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Abstract

Rare genetic disorders affect more than 6% of the global
population. Reaching a diagnosis is challenging because
rare disorders are very diverse. Many disorders have rec-
ognizable facial features that are hints for clinicians to di-
agnose patients. Previous work, such as GestaltMatcher,
utilized representation vectors produced by a DCNN sim-
ilar to AlexNet to match patients in high-dimensional fea-
ture space to support “unseen” ultra-rare disorders. How-
ever, the architecture and dataset used for transfer learn-
ing in GestaltMatcher have become outdated. Moreover,
a way to train the model for generating better represen-
tation vectors for unseen ultra-rare disorders has not yet
been studied. Because of the overall scarcity of patients
with ultra-rare disorders, it is infeasible to directly train
a model on them. Therefore, we first analyzed the influ-
ence of replacing GestaltMatcher DCNN with a state-of-
the-art face recognition approach, iResNet with ArcFace.
Additionally, we experimented with different face recogni-
tion datasets for transfer learning. Furthermore, we pro-
posed test-time augmentation, and model ensembles that
mix general face verification models and models specific
for verifying disorders to improve the disorder verification
accuracy of unseen ultra-rare disorders. Our proposed
ensemble model achieves state-of-the-art performance on
both seen and unseen disorders. Code is available at
github.com/igsb/GestaltMatcher-Arc.

1. Introduction
More than 6% of the global population is affected by rare

genetic disorders [11]. Because of the rarity and diversity
of genetic disorders, reaching a diagnosis is challenging and
time-consuming. More than a third of patients wait for over
five years to receive a diagnosis, often referred to as the
“diagnostic odyssey” [35]. Many disorders have distinctive
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Figure 1. Model ensemble of our approach. We first performed
test time augmentation to augment the test image into four im-
ages (color and horizontal flip). The four augmented images were
further encoded by three different models into 12 representation
vectors. We then compared the cosine distance of the 12 represen-
tation vectors to the 12 representation vectors from each of the N
images in the gallery. It resulted in 12 distance vectors, and each
vector contains N cosine distances. In the end, we averaged over
12 distance vectors (X̄) to obtain the final distance vector, which
further ranked the N images in the gallery. The gallery image with
a smaller distance is more similar to the test image.

dysmorphic facial features, and these features (gestalt) are
hints for clinicians to diagnose patients. However, recog-
nizing the facial gestalt presented on a patient’s face highly
relies on the clinician’s experience, and it is very difficult if
the clinician has never seen the disorder before.

With recent advances in computer vision, many next-
generation phenotyping (NGP) approaches have emerged to
predict rare disorders by analyzing patient’s 2D frontal im-
age [4, 7, 8, 12, 14, 16, 17, 21, 22, 23, 28, 31, 33]. Among
them, DeepGestalt [14] utilized transfer learning to train a
deep convolutional neural network on CASIA [34] and to
further fine-tune on over 17,106 patient frontal images with
216 disorders. It achieved 91% of top-10 accuracy on a test
set of 502 images with 92 different disorders and even out-
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performed human experts. Although DeepGestalt demon-
strated extraordinary accuracy in predicting these disorders,
it can only classify the disorders it has seen during training,
and the trained syndromes are only a tiny proportion of all
genetic disorders. If the disorders are ultra-rare or novel, we
cannot include them in the model training due to a lack of
images. These “unseen” syndromes are often cases in the
real world (Supplementary Figure S1). Therefore, a way to
support unseen syndromes becomes crucial.

To support unseen syndromes, GestaltMatcher was pro-
posed as an extension of DeepGestalt that takes the feature
layer before the classification layer in DeepGestalt as the
encoder that learned facial dysmorphic features [17]. It en-
coded the frontal image into a 320-dimensional represen-
tation vector. These representation vectors further spanned
a feature space. All patients with genetic disorders can be
matched or clustered in this space, no longer being limited
to the disorders that are trained on (seen) by the networks.

However, both DeepGestalt and GestaltMatcher used the
architecture and dataset for transfer learning proposed by Yi
et al. [34] in 2014. Since then, many larger face recogni-
tion datasets [1, 3, 6] and more advanced architectures and
loss functions [6, 9, 15, 24, 32] were proposed that achieved
higher performance on the face verification task. Therefore,
the first aim of this study was to update the architecture by
using iResNet [9] and ArcFace [6], and investigating the in-
fluence of using different face datasets for transfer learning.

Moreover, a way to train the model that generates better
feature representations for unseen ultra-rare disorders has
not yet been studied. Hence, the second aim was to inves-
tigate different training settings to understand how we can
obtain better feature representations for unseen disorders.
Our findings showed that fine-tuning on the disorder dataset
improved the seen disorder’s accuracy but was not always
beneficial for the unseen disorders. Thus, we proposed a
model ensemble to integrate face verification and disorder
models to improve performance on both seen and unseen
syndromes (Figure 1).

In summary, the contributions in this paper are as fol-
lows:

• We analyzed the influence of updating the architecture,
loss function, and face dataset used for transfer learn-
ing.

• We investigated the training settings to generate better
feature representations for unseen ultra-rare disorders.

• Every updated individual model outperformed the
GestaltMatcher baseline model by [17].

• We proposed a model ensemble to mix general face
verification models and models specific for verifying
disorders to improve the disorder verification accuracy
of unseen ultra-rare disorders.

All experiments were conducted on the GestaltMatcher

Database (GMDB), which is available to medical-related re-
search communities.

2. Related works

2.1. Next-generation phenotyping

Many rare genetic disorders present recognizable facial
features, also called “facial gestalt”. For example, patients
with Down syndrome have a distinct facial gestalt. Recog-
nizing the facial gestalt shown in a patient’s face is helpful
for clinicians in diagnosing the patient. However, it highly
relies on the clinician’s experience. When disorders are
ultra-rare or novel, a clinician has very likely not seen the
disorders before. Therefore, next-generation phenotyping
approaches that analyze patients 2D frontal face photo to
facilitate the diagnosis become crucial.

In 2014, Ferry et al. utilized the shape and appearance
representation vectors derived from trained Active Appear-
ance Models and further constructed a feature space they
dubbed the “Clinical Face Phenotype Space” (CFPS) using
the representation vectors for disorder classification [12].
They trained the model on 1,363 images of eight syndromes
and 1,515 images from healthy individuals, and it was the
first study that analyzed a relatively large cohort.

With the rapid development of computer vision, many
approaches using deep convolutional neural networks
(DCNN) have been proposed. Shukla et al. [28] trained
AlexNet [20] on the entire face and four different facial re-
gions (top right, top left, bottom right, and bottom left) of
LFW [19] and concatenated five representation vectors into
one 20,480 dimensional vector. In the end, a support vector
machine was used to classify six different disorders. Later
in 2019, DeepGestalt [14], which utilized transfer learn-
ing to train a DCNN on more than 17,106 patient photos
with 216 different disorders, showed a high prediction ac-
curacy that outperformed clinical experts. Hong et al. [16]
also used transfer learning to fine-tune VGG-16 [29] on 228
children with genetic disorders and 228 healthy children. It
performed binary classification (with/without a genetic dis-
order) that could be used for screening.

However, the prevalence of rare disorders is highly im-
balanced (Supplementary Figure S1). The number of dis-
orders with enough photos to be included for training the
DCNN are a relatively small proportion of all genetic dis-
orders. Syndromes with very few images or novel disorder
were not suitable to the classification methods. Therefore,
Marbach et al. [26] demonstrated matching two unrelated
patients with a novel disease by using facial embeddings
encoded by FaceNet [27]. In addition, van der Donk et
al. [31] concatenated the facial embeddings encoded by a
normal face recognition model and model trained by disor-
ders. They further performed a clustering analysis to vali-
date the given cohorts with significant facial gestalt. There-
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fore, generating facial embeddings that generalize dysmor-
phic facial features for unseen ultra-rare disorders is essen-
tial for rare disorder analysis.

2.2. DeepGestalt

DeepGestalt was proposed by FDNA Inc., which is con-
sidered as the current state-of-the-art disorder classification
framework [14]. It uses the architecture proposed by Yi et
al. [34] trained on CASIA [34] to learn general facial fea-
tures as a base for transfer learning, to later fine-tune the
network on 17,106 patient images with 216 different disor-
ders. The architecture, similar to AlexNet, consists of ten
convolutional layers, where every two convolutional layers
are followed by a pooling layer, and optimizes a Softmax
loss function.

Gurovich et al. proposed an ensemble method that first
cropped the face into multiple regions. The aforementioned
architecture was used to train a model for each of the facial
regions. In the end, it aggregated the softmax values ob-
tained from each region to perform the diagnosis. It showed
91% of the top-10 accuracy on a test set of 502 images with
92 disorders. In addition to predicting the disorder, it also
demonstrated the ability to classify the subtypes of a disor-
der.

DeepGestalt is used by thousands of clinicians in their
daily diagnosis, and is further integrated into the exome
sequencing analysis that facilitates the diagnosis on the
molecular level [18]. However, as briefly discussed in the
previous section, DeepGestalt does not work on ultra-rare or
novel disorders unseen during training. Therefore, Gestalt-
Matcher was proposed to overcome this limitation.

2.3. GestaltMatcher

GestaltMatcher [17] is an extension of the DeepGestalt
approach. It used the same architecture and face dataset
(CASIA) as a base for transfer learning. After training, it
used the last 320-dimensional fully-connected layer before
the classification layer as the feature layer, and used it as an
encoder that encoded each image into a 320-dimensional
representation vector. The representation vectors further
spanned a CFPS. In the CFPS, patients with rare disorders
can be matched to other similar patients. Moreover, clus-
tering analysis can be performed to analyze the similarity
among different disorders. GestaltMatcher has been used in
several studies to analyze patient similarities [2, 10, 13].

The advantage of GestaltMatcher is that it is no
longer limited to the disorders it has seen during train-
ing, and it enables researchers to quantify patient-to-patient
or syndrome-to-syndrome similarity. However, Gestalt-
Matcher used the same architecture and pre-trained dataset
as DeepGestalt that are relatively outdated. Therefore, a
study is required to update the architecture and explore
methods that improve the performance of unseen ultra-rare

Dataset # of images # of individuals

VGG2 [3] 3.31M 9,131
CASIA [34] 0.49M 10,575
MS1MV2 [6] 5.8M 85K
MS1MV3 [6] 5.1M 93K
Glint360K [1] 17M 360K

Table 1. Overview of the face datasets.

disorders verification.

3. Datasets and methodology
3.1. Datasets

3.1.1 Face recognition datasets

In this paper, we experimented with five different face
recognition datasets to be used for training the (trans-
fer learning) base model: VGG2 [3], CASIA [34],
MS1MV2 [6], MS1MV3 [6], and Glint360K [1]. The full
name of CASIA dataset is CASIA-WebFace. We used CA-
SIA as abbreviation in this paper. The number of images in
the datasets ranges from 0.49M to 17M. An overview of the
datasets is shown in Table 1.

3.1.2 GestaltMatcher Database - rare disorder dataset

Hsieh et al. [17] built up GestaltMatcher Database1

(GMDB), which collects medical images of rare disorder
from publications and patients with proper consent from
clinics. It is open to clinicians and researchers working
in medical research fields. To avoid data abuse, applicants
need to be reviewed by a committee of GMDB before they
can access the database.

We used GMDB (v1.0.3) to fine-tune the base models
on faces of patients with disorders. GMDB (v1.0.3) con-
tains 7,459 frontal images of 5,995 patients with 449 dif-
ferent disorders. All the disorders have at least two pa-
tients. The dataset was further divided into two sets, a “fre-
quent” (GMDB-Frequent) and a “rare” (GMDB-Rare) set.
The disorders with more than six patients were assigned to
GMDB-Frequent, while the disorders with six or fewer pa-
tients were assigned to GMDB-Rare.

There are 6,354 images of 5,123 patients with 204 disor-
ders in GMDB-Frequent and 1,105 images of 872 patients
with 245 disorders in GMDB-Rare. We fine-tuned the base
models on GMDB-Frequent, thus disorders in this set can
be considered as “seen” disorders. For training, GMDB-
Frequent was further divided into 5,100 images for the train-
ing set, 661 images for the validation set, and 593 images
for the test set. On the other hand, GMDB-Rare was “un-
seen” during training. We used GMDB-Rare to simulate

1https://db.gestaltmatcher.org/
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Dataset # of images # of patients # of disorders

GMDB-Frequent 6,354 5,123 204
GMDB-Rare 1,105 872 245

Total 7,459 5,995 449

Table 2. Overview of GMDB dataset. GMDB-Frequent is used
for fine-tuning and thus “seen” by the model, while disorders in
GMDB-Rare are “unseen” to the model.

Figure 2. Disorder distribution of GMDB. The X-axis shows the
number of patients in the disorder. The Y-axis shows the number
of disorders with the corresponding number of patients in X-axis,
and it is in log scale. The black bar is the rare set (GMDB-Rare),
that has disorders with more than one patient and fewer than seven
patients.

ultra-rare or novel disorders in real-world scenarios. The
overview of the GMDB dataset is shown in Table 2. In
Figure 2, GMDB shows a long tail distribution. GMDB-
Rare has only 14.5% (872/5995) of all patients, but it cov-
ers 54.5% of the disorders. The distribution of GMDB is
similar to the estimation of disorder prevalence in the real
world (Supplementary Figure S1).

3.2. Evaluation

We evaluated the performance of the base models on the
popular face verification dataset Labeled Faces in the Wild
(LFW) [19]. During evaluation, two faces were compared,
and the models verified whether they belong to the same
person. The evaluation set consisted of 11-folds, where the
first was used to establish a threshold, while the remaining
10-folds were used for the final evaluation.

Most importantly, we used GMDB to evaluate the base
models, our fine-tuned models, and eventually the model
ensemble. During the evaluation procedure, the feature
space was populated with a gallery set of diagnosed pa-
tients’ feature vectors, being either the seen disorders

(GMDB-Frequent), the unseen disorders (GMDB-Rare) or
an unified gallery (GMDB-Frequent and -Rare). After-
wards, representation vectors of test images were matched
to the gallery cases in the feature space. For the unseen test
images, 10-fold cross-validation was performed.

We first calculated the cosine distances between the test
image and each image in the gallery. The cosine distance
further ranked the gallery images. Hsieh et al. [17] showed
the top-k (k ∈ [1, 5, 10, 30]) mean accuracy (as described
in Equation 1) for test images of seen and unseen disor-
ders. Instead, we focused on the top-1 and top-5 results
in this paper, though top-10 and top-30 are included in the
Supplemental Tables. The GestaltMatcher DCNN2 (GM-
Hsieh2022) was used as the baseline, having retrained it on
the recent version of GMDB.

mAk =
1

C

C∑
c

Ak,c , (1)

where mAk is the top-k mean accuracy, C is the number of
classes, c is the class index, and Ak,c is the top-k accuracy
for class c.

3.3. Model architecture and training

Our model architecture is based on the one used by Deng
et al. [6]. They used a popular variation on the ResNet ar-
chitecture named iResNet [9]. It includes more batch nor-
malization. In addition to the original implementation, it
replaces the ReLU activation function with PReLU, and
lastly, it batch normalizes the computed representation vec-
tor.

The training procedure was split into two steps:
• Training a base model on a face recognition dataset for

transfer learning;

• Fine-tuning that base model on GMDB for disorder
verification.

For the first part, we used pre-trained models supplied by
insightface3 that have been trained on different face recog-
nition datasets using Additive Angular Margin Loss (Arc-
Face). The loss is defined by the Equation 2.

LArc = − 1

N

N∑
i=1

log
es cos(θyi+m)

es cos(θyi+m) +
∑n

j=1,j ̸=yi
es cos θj

,

(2)
where θj is the angle between weights Wj and feature

xi. We insert angular margin m to get a new angle between
the true logit, yi, and our representation vector to become
θyi +m. s is the scale of L2 normalized representation vec-
tors. The pre-trained models used m and s set to 0.5 and 64,
respectively. Representations learned using this loss tended

2https://github.com/igsb/GestaltMatcher
3https://github.com/deepinsight/insightface
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to have stronger distinctions between different classes and
better similarities for the same classes than most other met-
ric learning losses.

An important preprocessing step of insightface’s training
procedure is to align faces based on five landmarks: left and
right eye, nose, left and right mouth corner. This alignment
is essential to reproduce their performance. For our im-
plementation, we used RetinaFace [5] to obtain these land-
marks and the alignment code they supplied, which uses
an affine transformation based on matching landmark loca-
tions.

For the second part, we made minor changes to the
model architecture. We removed the batch normalization
of the computed features. This normalization was neces-
sary for ArcFace, which we did not use during fine-tuning.
Instead, due to the small dataset size, significant class im-
balance, and long tail distributions, we decided only to op-
timize Weighted Cross Entropy Softmax Loss (WCE).

To address the class imbalance, we used Equation 3 to
calculate the class weights, casting them into the range
(0.5, ..., 1.0].

Wc =
0.5 ·min(D)

Dc
+ 0.5 , (3)

where D is the set of frequencies per class, c is the class,
and Wc is the WCE weight for class c. If not for our lower
bound of Wc > 0.5, due to the long-tailed distribution it
would be possible for Wc to be lower than 0.01. This would
make the training process challenging. We also replaced
the final fully connected layer to train a classifier on the
disorders of the training set. Lastly, we freezed all model
weights except those of the feature and classification layer.

We fine-tuned our model on GMDB using aligned faces
of size 112x112, randomly flipping horizontally, randomly
converting color images to gray, color jittering, and ran-
domly adding zooming/cropping artifacts. We further used
the Adam optimizer with a base learning rate of 1e-3, which
was reduced by a factor of 2 when the top-5 mean accuracy
on the validation set plateaus until convergence. The mean
accuracy was calculated with Equation 1. Code is available
at github.com/igsb/GestaltMatcher-Arc.

3.4. Inference strategy

An essential part of our method was our strategy dur-
ing inference. We aimed to improve our performance on
both seen and unseen disorders by computing multiple rep-
resentation vectors per image, aiming to end up with a bet-
ter overall ranking than each separate representation vector.
We employed two approaches to obtain multiple represen-
tation vectors per image: model ensembles and test time
augmentation.

3.4.1 Model ensembles

Model ensembles are mixtures of models that combine each
model’s output. This approach helps achieve a better overall
generalization as it leverages each model’s strengths to alle-
viate the others’ weaknesses. In our case, we presented each
model with the same image, computed each model’s repre-
sentation vector, and averaged the cosine distances from the
image to the GMDB gallery set.

For our ensemble, we considered both models that are
fine-tuned for disorders and models built for face verifica-
tion. The face verification models produced strong general
features that can be leveraged to verify unseen disorders,
while the fine-tuned models were fitted towards features of
seen disorders they have been trained on. More specifically,
we included one face verification model, one deeper dis-
order model (using iResNet-100), and one disorder model
(using iResNet-50) designed to be less prone to overfitting
on the seen disorders. More detailed information on the se-
lected models can be found in Section 4.

3.4.2 Test time augementation

Test time augmentation (TTA), similarly to model ensem-
bles, combines outputs to achieve more robust performance.
However, instead of presenting different models with the
same image, it presented the same model with an image
and augmented versions of that image (e.g., horizontally
flipped, converted from color to gray, rotation, and trans-
lation). Ideally, the representation vectors would be close to
identical because they are from the same image, and the ac-
tual face does not change. In practice, this is usually not the
case. This helps average out the cosine distance between
the gallery and test set.

Of course, not all augmentations make sense to use dur-
ing TTA. Any augmentation that changes the face structure
or affects the required face alignment is potentially harm-
ful for our implemention. Generally, augmentations used
during training are well suited for TTA. As such, we used
horizontal flipping and conversion from color to gray.

Finally, we averaged the cosine distance of all models in
the ensemble and TTAs per model (i.e., three models and
two TTA each, 3x2x2=12 cosine distances). The order of
the disorders ranked for verification was determined by the
k-nearest neighbors of the average cosine distance between
the gallery images to the test image. We decided to use k =
1 due to the highly imbalanced data in GMDB (and thus also
in the gallery set). Using a k > 1 would be problematic for
disorders with only one occurrence in the gallery set. Figure
1 gives a simplistic view of how these inference strategies
work.
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4. Experiments and results

4.1. Updating the architecture and base optimiza-
tion

We hypothesized that replacing GestaltMatcher’s base
model (GM-Hsieh2022) with a state-of-the-art face verifi-
cation model will improve the overall performance on LFW
and GMDB.

First, we compared the performance of the GM-
Hsieh2022 model, using an AlexNet-like architecture and
cross-entropy loss, to iResNet-50 with ArcFace, both
trained on CASIA. Afterward, we fine-tuned these mod-
els on GMDB. During the fine-tuning process, both mod-
els only used weighted cross entropy. Results of the base
models and fine-tuned models are shown in Table 3. An
extended version of the table can be found in Supplemen-
tary Table S1, and the performance when using the unified
gallery in Supplementary Table S5.

We find that the features generated by the ArcFace base
model are generally more descriptive than those of the GM-
Hsieh2022 base model. This is supported by the higher
LFW performance and the overall higher performance on
GMDB without fine-tuning. In Table 3, the LFW accuray
is increased from 93.8% to 98.4%, and the top-1 and top-
5 accuracies for both seen (GMDB-Frequent) and unseen
(GMDB-Rare) disorders are improved when we update the
model from GM-Hsieh2022 to ArcFace-r50.

After fine-tuning, the GM-Hsieh2022 model improved
on both GMDB-Frequent and GMDB-Rare. The ArcFace
model significantly increased the performance on seen dis-
orders while decreasing the performance on unseen dis-
orders. We believed this indicated that the model has a
higher tendency to overfit on the small dataset than the
GM-Hsieh2022 model had. Although the performance
of GMDB-Rare dropped after fine-tuning the new model
(ArcFace-r50*), the top-1 and top-5 accuracies were still
similar to the fine-tuned GestaltMatcher by [17] (GM-
Hsieh2022*).

Model LFW
GMDB-Frequent GMDB-Rare
Top-1 Top-5 Top-1 Top-5

GM-Hsieh2022 93.8% 10.99% 29.39% 14.64% 27.03%
GM-Hsieh2022* - 15.96% 33.83% 19.26% 36.28%
ArcFace-r50 98.4% 21.84% 40.87% 22.74% 37.35%
ArcFace-r50* - 35.37% 53.25% 19.29% 36.00%

Table 3. Comparison of the performance of the GM-Hsieh2022
model and the ArcFace-r50 model on LFW and GMDB. Both have
been pre-trained on CASIA and models marked with (*) have been
fine-tuned on GMDB. For each column, the best accuracy between
the models before fine-tuning and after fine-tuning is boldfaced.

Figure 3. Mean accuracy of the ArcFace-r50 base model on
GMDB when using different datasets. The X-axis shows the num-
ber of individuals in the datasets. The Y-axis shows the mean accu-
racy (both GMDB-Frequent and -Rare) of models using different
base datasets. The light orange and blue lines shows the logarith-
mic relation.

4.2. Updating the transfer learning dataset

We hypothesized that increasing the number of individ-
uals in the transfer learning base dataset will result in bet-
ter/more general (facial) feature descriptors. However, we
expected some drop-off in the performance gain when in-
creasing the number of individuals indefinitely. To test
this hypothesis, we compared the performance on LFW
and GMDB with five well-known face recognition datasets:
VGG2, CASIA, MS1MV2, MS1MV3, and Glint360K. The
results are shown in Table 4 and Figure 3. An extended
version of the table can be found in Supplementary Table
S2, and the performance when using the unified gallery in
Supplementary Table S6.

Figure 3 shows the average accuracy per base dataset
concerning the number of unique individuals in the dataset.
Table 4 shows that the ArcFace-r50 base models trained
on datasets with more different individuals tends to achieve
higher accuracy on both GMDB-Frequent and GMDB-Rare
before fine-tuning. We also found a drop-off in accuracy
gained when increasing the number of individuals based on
the logarithmic relation shown in the Figure 3.

Moreover, we found that the accuracy on GMDB-
Frequent after fine-tuning did not always improve when us-
ing a larger dataset. For example, in Table 4, the top-1 and
top-5 accuracies of Glint360K* are lower than the accura-
cies of MS1MV3*, which drop from 45.06% to 41.58% and
64.64% to 62.60%, respectively. However, the accuracy
on GMDB-Rare after fine-tuning always improved when
we used a larger dataset for training the ArcFace-r50 base
model.

The results show that both GMDB-Frequent and
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Dataset LFW
GMDB-Frequent GMDB-Rare
Top-1 Top-5 Top-1 Top-5

VGG2 98.5% 15.52% 31.56% 20.31% 33.57%
CASIA 98.4% 21.84% 40.87% 22.74% 37.35%
MS1MV2 99.0% 29.14% 48.86% 29.04% 44.74%
MS1MV3 98.9% 31.54% 49.36% 29.52% 46.36%
Glint360K 99.0% 32.43% 53.14% 33.00% 47.62%
VGG2* 85.8% (-12.7%) 27.50% (+11.98%) 49.92% (+18.36%) 17.56% (-2.75%) 33.41% (-0.16%)
CASIA* 75.7% (-22.7%) 35.37% (+13.53%) 53.25% (+12.38%) 19.29% (-3.45%) 36.00% (-1.35%)
MS1MV2* 84.1% (-17.7%) 39.98% (+10.84%) 59.81% (+10.95%) 21.86% (-7.18%) 39.89% (-4.85%)
MS1MV3* 76.4% (-22.5%) 45.06% (+13.52%) 64.64% (+15.28%) 24.31% (-5.21%) 40.28% (-6.08%)
Glint360K* 84.9% (-12.6%) 41.58% (+9.15%) 62.60% (+9.46%) 26.55% (-6.45%) 42.69% (-4.93%)

Table 4. Comparison of the performance of the ArcFace-r50 models trained on a variety of face recognition datasets. The percentages
within parentheses indicate the change between the face verification (base) and the fine-tuned models. For example, the top-1 accuracy
on GMDB-Frequent increased by 11.98% (15.52% → 27.50%) from VGG2 to VGG2*. Models marked with (*) have been fine-tuned on
GMDB.

Model LFW
GMDB-Frequent GMDB-Rare
Top-1 Top-5 Top-1 Top-5

r50 84.9% 41.58% 62.60% 26.55% 42.69%
r50-D/O 86.2% 46.95% 66.07% 28.85% 45.36%
r50-D/O† 87.6 % 44.33% 65.76% 29.06% 46.35%
r100 91.0% 47.96% 68.87% 26.03% 42.22%
r100-D/O 91.1 % 48.37% 71.78% 28.02% 44.32%
r100-D/O† 93.0% 49.25% 69.95% 30.33% 47.85%

Table 5. Comparison of the performance of iResNet-50 and -100
fine-tuned on GMDB. D/O indicates an additional dropout layer
and (†) indicates the use of L2 weight decay on the feature layer.
For each column, the best accuracy among the models (without
regularizaton, D/O, and D/O†) is boldfaced.

GMDB-Rare benefit from using a larger dataset for train-
ing the ArcFace-r50 base model, especially for the unseen
disorders (GMDB-Rare). In addition, it might not be neces-
sary to use a face recognition dataset larger than Glint360K,
as the performance gain seems to saturate when the number
of individuals in the dataset is larger than 1M.

4.3. Influence of fine-tuning ArcFace on GMDB

In an earlier experiment, we saw that fine-tuning Arc-
Face on GMDB reduced the accuracy on unseen disorders
(GMDB-Rare). We believed that fine-tuning the feature
representation layer on GMDB will negatively influence the
general feature descriptors’ quality by (over)fitting on the
small imbalanced dataset, not just when using CASIA as
the base dataset but also for larger base datasets. We be-
lieved this should reflect in the accuracy on LFW. As such,
we fine-tuned the ArcFace models trained on the CASIA,
VGG2, MS1MV2, MS1MV3, and Glint360K on GMDB,
and afterward evaluated them on LFW and GMDB. The
results are shown in Table 4. An extended version of the

table can be found in Supplementary Table S2, and the per-
formance when using the unified gallery in Supplementary
Table S6.

Based on the results in the Table 4, we find that
fine-tuning decreases the performance on unseen disorders
(GMDB-Rare) for every model, as well as the general face
verification performance on LFW. However, the perfor-
mance of the models using a larger base dataset still out-
perform the baseline for these unseen disorders.

4.4. Additional regularization during fine-tuning to
improve generalizability on unseen disorders

We believed that the overfitting, shown in the previous
experiment as a drop in accuracy for unseen disorders, can
be reduced by adding additional regularization to the feature
layer in the form of L2 weight decay and dropout. We fine-
tuned the iResNet-50 and iResNet-100 ArcFace models pre-
trained on Glint360K to include additional dropout and ad-
ditional L2 weight decay of the feature layer (λ = 5e−5).
The results are shown in Table 5. An extended version of
the table can be found in Supplementary Table S3, and the
performance when using the unified gallery in Supplemen-
tary Table S7.

We find that the use of additional dropout improves ac-
curacy for both the seen and unseen disorders. Additional
L2 weight decay on the feature layer helps to maintain some
of the LFW performance and, on some occasions, is an im-
provement to dropout. For example, the top-1 accuracy on
GMDB-Frequent increases from 48.37% to 49.25% when
applying L2 weight decay to r100-D/O. Although the im-
provement of L2 weight decay on seen disorders (GMDB-
Frequent) is inconclusive, the improvement on the unseen
ones (GMDB-Rare) is clear.

5024



Model Dataset Loss
GMDB-Frequent GMDB-Rare
Top-1 Top-5 Top-1 Top-5

GM-Hsieh2022 CASIA* CE 15.96% 33.83% 19.26% 36.28%

r50-D/O† Glint360K* CE 44.33% 65.76% 29.06% 46.35%
r50-D/O†+ TTA Glint360K* CE 47.73% 67.67% 30.29% 46.38%
r100-D/O Glint360K* CE 48.37% 71.78% 28.02% 44.32%
r100-D/O + TTA Glint360K* CE 51.16% 69.58% 27.92% 46.26%
r100 Glint360K ArcFace 30.25% 54.81% 33.25% 50.22%
r100 + TTA Glint360K ArcFace 35.25% 56.52% 33.47% 51.61%

Model ensemble n/a n/a 52.06% 70.70% 34.93% 52.78%
Model ensemble + TTA n/a n/a 52.99% 71.01% 35.98% 53.93%

Table 6. Comparison of the performance of the GM-Hsieh2022 (baseline) model, two ArcFace models fine-tuned on GMDB, one ArcFace
face verification model, and our model ensemble using the three ArcFace models. TTA indicates the model was evaluated using test time
augmentation, (*) indicates the model was fine-tuned on GMDB, (D/O) indicates an additional dropout layer, and (†) indicates the use of
L2 weight decay on the feature layer.

4.5. Influence of inference strategies

We believed the inference strategies discussed in Sec-
tion 3.4 will improve most models’ accuracy. We hypoth-
esized that presenting our model with an image and slight
variations of that image will increase the robustness of the
clustering. On top of that, combining our disorder models,
fine-tuned on GMDB, with general face verification models
will improve generalizability and robustness for both seen
and unseen disorders. Table 6 shows the performance of the
baseline (GM-Hsieh2022), each model used in the ensem-
ble with and without TTA, and the model ensemble with and
without TTA. An extended version of the table can be found
in Supplementary Table S4, and the performance when us-
ing the unified gallery in Supplementary Table S8.

In Table 6, we find that TTA increases almost every
test group’s performance. Only the top-5 accuracy on
GMDB-Frequent and top-1 accuracy on GMDB-Rare for
r100 with dropout (r100-D/O) are decreased after apply-
ing TTA. Moreover, the model ensemble outperforms ev-
ery single model in almost every test group, except the top-
5 accuracy on GMDB-Frequent. The top-5 accuracy on
GMDB-Frequent for the model ensemble is 70.70% which
is slightly lower than 71.78% from r100 with dropout (r100-
D/O). In the end, combining the model ensemble and TTA
further improves the performance, achieving state-of-the-
art. When comparing the model ensemble with TTA to
the GM-Hsieh2022 model, the top-1 accuracy improves
from 15.96% to 52.99% and 19.26% to 35.98% on GMDB-
Frequent and GMDB-Rare, respectively, showing a strong
performance on both seen and unseen disorders.

5. Conclusion and future works

We found that using face recognition datasets with more
individuals led to more generalized representation vectors,

which in turn form a good base for transfer learning. Fine-
tuning the transfer learning datasets with ArcFace iResNet
on GMDB led to a significant increase in performance on
seen disorders and a decrease in performance on unseen dis-
orders. The latter is likely caused by overfitting on the seen
disorders, which unlearns general facial features. The use
of regularization techniques such as dropout and L2 weight
decay can help reduce the impact of overfitting, increasing
the performance of unseen disorders. Moreover, using TTA
increased the performance of all models. Next, combining
one face verification model and two disorder verification
models in a model ensemble allowed us to leverage their
strengths on both seen and unseen disorders.

In conclusion, each model with and without TTA, and
our model ensemble outperformed GM-Hsieh2022, where
the model ensemble achieves state-of-the-art performance.
We believe this work can function as a strong baseline for
future comparison in this emerging field.

In this study, we focused on the imbalanced number of
patients among the disorders. However, Lumaka et al. re-
ported that the performance of DeepGestalt was biased by
the imbalance of ethnicity groups in the training set [25].
Therefore, an approach that consider the imbalance of eth-
nicity, sex, and age is important.

Moreover, we only discussed the iResNet with ArcFace
and cross entropy. Benchmarking on different architectures
and loss functions, such as EfficientNet [30], CosFace [32],
and SphereFace [24] is required to understand more on how
to obtain more generalized representation vectors for un-
seen disorders. Besides, using different representation vec-
tor dimensions and dimension reduction methods are also a
possibility to further optimize the feature representation for
unseen disorders.
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