framework, it is flexible to define

the occlusion, which helps not only prevent artifacts in the

non-occluded regions but also remove occlusion in arbitrary

depth planes while preserving the foreground objects of in-

terest by manipulating the occlusion mask.

The contributions of the proposed LF-DeOcc framework

are summarized as follows.

• We propose a framework, ISTY, which works on both

sparse and dense LFs, achieving state-of-the-art per-

formance in the majority of the settings.

• We modularized black-box framework into three sep-

arate components, making further development and

analysis easier.

• Occlusion mask generator offers flexibility in defining

the occlusion by explicitly giving the mask representa-

tion and enables additional applications.

2. Related work
2.1. Light Field De-Occlusion (LF-DeOcc)

By the digital refocusing algorithm [18], in the refocused

image, the occluded regions are blurry but partially visible.

Thus, the digital refocusing algorithm has also been utilized

to see through the occlusion [28]. Vaish et al. [28] proposed

a refocus method that re-parameterizes LF image by a spe-

cific value and average along with the angular dimension.

In their method, even though foreground occlusion could

be seen through, the images are highly blurred.

Recently, Wang et al. [30] proposed a deep learning-

based end-to-end LF-DeOcc model (DeOccNet). DeOcc-

Net reconstructs the occlusion-free center-view (CV) im-

age with a deep encoder-decoder model and residual atrous

spatial pyramid pooling (ResASPP) module from sparse LF

images. They also propose a mask embedding approach

to generate a training dataset which synthesizes the occlu-

sion LF image using the mask image and occlusion-free LF

image allowing the fully supervised end-to-end LF-DeOcc

learning. However, DeOccNet generates blurry outputs and

does not appropriately deal with occlusion with the large in-

visible region, making artifacts from occlusions. Zhang et

al. [37] proposed a filter to extract features from the shifted

lenslet images to seek background information to recon-

struct the occluded regions. Although their method works

well on the sparse LFs, the performance on the dense LF is

not as good as that on the sparse LF because they strongly

assume that background object is visible. Furthermore, us-

ing a set of shifted-lenslet images requires large memory

and long pre-processing time.

The recently proposed deep learning-based LF-DeOcc

methods focused on the sparse LFs, filling the occluded

regions with the visible background information from the

other views. Since it is more difficult to collect the sparse

LF dataset than the dense LF dataset, it is reasonable to use

the dense LFs, which can be easily collected, to train and

apply a model with the advantage of a large number of data

from practical perspectives. Thus, different from existing

LF-DeOcc methods, we propose a framework that works

on both sparse and dense LF images.

2.2. Single Image Inpainting

Single image inpainting in an RGB image. The goal

of the single image inpainting is to recover the missing

(masked) regions of a single image with realistic content.

The rapid development of deep learning algorithms and the

vast amount of single RGB image datasets [6, 38] makes it

possible to fill the masked regions with a plausible structure

without information beyond the mask [17, 16, 32].

Partial convolution (PConv) [17] helps to encode the

context features while avoiding the artifacts from invalid

pixels of the masked region through the masked and re-

normalized convolution. Based on PConv, Li et al. [16]

introduced recurrent feature reasoning (RFR) to reconstruct

the large continuous hole through recurrent inpainting the

part of the image and average the generated feature group

if they have no invalid pixels. Xie et al. [32] use learnable

bidirectional attention maps (LBAM) to replace the PConv.

They used attention not only in the encoder but also in the

decoder so that the decoder can focus on filling the masked

regions only. In addition, unlike PConv, LBAM allows soft
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Figure 2. Illustration of the proposed model architecture. f© and g© denotes the mask activation and update function respectively, defined

in LBAM [32]. The ICV and MOMG are supervised with the loss function defined in section 3.5 using Igt and Mgt, respectively.

attention map and differentiable mask updates and activa-

tion function which gives more leeway for further improve-

ments and stability to model in training. However, directly

applying the single image inpainting method on LF-DeOcc

is not feasible as the occlusion mask can not be defined in

the single RGB image. In our framework, to utilize the in-

painting method, we explicitly define the occlusion mask

from the LFs and pass it as input of the inpainting method.

Single image inpainting in LFs. In the LF, the single

image inpainting has been used to solve the LF comple-

tion which aims to fill the entire LF views with consistent

information. Rather than directly filling the 4-D manifold

[33, 3, 4], Zhang et al.[35] and Pendu et al.[10] used single

image inpainting to the CV image and propagated it to the

remaining views. However, since their main goal is to prop-

agate the information of the inpainted CV image to the re-

maining views, they naively used the single image inpaint-

ing method for the CV image with a given inpainting mask.

2.3. Foreground Background Seperation (FBS)

The foreground-background separation (FBS) [11, 13,

15], which represents whether each pixel is classified into

the foreground or background, could be regarded as a sub-

representation of the depth map [14]. Using the optical phe-

nomenon “flipping” [12], Lee and Park [11] estimated depth

map from LF by accumulating the binary maps, which sep-

arated the foreground and background based on the focused

(or zero disparity) plane. A single slice of FBS in form

of the binary map is obtained by thresholding a score map,

whose pixel values are bounded from −1 to 1, with zero.

In this paper, we define the occlusion mask by refining the

FBS in form of the score map, to avoid losing information.

3. Method

The proposed framework is composed of three compo-

nents, each of which performs a different role, named LF

feature extractor (LFE), occlusion mask generator (OMG),

and occlusion inpainter (OI), respectively. In the following

subsections, we first describe our overall architecture. Sub-

sequently, we introduce each part of the model and the com-

position of our loss function. Lastly, we introduce an addi-

tional application possible in the proposed framework. The

architecture of the proposed framework is shown in Fig. 2.

3.1. Overall Architecture

From the input LF L0 ∈ RU×V×X×Y×3, we extract

various LF information in LFE, define the occlusion mask

in OMG, and reconstruct the occlusion-free CV image in

OI, where (U, V ) and (X,Y ) denote the angular and spa-

tial dimensions of the LF image respectively, and 3 is color

channel dimension. In the LFE, using the L0 in form of

the SAIs concatenated along with the channel dimension,

named LSAI ∈ R(3×U×V )×X×Y , a set of LF features

FLF = {f0
LF , · · · , fK

LF } are extracted, where K indicates

the number of layers in LF encoder (ELF ). In the OMG,

an FBS score map IFBS ∈ RX×Y×1 is directly obtained

from L0 without a deep learning-based method. The oc-

clusion mask MOMG ∈ RX×Y×1 is obtained by refining

the IFBS with a CV image ICV and a set of LF features

{f0
LF , f

1
LF , f

2
LF }. The OI reconstructs the occlusion-free

CV image Iout from ICV and MOMG in a single image in-

painting manner. We combine the LFE and OI by infusing

the FLF with OI decoder features Fdc, to utilize the back-

ground information gathered from LFs during the inpainting

step. We train our model in a fully supervised manner using

ground truth occlusion free CV image Igt and mask Mgt.
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3.2. LF Feature Extractor

The main role of the LF feature extractor (LFE) is to find

and extract rich information from LSAI , including depth

information, unoccluded background object information,

and background context information. To effectively handle

large disparity objects scattered around the SAIs and extract

context features of background information while avoiding

large occlusion, LFE requires a large receptive field.

LF feature initialization. DeOccNet [30] shows that

the ResASPP module [29] is beneficial for large receptive

field and helps to extract useful features required for LF-

DeOcc task. We use multi-layers of the ResASPP module

and residual block (ResBlock) together for the large recep-

tive field with a dense sampling rate, which is used in Wang

et al.’s method [31]. We use 1× 1 convolution followed by

two ResASPP Block and ResBlock layers to initialize the

LF feature (f0
LF ). In our model, ResASPP has four paral-

lel dilated convolutions with dilation rates of 1, 2, 4, and

8, respectively, and our ResBlock consists of 3 convolution

layers and two leakyReLU layers, alternately.

LF feature encoding. With the initialized feature f0
LF , a

set of LF features fk
LF (k > 0) are extracted using a LF en-

coder (ELF ). ELF consists of a K encoder blocks, each of

which consists of a convolution block followed by a self-

attention module to give a more long-range dependency.

The convolution block uses 2D convolution with kernel size

of 4, stride of 2, and padding size of 1, LeakyReLU and

batch normalization. Following the self-attention module

which is defined in Zhang et al. [36], we use a 1 × 1 con-

volution to generate the key, query, and value matrix from

the output of the convolution block. The output of the self-

attention module is element-wisely added to the output of

the convolution block with a learnable weight γ which is

initially set to 0.25. For memory efficiency, only encoder

layers that have direct skip connections to the OI use the

self-attention module (k > 1).

3.3. Occlusion Mask Generator

The OMG generates occlusion mask MOMG, from the

IFBS and U-shaped refinement module. IFBS divides the

foreground and background with respect to the zero dispar-

ity plane, and our 3-layer U-shaped network refines IFBS

using the ICV as a guidance. In the decoder part, we reuse

the LF features extracted from LFE (fk
LF , k = (0, 1, 2))

to efficiently take advantage of depth information encoded

from LFE, by concatenating the fk
LF to the OMG decoder

feature. Finally, we generate an occlusion mask with a soft-

max layer, occlusion regions as 0, and non-occlusion re-

gions as 1, ideally. Note that contrary to the single image

inpainting mask which is hard digit mask ⊂ {0, 1}, our gen-

erated mask is soft continuous mask ⊂ [0, 1]. Rather than

thresholding the mask, which might cause a loss of informa-

tion, we use the soft mask and use an appropriate inpainting

method which can utilize the soft mask.

3.4. Occlusion Inpainter

Inpainting Method. We use a U-shaped single im-

age inpainting architecture for OI. Contrary to PConv[17]

which only adopts hard 0-1 mask, mask attention used in

LBAM [32] can adopt soft mask due to the learnable at-

tention map. Thus, following the LBAM architecture [32],

the encoder feature of OI, f̃k
ec, is re-normalized with mask

attention Ak
M . That is, fk

ec = f̃k
ec � Ak

M where � rep-

resents element-wise multiplication. LBAM uses a mask

attention map Ak
M for encoder as well as reverse mask

(1−MOMG) attention map Ak
RM for decoder. The decoder

feature of OI f̃k
dc is re-normalized with reverse mask atten-

tion, fk
dc = f̃k

dc�Ak
RM , which helps the decoder only focus

on the masked region.

Feature Fusion Method. One of the important func-

tions of the OI is to fuse the decoder features of OI (fk
dc) and

fk
LF from LFE to reconstruct the occlusion-free CV image

utilizing the visible background information from LFs. We

found that 1x1 convolution shows competitive or superior

performance compared to other more complicated fusion

methods. Thus, for simplicity, we concatenate two features,

fk
LF and fk

dc, and infuse them with 1x1 convolution. The

fused features are element-wisely added to the fk
dc with a

learnable parameter γ, which is initially set to 0.25.

3.5. Loss Function

We follow the objective function used in LBAM [32] to

guide the Iout using the Igt. Our image reconstruction loss

LI consists of �1 loss, perceptual loss and style loss, which

are described in detail in LBAM [32],

LI = L�1 + λ1Lperc + λ2Lstyle. (1)

Furthermore, with our modularized framework, the inter-

mediate representation of the network, the occlusion mask

MOMG, can be directly guided using the Mgt. Thus we

add a mask generation loss LM and use an MSE loss for it.

Finally, our entire objective function is defined as

L = LI + LM . (2)

3.6. Arbitrary Depth Occlusion Removal

By explicitly defining the occlusion mask, more flexi-

ble applications are available. In LF-DeOcc, the occlu-

sion is defined as all objects placed in the foreground based

on the disparity plane d. However, in various real-world

situations, the occlusion can be placed in some arbitrary
depth plane, and the object of interest may be placed in

the foreground, which is undesired to be removed. Dif-

ferent from previous researches, the proposed framework

can only remove objects in an arbitrary depth plane while

preserving the foreground object by simply manipulating
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the occlusion mask MOMG, without additional finetuning.

Let the occlusion is placed between two disparity planes

d1, d2(d1 < d2). The foreground occlusion mask for two

disparity plane is denoted as Md1

OMG,M
d2

OMG, respectively.

Note that the occlusion mask Md
OMG defines all foreground

occlusions between the disparity ranges [d,∞] as 0 and

background as 1, ideally. Then, the occlusion mask of ob-

jects placed between two disparity planes [d1, d2] is defined

as Md1,d2

OMG = 1−(Md1

OMG−Md2

OMG). With the Md1,d2

OMG, the

occlusion in an arbitrary depth plane can be removed, with-

out affecting the foreground object. In addition, unwanted

occlusion removal can be prevented by the user definition.

4. Experiments

4.1. Experimental Setup

Training dataset For the LF-DeOcc training, the re-

quirement of the ground truth occlusion-free CV image is

strong prior. It has been researched that the mask embed-

ding approach proposed by Wang et al. [30] which synthe-

sizes the occlusion LF image with occlusion-free LF im-

age and occlusion image could solve this problem. Even

though it uses synthetic occlusion training data, the trained

model could be well applied to various real-world occlusion

scenes [30, 37]. The mask embedding approach randomly

embeds 1-3 occlusion images in an LF image for a multi-

disparity occlusion scenario. To allow the model to effec-

tively learn the inpainting scenario, that is, a low disparity

occlusion scenario, we place more occlusions in the low dis-

parity planes. For the occlusion image, 21 thick and large

real occlusion images are added to the original 80 mask im-

ages used in Wang et al.’s method [30] to train the inpainting

scenario caused by large occlusion. A detailed description

of the mask embedding approach that we applied and the

disparity plane are provided in supplementary materials.

We embed the occlusion in the positive disparity planes.

Thus, our ground truth occlusion-free LFs should contain

only negative disparity objects. We choose 1418 LFs out of

2957 LFs from DUTLF-V2 [19] training dataset, which is a

dense LF dataset captured by Lytro Illum camera [2].

Test dataset To evaluate the performance quantitatively

in sparse LFs, we use 4 synthetic sparse LF scenes (4-Syn)

and 9 synthetic sparse LF scenes (9-Syn) for the quantita-

tive comparison which is synthesized by Wang et al. [30]

and Zhang et al. [37], respectively. A real sparse LF image,

Stanford CD scene [27] is also used for quantitative compar-

ison as it has a ground truth. To evaluate the performance

quantitatively in dense LFs, we choose 615 LFs out of 1247

LFs from DUTLF-V2 [19] test dataset and collect another

33 real occlusion images. Using the mask embedding ap-

proach with a disparity range of [1, 4], single or double oc-

clusions are embedded to evaluate multi-disparity occlusion

scenario, which is denoted as Single Occ and Double Occ

respectively. For the qualitative comparison, various pub-

licly available real-world sparse and dense occlusion LF

scenes are used. The sparse LF dataset is composed of LF

scenes captured by Wang et al. [30] and Stanford CD scene

[27]. The dense LF dataset is composed of EPFL-10 [24]

and Stanford Lytro dataset [20], both captured by the Lytro

Illum camera.

Training Detail The angular and spatial resolution of

LF images in DUTLF-V2[19] is (U × V × X × Y ) =
(9 × 9 × 600 × 400). For training and testing, we use

central 5 × 5 images and the spatial resolution is resized

to 300 × 200. Randomly center-cropped and horizontally

flipped images with a resolution of (X×Y ) = (256×192)
are used for our training with the mask embedding ap-

proach. We randomly choose 1-3 masks with a random

RGB shuffle and horizontally and vertically flipping for em-

bedded occlusion masks in training time. Our model is op-

timized by ADAM optimizer with (β1, β2)=(0.5,0.9), and a

batch size, λ1, and λ1 are set to 16, 0.01, and 120. The

learning rate is initially set to 0.0005 and multiplied by 0.5

every 200 epochs. We train our model on 4 Nvidia TITAN

X Pascal GPUs in Pytorch framework. The epoch is set to

500 and the training step is ended within 1 day.

4.2. Experimental Results

We compare our model with the state-of-the-art LF-

DeOcc methods, DeOccNet [30] and Zhang et al.’s method

[37]. We train the DeOccNet with the same learning strat-

egy and the dataset used by the original paper. For Zhang et

al.’s method, we used the pre-trained model provided by the

author. DeOccNet* and Zhang et al.* denotes each model

trained on the same dataset and mask embedding as ours for

a fair comparison in Dense LF dataset. We trained DeOc-

cNet* from the scratch whereas Zhang et al.* is finetuned

from pre-trained model provided by the author as the model

trained from scratch does not converge. We also compare

our model with the single image inpainting methods, RFR

[16] and LBAM [32], to investigate a information gathered

from various views in LFs. Since single image inpainting

models can not define the foreground occlusions by itself,

we additionally attach the OMG module to the single image

inpainting model, where additional (f0
LF , f

1
LF , f

2
LF ) are re-

moved to prevent the information from LFs and IFBS are

provided to define the occlusion. Both RFR and LBAM pre-

trained on the Paris Street View dataset [6] are finetuned on

the same dataset we used.

4.2.1 Qualitative Results
The qualitative comparisons of ours and other methods on

real-world sparse and dense LFs are shown in Figs. 3 and

4. The RFR [16] does not reconstruct the scene in both

LF datasets because PConv can not accept the soft mask

generated by OMG. With a learnable attention map, LBAM

233



Input CV OMG + RFR OMG + LBAM DeOccNet* Ours

Single Image Inpainting method LF-DeOcc methodSparse LF

Zhang et al.DeOccNet Zhang et al.*

Figure 3. Qualitative comparisons on the sparse LF dataset. Some parts of the outputs are magnified with red boxes for a detailed compar-

ison. Ours could reconstruct sharper occlusion-free CV images from the scene utilizing occluded background information visible in other

views. The scenes in the first last which is denoted as CD [27] are used for quantitative comparison.

[32] outperforms in the dense LFs compared to RFR [16]

and existing LF-DeOcc methods. However, LBAM [32] can

not accurately reconstruct the output in the sparse LFs since

they entirely depend on the context information and can not

accurately define the complicated occlusion without FLF .

We emphasize once again that RFR and LBAM do not work

without OMG since the occlusion mask can not be defined

in a single RGB image. The DeOccNet [30] shows blurry

outputs around the occlusion in the sparse LFs and remains

occlusion artifacts in both LF datasets. DeOccNet* shows

better reconstruction performance in both LF datasets, but

still shows blurry outputs and remains occlusion artifacts.

Zhang et al.’s method [37] shows clear output if the sin-

gle disparity occlusion has a large disparity (second row in

Fig. 3). However, the artifacts from occlusions remain in

the multi-disparity occlusions, especially in the dense LFs.

Even though they are trained on the same dataset that we

used, Zhang et al.* [37] shows artifacts in the dense LFs.

Contrary to the single image inpainting models and other

LF-DeOcc methods which only performs well in the dense

and sparse LF datasets, respectively, our proposed frame-

work generally shows better de-occlusion performance in

both LF dataset. Our model generates output with few oc-

clusion artifacts compared to other LF-DeOcc models, re-

constructing clear occlusion-free CV images.

4.2.2 Quantitative Results

We use peak signal-to-noise ratio (PSNR) and structural

similarity index measure (SSIM) to quantitatively evaluate

how precisely the model reconstructs the occlusion-free CV

image, which is widely used metrics in LF-DeOcc and sin-

gle image inpainting [30, 37, 32, 16].

Table 1 shows the summarized quantitative results. The

RFR [16] and LBAM [32], which is the single image in-

painting method, shows better results in the dense LF im-

ages because the dense LF requires inpainting knowledge

to reconstruct the occlusion-free scene. However, single im-

age inpainting models generally shows lower performance

in the sparse LFs because they can not utilize the back-

ground information from LFs. DeOccNet [30] and DeOcc-

Net* shows reasonable results on both dataset, but generally

shows insufficient performance. As shown in Fig. 3, Zhang

et al. [37] shows notable performance, especially in the sin-

gle disparity occlusion of the sparse LF. Zhang et al.* [37]

also does not generally shows better results. Our proposed

framework generally outperforms other LF-DeOcc and in-

painting models in both sparse and dense LFs.

4.3. Various Applications

4.3.1 Prevention of Unwanted Removal

In the third row of the Fig. 3, the unwanted regions may

defined as an occlusion and removed, such as the ground,

making serious artifacts. Contrary to other LF-DeOcc mod-

els, by explicitly defining the occlusion mask, our model

could manually prevent the unwanted removal with user

guidance. Fig.5 shows the original output Iout and edited

output Ieditout with the edited mask Medit
OMG. With explicit

user guidance to the occlusion mask, the artifacts from the

ground is removed in edited output.
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Input CV OMG + RFR OMG + LBAM DeOccNet* Ours

Single Image Inpainting method LF-DeOcc methodDense LF

DeOccNet Zhang et al.*Zhang et al.

Figure 4. Qualitative comparisons on the dense LF dataset. Some parts of the outputs are magnified with red boxes for a detailed compari-

son. Ours and OMG+LBAM[32] model can generate clear occlusion-free CV image.

Table 1. Quantitative comparison on the sparse and dense LF dataset using PSNR and SSIM (PSNR/SSIM). The higher the both metric,

the better the quality of the reconstructed image.
LF Type Name RFR + OMG LBAM + OMG DeOccNet Zhang et al. [37] DeOccNet* Zhang et al.* [37] Ours

Sparse(syn)
4-Syn [30] 19.89/0.668 21.11/0.677 25.04/0.807 26.37/0.871 23.74/0.701 14.46/0.683 26.42/0.836

9-Syn [37] 20.69/0.672 23.04/0.725 21.07/0.791 27.97/0.901 23.70/0.715 22.00/0.758 27.04/0.849

Sparse(real) CD [27] 21.13/0.646 21.56/0.803 21.22/0.740 18.30/0.662 22.70/0.741 20.19/0.832 25.17/0.870

Dense(syn)
Single Occ 26.28/0.867 27.92/0.899 24.84/0.863 21.98/0.815 28.67/0.914 23.15/0.900 32.44/0.947
Double Occ 23.25/0.801 24.83/0.827 23.04/0.819 19.71/0.755 25.85/0.867 18.01/0.823 28.31/0.902

4.3.2 Arbitrary Depth Occlusion Removal

Using the mask manipulation method described in section

3.6, our model could be applied to the arbitrary depth
occlusion removal, which selectively removes the occlu-

sion placed in arbitrary depth. Fig. 5 shows the occlu-

sion removal between two disparities d1 and d2. The ob-

jects in the intermediate depth plane (parallelepiped-shaped

magnet and flower bud) are removed while preserving the

foreground objects (octahedron-shaped magnet and flower)

without explicit guidance by the user.

4.4. Ablation Study

The proposed framework is built upon the fact that LF-

DeOcc requires various domain knowledge and by dividing

the model into three specified components to deal with the

sparse and dense LFs. Since the three components are re-

lated closely, our framework does not properly work if one

of the components is eliminated. Thus, to verify the ef-

fectiveness of the separation, we design a DeOccNet-large,

which enlarges the DeOccNet [30] in the channel dimen-

sion so that the number of the parameter is similar to ours

(87.8M), but the model is not explicitly divided into spec-

ified components. We further experiment DeOccNet-large
+ FBS, in which IFBS is concatenated to the input LSAI ,

to verify the effect of explicit guidance of the occlusion in-

formation on the performance. Table 2 shows the quanti-

tative results of ablation studies. With large parameters,

DeOccNet-large and DeOccNet-large + FBS shows better

performance in dense LFs, but still shows lower perfor-

mance than ours. Especially, even though they have a large

number of parameters and explicit occlusion guidance, the

performance improvement on the sparse LFs is insignificant

and fails to generally deal with both sparse and dense LF

datasets. In addition, since our model combines single im-

age inpainting methods and features of LFs, the feature fu-

sion method affects the performance. We further test several

attention-based fusion methods, self-attention based fusion

(SA Fusion) and mask-feature attention based fusion (M-F
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Figure 5. Illustration of the preventing unwanted removal (left) and arbitrary depth occlusion removal (right) in our model. Contrary to

existing LF-DeOcc methods, our model could be applied to various de-occlusion tasks with mask manipulation.

Table 2. Ablation studies of ours and its variants on the sparse and dense LF datasets using PSNR and SSIM (PSNR/SSIM). The higher the

both metric, the better the quality of the reconstructed image.

LF Type Name DeOccNet-large DeOccNet-large + FBS SA Fusion M-F Fusion Ours

Sparse(syn)
4-Syn[30] 24.51/0.741 24.88/0.756 26.16/0.812 26.39/0.833 26.42/0.836
9-Syn[37] 24.24/0.755 25.08/0.774 26.79/0.847 26.89/0.849 27.04/0.849

Sparse(real) CD [27] 22.80/0.752 23.72/0.822 24.31/0.862 24.39/0.864 25.17/0.870

Dense(syn)
Single Occ 29.39/0.927 31.20/0.939 32.18/0.945 32.06/0.944 32.44/0.947
Double Occ 26.44/0.881 27.76/0.896 28.35/0.901 28.30/0.899 28.31/0.902

Model LBAM [32] Zhang et al.[37] DeOccNet [30] Ours

Params 69.3M 2.7M 39.0M 80.6M

Tinf 12ms 3050ms 10ms 24ms

Table 3. The number of parameters and the average inference time

Tinf of each model. Tinf is measured when calculating the LFs

with spatial resolution of 256× 192 using a TITAN XP GPU.

Fusion). The attention based fusion methods also outper-

form existing methods, but the performance improvement

is marginal compared to the 1 × 1 convolution we used,

even though attention requires more parameters and compu-

tational powers. A detailed implementation of each fusion

method is provided in supplementary materials.

4.5. Limitations and Future Works

The inpainting knowledge is necessary for LF-DeOcc

in the dense LFs, requiring more parameters compared to

only dealing with the sparse LF images. Thus, our model

is twice as large as DeOccNet [30] (Table 3). However,

ours shows reasonable inference time compared to other

methods, which is appropriate for real-world applications

(Table. 3). For future work, more parameter-efficient LF-

DeOcc methods are expected with efficient inpainting meth-

ods. Furthermore, the inpainting knowledge of ours is

sub-optimal because the inpainter is trained on a relatively

small number of datasets compared to RGB dataset. Pre-

trained inpainter model does not alleviate this problem due

to the catastrophic forgetting. Some continual learning ap-

proaches [9, 5, 34] may be effective for this problem with

a trade-off between the performance and memory, param-

eters, or training times. Additionally, we expect combin-

ing our proposed framework with the LF completion meth-

ods [10] expands the LF-DeOcc from reconstructing single

occlusion-free CV image to the entire occlusion-free LF im-

age and gives new perspective to LF-DeOcc task.

5. Conclusion
In this paper, we propose a deep learning-based LF-

DeOcc framework, ISTY, which considers the various oc-

clusion scenarios to work on both sparse and dense LF im-

ages. By explicitly defining the occlusion mask and fusing

background information from LF images into a single im-

age inpainting model, the proposed framework can remove

occlusions not only in the foreground but also in the arbi-

trary depth plane. Various experimental results show that

the proposed framework outperforms previous LF-DeOcc

methods in both sparse and dense LF images, reconstructing

clear occlusion-free images. Expected Societal Impact.
Since the proposed framework can remove the objects in ar-

bitrary depth plane, without affecting other objects, it could

be abused to conceal the crime scene or hide crucial clues.
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