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Abstract

Universal Domain Adaptation aims to transfer the
knowledge between the datasets by handling two shifts:
domain-shift and category-shift. The main challenge is
correctly distinguishing the unknown target samples while
adapting the distribution of known class knowledge from
source to target. Most existing methods approach this prob-
lem by first training the target adapted known classifier and
then relying on the single threshold to distinguish unknown
target samples. However, this simple threshold-based ap-
proach prevents the model from considering the underly-
ing complexities existing between the known and unknown
samples in the high-dimensional feature space. In this pa-
per, we propose a new approach in which we use two sets
of feature points, namely dual Classifiers for Prototypes and
Reciprocals (CPR). Our key idea is to associate each proto-
type with corresponding known class features while pushing
the reciprocals apart from these prototypes to locate them in
the potential unknown feature space. The target samples are
then classified as unknown if they fall near any reciprocals
at test time. To successfully train our framework, we collect
the partial, confident target samples that are classified as
known or unknown through on our proposed multi-criteria
selection. We then additionally apply the entropy loss reg-
ularization to them. For further adaptation, we also apply
standard consistency regularization that matches the pre-
dictions of two different views of the input to make more
compact target feature space. We evaluate our proposal,
CPR, on three standard benchmarks and achieve compara-
ble or new state-of-the-art results. We also provide exten-
sive ablation experiments to verify our main design choices
in our framework.

1. Introduction
Deep-learning based approaches have shown remarkable

success on recognition tasks [9, 11, 27] given a huge amount
of data, but do not generalize well to the data from newly
seen domain. Therefore, labeled datasets for the novel do-
main need to be constructed, which requires tremendous

labeling efforts in time and cost. Unsupervised Domain
Adaptation (UDA) addresses this problem by handling the
domain shift from labeled source data to unlabeled target
data. However, conventional UDA methods [30, 10, 17, 24]
only perform when the both domains share the label space,
which limits applicability when the category shift happens.
In that sense, several DA scenarios have recently proposed
a more practical perspective that takes into account both do-
main shift and category shift during the domain adaptation:
Open-set Domain Adaptation (OSDA) [19, 25] and Partial
Domain Adaptation (PDA) [3]. OSDA assumes there are
target private classes that are not shown in source domain.
PDA deals with a vice versa scenario where source domain
possesses its own classes. However, their settings are out
of line with the real-world difficulty where we cannot know
how the label space between two domains is different in ad-
vance. To make up for this, Universal DA (UniDA) [33]
has been introduced to account for the uncertainty about
the category-shift between source and target domains. The
purpose of the UniDA is to make a model that is applica-
ble to any category shift scenarios and classifies the target
samples into either one of the correct known classes or the
unknown classes. The main challenge for UniDA is to de-
tect unknown samples correctly while transferring domain
knowledge from source domain to the target domain.

Early works attempted to solve the issues with following
techniques: calculating unknown scores with domain simi-
larity and entropy value [33], employing multiple uncertain-
ties to decide unknown samples [7], proposing a neighbor-
hood clustering techniques with entropy optimization for re-
jecting unknown categories [22]. All of these methods man-
ually set a threshold to determine the label space of target
samples. OVANet [23] deals with this limitation by adopt-
ing an additional One-vs-All classifier that aims to find an
adaptive threshold between known and unknown classes.
Despite of their efforts, they still lack the ability to capture
the distinctive properties of known and unknown samples.
Moreover, they heavily rely on single criteria (threshold) for
dividing the target samples into known and unknown, which
is not powerful enough to handle the category shift in real-
world. Those two limitations eventually lead to downgrade
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the performance of not only detecting unknown samples but
also adapting known classes between source and target do-
mains.

Motivated by the above limitations in previous methods
for UniDA, we propose to explicitly learn feature charac-
teristics of both known and unknown samples with newly
proposed dual Classifiers for Prototypes and Reciprocals
(CPR). Along with standard prototype learning [28] to rep-
resent known classes, we adopt the concept of recipro-
cals [4] to symbolize unknown samples. Considering the
complexities from mingled domain and category shift, the
reciprocal points discover the unknown feature spaces in
curriculum manner. At the warm-up phase, the recipro-
cal points are first initialized at unexploited regions from
known source classes, where the unknown classes poten-
tially place in. At the same time, the domain shift is gradu-
ally reduced by consistency regularization. The target sam-
ples are augmented in the weak and strong views and con-
sistency between the predictions of the two views is in-
creased.

After warm-up, the dual classifiers have better repre-
sentation power to distinguish between known and un-
known samples regardless of domain. To faithfully utilize
it, we collect confident known/unknown samples to regu-
larize the both classifiers. To this end, we propose care-
fully designed multiple criteria to filter the samples, con-
sidering the natural properties of dual classifiers. Given
the filtered known/unknown samples, corresponding proto-
types/reciprocals are close to them, respectively. By do-
ing so, the reciprocals explicitly locate the unknown target
classes. With our novel dual classifiers and training recipes,
the feature distribution of source/target samples are aligned
and each classifiers successfully identify both known and
unknown samples.

Here are our main contributions:

1. We propose CPR, a universal domain adaptation
framework with dual classifiers including learnable
unknown detector called reciprocal classifier. With
the help of newly proposed objective function, it can
achieve to capture both known and unknown feature
space.

2. We devise a new multiple criteria to find more reliable
samples for both known and unknown classes, consid-
ering the natural structure of feature space extracted
from dual classifiers and their confidence thresholds.

3. We demonstrate our novel framework under differ-
ent universal domain adaptation benchmarks with ex-
tensive ablation studies and experimental comparisons
against the previous state-of-the art methods.

2. Related work
Unsupervised Domain Adaptation. The main purpose

of Unsupervised Domain Adaptation(UDA) is to transfer
the knowledge from source to target domain while account-
ing for domain shift between them. A closed-set DA(CDA)
is the conventional UDA setting where two domains share
the same label space. Methods utilizing adversarial learn-
ing [24, 35, 14] or self-training [15, 36] with generated
pseudo labels of target samples have been proposed to solve
closed-set DA. However, this scenario does not perform
when category-shift happens between the datasets. Mo-
tivated by this limitation, several scenarios in UDA have
been proposed to handle category-shift. Among them, Par-
tial DA(PDA) deals with the case with presence of private
source classes. To solve this task, Most methods design
weighting schemes to re-weight source examples during do-
main alignment [3, 16, 34]. Open-set DA(OSDA) is another
approach to handle private target classes that is never seen
on source domain [19, 12, 25].

Universal Domain Adaptation. All of aforementioned
methods only focus on their fixed category shift scenario,
but in reality we mostly could not access to prior knowl-
edge of label space relationship between source and target
domain. Universal Domain Adaptation (UniDA) have been
proposed to address the issue. UAN [33] first introduced
UniDA framework, which utilizes a weighting mechanism
to discover label sets shared by both domains. CMU [7]
further improved measure of uncertainty to find target un-
known classes more accurately. DANCE [22] learns the tar-
get domain structure by neighborhood clustering, and used
an entropy separation loss to achieve feature alignment. Re-
cently, OVANet [23] designed one-vs-all classifier to obtain
unknown score and adopt an adaptive threshold. However,
their single threshold methods fail to explicitly bring out
the unknown features from the target samples. To address
the above weakness, we adopt a novel dual-classifier frame-
work for prototype and reciprocal to detect the properties of
known and unknown samples separately with multi-criteria
selection.

Open set recognition. [26] defined Open set recogni-
tion(OSR) problem for the first time and proposed a base
framework to perform training and evaluation. With rapid
development of deep neural networks, [1] incorporated
deep neural networks into OSR by introducing the Open-
Max function. Then both [8] and [18] tried to synthe-
size training samples of unseen classes via the Genera-
tive Adversarial Network. Since [32] attempted to com-
bine prototype learning with deep neural networks for OSR,
they achieved the new state-of-the art. Prototypes refer
to representative samples or latent features for each class.
[32] introduced Convolutional Prototype Network (CPN),
in which prototypes per class were jointly learned during
training. [4, 5] learned discriminative reciprocal points for
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Figure 1: Dual classifiers are initially trained with labeled source samples. To ensure reciprocal points and prototypes are
distinct enough, we devise split loss and further minimize weighted entropy loss to make target samples confident regardless
of whether those are known or unknown samples.

OSR, which can be regarded as the inverse concept of pro-
totypes. In this paper, we incorporate a reciprocal points as
learnable representation points to differentiate “known” and
potential “unknown” samples in UniDA.

3. Methodology

In UniDA, there exist a labeled source domain Ds =
{(xs

i , y
s
i )}

Ns
i=1 with closed (known) categories Ls and an un-

labeled target domain Dt = {(xt
i)}

Nt
i=1 with categories Lt

that could be partially overlapped with Ls and potentially
consists of open (unknown) classes. Ls and Lt denote the
label sets of the source domain and target domain, respec-
tively. Our goal is to label the target samples with either one
of the known labels Cs or the “unknown” label.

Overview. As prototypes are the points describing the
characteristics of corresponding known class, other recipro-
cal points are required to help model interpret unknown fea-
ture correctly. In that sense, reciprocal points [5] are utilized
to symbolize the unknown feature space while also proto-
types are used to point out known feature space at the same
time, which motivates us to develop a dual-classifier frame-
work for them. Furthermore, we introduce multi-criteria
selection mechanism to effectively adapt the model to the
target distribution with the confident target samples. As
shown in Fig. 2, our model consists of a shared feature
extractor g and two classifiers, prototype classifier hp and
reciprocal classifier hr. Feature extractor g takes an in-
put x and outputs a feature vector f = g(x). Two classi-
fiers hp and hr consist of weight vectors [p1,p2, . . . ,pK ]

and [r1, r2, . . . , rK ] that indicates corresponding unnor-
malized output logits of K known classes. We conduct the
softmax function to obtain prototypical probability pp =
Softmax(hp(f)) ∈ RK and reciprocal probability pr =
Softmax(hr(f)) ∈ RK . We also define collaborative
probability pc = Softmax([hp(f), hr(f)]) ∈ R2K where
[, ] means the concatenation of two logits. For the source
domain, while each classifier is trained to predict correct
ground-truth label of input like using two different classi-
fiers [24], we ensure reciprocal points become effectively
far away from known source data by using a new margin
loss (Sec. 3.1 and Sec. 3.2). For the target samples, we
firstly augment them with two different views (xt

s and xt
w

as strong and weak views respectively). And then, we make
the model to be aware of target distribution by giving con-
sistency regularization on collaborative probability pc for
two views in the first phase (Sec. 3.3.1). In the next phase,
we firstly separate total input batch into BC and BO by
pseudo labels.

xt ∈

{
Bc argmax(pc) < K

Bo argmax(pc) ≥ K
(1)

They are further filtered out to detect confident known
and unknown samples based on the multi-criteria selection
mechanism (Sec. 3.3.2). Last but not least, using trained
dual classifiers, we classify the target samples into proper
known classes while filtering out unknown samples with pc
in inference (Sec. 3.4).
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Figure 2: Overview of Network. During the whole training time, we use source domain to associate each prototype with
corresponding known class features while pushing the reciprocals apart from these prototypes Lsrc (Sec. 3.1, Sec. 3.2). On
the contrary, we adopt curriculum learning for target domain as follows: We first guide the model to gradually adapt from
source to target via standard consistency regularization Ltrg,kl (warm-up phase). Then, in the adaptation phase, we apply
additionally enforce regularization Ltrg,adapt on the target samples that are classified as known or unknown based on the
proposed multiple criteria.

3.1. Preliminary: Reciprocal points for classifica-
tion

Before discussing the proposed framework, we first re-
view reciprocal points introduced in [5, 4]. The main idea
is to learn latent representation points to be the farthest ones
from the corresponding classes, which is the reverse con-
cept of prototypes. Given source feature vectors fs, the
classifier for reciprocal is trained by minimizing the recip-
rocal points classification losses based on the negative log-
probability of the true class k:

d(fs, rk) = −fs · rk (2)

pr (y = k|fs, hr) =
ed(fs,rk)∑K
i=1 e

d(fs,ri)
(3)

LCEr
= − log pr (y = k|fs, hr) (4)

where d is a distance metric. In this paper, we simply apply
minus dot product to estimating distance. Although Eq. 3
helps hr to maximize the distance between reciprocal points
and corresponding samples, extra class space including in-
finite unexploited unknown space can be expanded with no
restriction. To separate unknown space with known one as
much as possible, the open space should be restricted. To
restrict unknown space, [5, 4] additionally propose to min-
imize the following loss given a feature vector fs from cat-
egory k

Lo = max(d(fs, rk)−R, 0) (5)

where R is a learnable margin. As shown in Fig. 1a, by lim-
iting the distance d(fs, rk) less than R, the distance to the
remaining samples of extra classes would be also reduced
indirectly less than R. In other words, the open space risk

can be implicitly bounded by utilizing Eq. 5 and features
from unknown classes could be congregated around recip-
rocal points. In light of this, we interpret reciprocal points
as potential representation points for target private classes.

3.2. Learning from Source Domain

As explained, the reciprocal classifier can be trained by
minimizing Eq. 4. Given the dual classifiers, the prototype
classifier can be learned by minimizing the following stan-
dard cross-entropy loss,

pp (y = k|fs, hp) =
e−d(fs,pk)∑K
i=1 e

−d(fs,pk)
(6)

LCEp
= − log pp (y = k|fs, hp) (7)

This loss would make prototypes to be close to the correct
samples. Moreover, Eq. 5 should be taken to restrict un-
known space and make features be more compact. How-
ever, if we naively minimize these losses, we cannot handle
the case where some reciprocal points are getting closer to
features of other known classes as shown in the Fig. 1a.
To fix this, each source feature should be more closer to its
prototype than any other reciprocal points. By choosing a
nearest reciprocal point as reference, we can effectively and
clearly separate known space from unknown one as shown
in Fig. 1b. Hence, the proposed objective for the true class
k is denoted as follows:

Lsplit = max(d(fs,pk)−min
i

(d(fs, ri)), 0) (8)

Then, the overall training loss for source domain can be
computed as follows:

Lsrc = LCEp
+ LCEr

+ λ(Lo + Lsplit) (9)
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This loss allows both classifiers to classify known class,
while at the same time allowing the reciprocal point to be
distributed in unknown feature space.

3.3. Learning from Target Domain

As described in the overview, unknown samples are
found based on whether their closest point is the one of
reciprocal points or not. However, if we proceed with the
learning before reciprocal points are placed in unknown fea-
ture space, there would be a huge performance degradation
due to immature function to differentiate known and un-
known class. Even though reciprocal points are clearly sep-
arated from prototypes, noisy samples are inevitable due to
the domain gap between source and target domains. Thus, It
is essential to give reciprocal points enough time to be sepa-
rated from known class space and effectively detect reliable
unknown feature. To solve these issues, the training is done
in curriculum manner from warm-up phase(iters < iw) to
adaptation phase(iters ≥ iw). In the warm-up phase, re-
ciprocal points are gradually aligned to the open space and
thresholds for selecting confident samples are updated in
online manner. Then, in the adaptation phase, we minimize
the weighted entropy loss with samples selected through
well calibrated multi criteria including thresholds and the
consistency between dual classifiers.

3.3.1 Warm-up Phase

As shown in Fig. 2 there are two different views for the
target domain, weak augmented view xt

w and strong aug-
mented view xt

s. The model is trained with the pc of two
views to become similar to generate more compact target
features.

Lkl = KL
(
pc(x

t
s)∥pc(xt

w)
)

(10)

During the warm-up phase, the model is trained using
Eq 9 and Eq 10 to generate compact target features with
well initialized points. Along with this, thresholds for
known and unknown classes should be calculated to select
reliable samples in the adaptation phase. Two thresholds are
progressively updated by moving average of mean collabo-
rative probability of Bc and Bo

ρc = α ∗ ρc + (1− α) ∗ E
xt∈Bc

max(pc) (11)

ρo = α ∗ ρo + (1− α) ∗ E
xt∈Bo

max(pc) (12)

where ρc and ρo are initially set as 0. These thresholds
would be used in the adaptation phase to select more con-
fident samples and continue to be updated according to the
model adapting to the target domain.

3.3.2 Adaptation Phase

In the adaptation phase, given the warm-up model and
thresholds, we additionally enforce entropy regularization
on the target samples that pass multi-criteria we propose.
We detail the criteria below.

Multi-Criteria for Selection. By design of the frame-
work, index of the nearest prototype and that of the farthest
reciprocal point should be same for known classes. This
naturally motivates us to design the first criteria of examin-
ing whether the same index of the classifiers of prototypes
and reciprocals are fired in distinguishing the known and
unknown classes. Also, we evaluate if the max(pc) is above
the threshold to obtain only the confident predictions. We
note that the threshold values, ρc and ρo, are continuously
updated in the adaptation stage. By putting together, confi-
dent and reliable sets B̂c and B̂o are sampled from Bc and
Bo respectively as shown in Fig. 2.

B̂c : max(pc) ≥ ρc & argmax(pp) = argmax(pr)

B̂o : max(po) ≥ ρo & argmax(pp) ̸= argmax(pr)

Since the output of weak augmented view is more reliable
than strong augmented one, we first get the selected weak
augmented samples. Then, we also take account for the
strong augmented samples which are pairs of selected weak
augmented ones. After that, for the strong augmented view,
we forward it one more condition, judging whether its near-
est point is the same with that of weak augmented view.
By following the above multi-criteria, we could send more
confidently encoded features to the dual classifiers.

Weighted Entropy. From the selected samples, we could
calculate entropy H(xt) = −pc(x

t) log pc(x
t). By mini-

mizing the entropy, selected samples become more closer
to their nearby points and more confident. However, this
vanilla entropy minimization may leads model being biased
to either known or unknown classes due to class imbalance.
Hence, we weight each entropy of known and unknown
classes using the number of selected samples as follows.

Lent = w ∗ E
xt∈B̂c

H(xt) + (1− w) ∗ E
xt∈B̂o

H(xt) (13)

where w =
|B̂o|

|B̂c|+|B̂o| . Furthermore, we also add Eq 5 to

minimize open feature space using detected pseudo known
target samples B̂c. Consequently, the overall training loss
can be computed as follows:

Ltrg =

{
Lkl iters < iw

Lkl + Lent + λLo iters ≥ iw
(14)

Lall = Lsrc + Ltrg (15)
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Table 1: H-score of each method on Office-Home for OSDA.

Method OfficeHome (25/0/40)
Ar→ Cl Ar→ Pr Ar→ Re Cl→ Ar Cl→ Pr Cl→ Re Pr→ Ar Pr→ Cl Pr→ Re Re→ Ar Re→ Cl Re→ Pr Avg

ROS 60.1 69.3 76.5 58.9 65.2 68.6 60.6 56.3 74.4 68.8 60.4 75.7 66.2
UAN 0.0 0.0 0.2 0.0 0.2 0.2 0.0 0.0 0.2 0.2 0.0 0.1 0.1
CMU - - - - - - - - - - - - -
DCC 56.1 67.5 66.7 49.6 66.5 64.0 55.8 53.0 70.5 61.6 57.2 71.9 61.7
OVA 58.4 66.3 69.3 60.3 65.1 67.2 58.8 52.4 68.7 67.6 58.6 66.6 63.3
CPR 57.1 67.2 75.7 64.9 66.8 65.6 64.5 57.3 73.8 71.0 60.9 74.4 66.6

Table 2: H-score of each method on Office and VisDA for
OSDA.

Method Office (10/0/21) VisDA
A→ D A→ W D→ A D→ W W→ A W→ D Avg (6/0/6)

ROS 65.8 71.7 87.2 94.8 82.0 98.2 83.3 50.1
UAN 38.9 46.8 68.0 68.8 54.9 53.0 55.1 51.9
CMU - - - - - - - -
DCC 58.3 54.8 67.2 89.4 85.3 80.9 72.6 70.7
OVA 90.5 88.3 86.7 98.2 88.3 98.4 91.7 53.5
CPR 90.4 89.4 86.7 98.5 88.6 92.7 91.1 79.4

3.4. Inference

In the test phase, we simply use the collaborative proba-
bility pc to see what is the nearest point. If the nearest point
is one of prototypes, it is classified as corresponding known
class, and if it is one of reciprocal points, it is classified as
unknown class.

4. Experiments
4.1. Setup

Datasets. We conduct experiments on three datasets.
Office-31 [21] consists of 4652 images in 31 categories
from three distinct domains: DSLR (D), Amazon (A),
and Webcam (W). The second benchmark dataset Office-
Home [31] is a more challenging one, which contains
15500 images with 65 classes and four domains Art (Ar),
Clipart(Cl), Product(Pr), and Real-World (Re). The third
dataset VisDA [20] is a large-scale dataset, where the source
domain contains 15K synthetic images and the target do-
main consists of 5K images from the real world. Let
|Ls ∩ Lt|, |Ls − Lt| and |Lt − Ls| denote the number of
common categories, source private categories and target pri-
vate categories, respectively. Following [22], we split the
classes of each benchmark and show the split of each exper-
imental setting in a corresponding table.

Evaluation Metric. Following [23], we evaluate the per-
formance using H-score for both OSDA and UniDA. H-
score is the harmonic mean of the accuracy on common
classes(accc) and accuracy on the “unknown” classes acct
as:

Hscore =
2accc · acct
accc + acct

(16)

The H-score is high only when both the “known” and “un-
known” accuracies are high. Thus, H-score accurately mea-
sures both accuracies.

Implementation Details. We use ResNet50 [9] pre-
trained on ImageNet [6] as our backbone network following
previous works. The batch size is set to 36, and the hyper-
parameters λ and α are set as 0.1 and 0.99, respectively. We
adopt horizontal flip and random crop as weak augmenta-
tion and augmentation used in FixMatch [29] as strong aug-
mentation. The number of iterations for warm-up phase, iw
is set as 1000, where thresholds for all the experiments are
saturated. In case of large-scale dataset VisDA, iw is set as
max(|Ds| , |Dt|)/(batch size) to allow model to see all the
samples in both datasets. Following previous works, We
train our model for total 10000 iterations including iw. We
conduct all experiments with single GTX 1080ti GPU.

4.2. Main Results

In this section, we show quantitative evaluations on
the aforementioned four benchmark settings by reporting
H-score value. For each benchmark setting, we mainly
compare our method with the state-of-the-art baselines:
ROS [2], UAN [33], CMU [7], DCC [13], OVANet [23].

Experimental Results As seen in Tab 1 and Tab 2, CPR
outperforms or comparable to baseline methods on the
OSDA setting. Our method achieves the best H-score
79.4% and 66.6% on the large-scale dataset VisDA and
OfficeHome, which outperforms the other methods, and
second best H-score of 91.0% on the Office-31. For the
large-scale VisDA dataset, CPR gives more than 8% im-
provements compared to the other methods. In case of
UniDA, CPR also shows superior performance compared
to the other methods as shown in Tab 3 and Tab 4. In sum-
mary, CPR outperforms or comparable to previous state-of-
the-art methods across different DA settings. It proves that
our dual-classifier framework is robustly powerful in sev-
eral benchmarks with various UniDA and OSDA settings.

We analyze the behavior of CPR across different num-
ber of unknown classes. We perform 4 UniDA experimens
in OfficeHome with fixing the number of common classes
and source private ones and compare H-score of those with
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Table 3: H-score of each method on Office-Home for UniDA.

Method OfficeHome (10/5/50)
Ar→ Cl Ar→ Pr Ar→ Re Cl→ Ar Cl→ Pr Cl→ Re Pr→ Ar Pr→ Cl Pr→ Re Re→ Ar Re→ Cl Re→ Pr Avg

UAN 51.6 51.7 54.3 61.7 57.6 61.9 50.4 47.6 61.5 62.9 52.6 65.2 56.6
CMU 56.0 56.9 59.2 67.0 64.3 67.8 54.7 51.1 66.4 68.2 57.9 69.7 61.6
DCC 58.0 54.1 58.0 74.6 70.6 77.5 64.3 73.6 74.9 81.0 75.1 80.4 70.2
OVA 62.8 75.6 78.6 70.7 68.8 75.0 71.3 58.6 80.5 76.1 64.1 78.9 71.8
CPR 59.0 77.1 83.7 69.7 68.1 75.4 74.6 56.1 78.9 80.5 63.0 81.0 72.3

Table 4: H-score of each method on Office and VisDA for
UniDA.

Method Office (10/10/11) VisDA
A→ D A→ W D→ A D→ W W→ A W→ D Avg (6/3/3)

ROS 71.4 71.3 81.0 94.6 95.3 79.2 82.1 50.1
UAN 59.7 58.6 60.1 70.6 60.3 71.4 63.5 30.5
CMU 68.1 67.3 71.4 79.3 80.4 72.2 73.1 34.6
DCC 88.5 78.5 70.2 79.3 88.6 75.9 80.2 43.0
OVA 85.8 79.4 80.1 95.4 94.3 84.0 86.5 53.1
CPR 84.4 81.4 85.5 93.4 91.3 96.8 88.8 58.2

Table 5: Results of ablation studies

(a) Analysis on Lsplit and Warm-up stage

Ablation Study Office(OSDA) VisDA(OSDA)
w/o Lsplit 59.55 20.85

w/o Warm-up 83.1 55.32
CPR 91.1 79.4

(b) Ablation study on multi-criteria

Ablation Study Office(OSDA) VisDA(OSDA)
w/o consistency condition 84.1 31.03
w/o threshold condition 88.5 69.1

CPR 91.1 79.4

DCC and OVA. Fig. 3 shows that the performance of CPR
is always better than other baseline methods and robustness
to the number of unknown classes.

4.3. Ablation study

The importance of Lsplit and warm-up. We conduct
an ablation study on split loss (Lsplit.) and warm-up stage
on Office and VisDA for OSDA (See Tab 5a). If the model
is firstly trained without the split loss, the performance of
both experiments plummeted as shown in Tab 5a. Fur-
thermore, we can also show qualitative comparisons be-
tween with and without Lsplit using t-SNE (See Fig. 4a and
Fig. 4b). As shown in Fig. 4b, the model without Lsplit

classifies many known features as unknown class since the
latent space is not well separated, which verifies that Lsplit

contributes greatly to dividing feature space into known and
unknown space. We also observe that some known classes
are wrongly classified as unknown classes, which means
reciprocal points are not well separately formed from the
region of known features. Next, we can also observe that
warm-up stage is a critical component of our CPR as shown

in Tab 5a. Warm-up stage seems to guarantee stable learn-
ing of two classifiers and provide an important cornerstone
of multi-criteria for following phase.

Effectiveness of collaborative probability. We pro-
pose reciprocal points as anchors for unknown feature space
and use collaborative probability pc to classify known and
unknown classes. Hence, as shown in Fig. 3d, we de-
sign an anomaly score and plot the histogram of anomaly
score on VisDA OSDA setting to show the effective-
ness of collaborative probability. The anomaly score is
− log(maxK≤j p

j
c), where pjc for K ≤ j is the probability

of belonging to the j-th reciprocal point. It is a valid score
due to the purpose of reciprocal points. The histogram in-
dicates that the learned reciprocal points work well to sep-
arate unknown feature space from known one and proves
the effectiveness of collaborative probability for detecting
unknown feature.

Analysis on multi-criteria. Since we suggest that multi-
criteria is effective strategy, we try to prove it both with
quantitative and qualitative results on aforementioned two
benchmark settings. First for the quantitative results as
shown in Tab 5b, if any of the condition is missing in cri-
teria, we can easily see that the performance plunges sig-
nificantly. Similarly, visual comparison between full CPR
(Fig. 4a) and missing conditions (Fig. 4c and Fig. 4d) ob-
viously shows that only complete form of multi-criteria can
result in separate space between known and unknown target
samples.

Comparison with different λ. We conduct experiments
on Office under OSDA setting. In addition to the origi-
nal model trained with λ = 0.1, we also train 3 models
trained with different λ values on the Office OSDA set-
ting in the Fig. 5a. The result shows the original model
(λ = 0.1) achieves better results for the all of scenarios and
our method is robust to different choices of λ as there is not
much change in performance.

Analysis of iw. iw is fixed to 1000 where the thresholds
are saturated. Actually, as long as thresholds are saturated,
it is no matter which iw is used for training CPR. To show
the sensitivity of CPR to the iw, we conduct experiments
on Office under OSDA and OfficeHome under OSDA for
iw ∈ {500, 1000, 1500, 2000} and present average H-score
for the both. As shown in Fig. 5b, CPR is also robust to the
choice of iw. It might be obvious because iw is introduced
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(a) Art to Product (b) Real to Product (c) Product to Art (d) Vidsa OSDA

Figure 3: (a)∼(c): H-score as varying the number of unknown classes in OfficeHome (|Ls ∩ Lt| = 10, |Ls − Lt| = 5) (d):
Histogram of log of maximum unknown probability in VisDA

(a) full CPR (b) w/o Lsplit (c) w/o consist (d) w/o thr

Figure 4: Feature visualization on D2W in Office OSDA. Black plots are unknown samples, others are known samples

(a) Analysis of λ (b) Analysis of iw

Figure 5: (a): Analysis of λ in the Office OSDA setting. (b):
Analysis of iw in the Office OSDA and OfficeHome OSDA
settings.

to ensure the model to have enough time to get sufficiently
high thresholds and reliable reciprocal points. Thus, if the
model has warmed-up enough, the performance will be sim-
ilar no matter when it starts adaptation phase.

5. Conclusion
We introduced dual Classifiers for Prototypes and Re-

ciprocal points (CPR), a novel architecture for universal do-
main adaptation. This framework is motivated by the limita-
tion of previous works that unknown samples are not prop-
erly separated from known samples without considering the
underlying difference between them. We proposed a new
paradigm that adopts an additional classifier for recipro-
cals to push them from the corresponding prototypes. To

this end, our model is designed to be trained in a curricu-
lum scheme from warm-up to adaptation stage. In warm-
up stage, given the source known samples and whole target
samples, we initially adapt the model with domain-specific
loss. Subsequently, we utilize multi-criteria to detect con-
fident known and unknown target samples and enhance the
domain adaptation with entropy minimization on selected
samples in following adaptation stage. We evaluate our
model, CPR, on three and achieve comparable or new-state-
of-the art results and is robustly powerful in several bench-
marks with various UniDA settings.
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