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Abstract

We present Ev-NeRF, a Neural Radiance Field derived
from event data. While event cameras can measure subtle
brightness changes in high frame rates, the measurements
in low lighting or extreme motion suffer from significant
domain discrepancy with complex noise. As a result, the
performance of event-based vision tasks does not transfer
to challenging environments, where the event cameras are
expected to thrive over normal cameras. We find that the
multi-view consistency of NeRF provides a powerful self-
supervision signal for eliminating spurious measurements
and extracting the consistent underlying structure despite
highly noisy input. Instead of posed images of the original
NeRF, the input to Ev-NeRF is the event measurements ac-
companied by the movements of the sensors. Using the loss
function that reflects the measurement model of the sensor,
Ev-NeRF creates an integrated neural volume that summa-
rizes the unstructured and sparse data points captured for
about 2-4 seconds. The generated neural volume can also
produce intensity images from novel views with reasonable
depth estimates, which can serve as a high-quality input to
various vision-based tasks. Our results show that Ev-NeRF
achieves competitive performance for intensity image re-
construction under extreme noise and high-dynamic-range
imaging.

1. Introduction

Event cameras are neuromorphic sensors, where individ-
ual pixels detect changes of brightness that exceed a thresh-
old. The output of event cameras is a sequence of asyn-
chronous events composed of the polarity, pixel location,
and the time stamp, occurring only at a sparse set of loca-
tions where the brightness change is detected. They have
many advantages over conventional cameras such as high
temporal resolution, low energy consumption, and high dy-
namic range [15]. However, the measurements of the same
object change significantly under different motion or light-

*Young Min Kim is the corresponding author.

ing conditions causing domain discrepancy in real-world
deployment [24, 12, 63]. While event cameras are expected
to prosper under extreme environmental conditions, the per-
formance of event-based vision tasks often deteriorates due
to the significant domain shift with severe noise.

The output of event streams is very different from an
ordinary image, which is a two-dimensional array with
dense color values. Many existing approaches using event
data compile them into a more structured form for denois-
ing [10, 11, 29, 14, 2, 13], or directly perform downstream
tasks such as motion estimation [33, 28, 36, 52] or pose es-
timation [34, 5]. Nonetheless, training data is often limited
and the performance of event-based vision is often inferior
to the performance of the same tasks with conventional im-
ages [24]. The complex noise characteristics and domain
discrepancy further complicate developing practical algo-
rithms for event cameras.

Inspired by the recent success of Neural Radiance Fields
(NeRF) [32], we propose Ev-NeRF, a neural radiance field
built directly from raw event data, as shown in Figure 1(a).
Ev-NeRF builds a 3D volumetric representation that can
concurrently explain events associated with the camera
movement. Given the 5D input of location and viewing di-
rection, NeRF outputs the volume density and emitted color,
which can be aggregated to synthesize an image from an ar-
bitrary viewpoint by the volume rendering. While NeRF
is trained to minimize the color discrepancy between the
synthesized image and the ground truth image, Ev-NeRF is
trained with a new loss function that incorporates the sensor
movement and the resulting events triggered by the differ-
ence of brightness.

Ev-NeRF properly handles the complex noise in event
cameras without ground truth supervision, and at the same
time, enjoys the technical advantages of the sensor over
conventional cameras. The volumetric aggregation in the
formulation effectively reduces the prevalent noise in event
measurements [15], as the complex spatial and temporal
noises lack multi-view consistency. Further, the associated
intensity values in Ev-NeRF are in a high dynamic range
(HDR), as the provided measurements of event cameras are
sensitive to extreme lighting beyond the dynamic range of
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Figure 1. (a) Ev-NeRF operates with event data obtained from a moving event camera. (b) Ev-NeRF learns the implicit volume with the
raw event output of the sensor and serves as a solution for various event-based applications, such as high dynamic range imaging, noise
reduction, depth estimation, intensity image reconstruction, and novel-view intensity image reconstruction.

the conventional camera.
Interestingly, the created volumetric representation is a

solution to many of the vision problems tackled in previous
works using event data, as shown in Figure 1(b). While the
event data only contain the relative changes in the bright-
ness instead of the absolute term, the trained volume can
synthesize the intensity image for ordinary computer vision,
which is one of frequently tackled problems in the commu-
nity [9, 22, 3, 44, 43, 42, 37, 53, 62, 46, 57, 6, 56]. Further,
the reconstructed density volume can represent the approx-
imate 3D structure of the scene. This is inherent from the
original NeRF formulation enforcing the multi-view consis-
tency, and the quality of 3D reconstruction is superior to the
3D structure built from previous approaches [23, 41, 65].

Our contributions can be summarized as follows:

• We suggest Ev-NeRF, which combines the popular
NeRF formulation with the raw event output of a neu-
romorphic camera for the first time.

• Ev-NeRF is highly robust to event noise and builds a
coherent 3D structure that can provide high-quality ob-
servations.

• The created neural volume serves as solutions for var-
ious event-based applications, namely intensity image
reconstruction, novel-view image synthesis, 3D recon-
struction, and HDR imaging.

• Ev-NeRF demonstrates performance comparable to
many of existing event-vision algorithms that are ded-
icated to a specific task in the experimental result.

Given the strong experimental result, we expect Ev-NeRF to
expand the possible application area of event-based vision
that fully leverages the potential of the sensor.

2. Related works
In this section, we review the key tasks in event-based

vision, along with existing work on neural implicit 3D rep-
resentations.

Processing Event Data Although event cameras can ac-
quire visual information in challenging conditions such
as low-lighting or extreme motion, a significant domain
gap occurs due to the large amount of noise which fur-
ther leads to performance degradation [24, 49, 39, 12, 25].
Wu et al. [63] first demonstrated that event-based vision
can deteriorate due to increased noise levels, although the
assessments were mainly conducted in synthetic events.
Kim et al. [24] further introduced a large-scale dataset en-
abling systematic assessment of object recognition tasks,
and demonstrated that large camera motion or illumination
change leads to greater amounts of noise that ultimately
deteriorates performance. Existing approaches denoise the
raw data to cope with such adversaries [63, 58, 59], or sug-
gest stacking events to overcome domain gaps under ex-
treme lighting condition [50]. On the other hand, Ev-NeRF
can compensate for the spurious noises by enforcing multi-
view consistency for the scene geometry.

Instead of handling complex data characteristics from
the raw data, many approaches aggregate the sequential
measurements into an ordinary image or 3D geometry.
Early attempts for intensity image reconstruction are in-
spired from statistical methods [9, 22, 3]. Several sub-
sequent approaches suggest various network architecture
designs to improve the image quality or computational
cost [46, 57, 6, 56, 62]. Because the sensor has a high
dynamic range, the intensity image restoration can be ex-
plicitly designed for HDR images [66, 57] or by applying
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domain adaptation to day-light condition [51]. For estimat-
ing 3D geometry, recent event-based SLAM methods utilize
classical techniques [23, 22, 16, 21, 65, 17], minimizing the
energy function formulated over the image-like event rep-
resentations. On the other hand, for event-based depth es-
timation both classical method [19, 60] and learning-based
approaches [20, 55] coexist.

However, for any of the aforementioned tasks, it is chal-
lenging to obtain a large-scale dataset with the ground-truth
label or formulate the correct measurement model that rep-
resents the wide range of possible sensor characteristics.
[43, 44] suggested generating the training data using simu-
lator [42]. [53] examined the statistical aspect to reduce the
gap. [37] proposed a self-supervised learning framework
with the aid of optical flow and does not require ground
truth, but their reconstructed images are characterized by
several artifacts. On the contrary, Ev-NeRF works without
the ground truth or synthetic data and shows stable results
comparable to the state-of-the-art in intensity image recon-
struction or depth estimation.

Neural Implicit 3D Representation Neural Implicit 3D
Representation is gaining popularity due to its strong advan-
tage of memory requirements, no restrictions on spatial res-
olution, and representation capability. Several works [38,
30, 8] showed the advantage of neural implicit represen-
tations with 3D supervision. NeRF (Neural Radiance
Fields) [32] proposes an implicit representation of 3D co-
ordinates and viewing direction which can synthesize im-
ages with volume rendering techniques. The resulting neu-
ral volume contains information about 3D volume density
and emitted radiance for rendering images. Motivated by
the photo-realistic quality of the produced images, a large
number of subsequent works spurred to overcome the limi-
tation of the original NeRF including: enabling fast conver-
gence and rendering [35, 54, 1]; handling the input images
with unknown or noisy camera poses [61, 27]; recovering
hdr scenes with noisy raw images [31]; or processing dy-
namic scenes [40, 26]. Our method learns the NeRF volume
with event data. By enforcing the multi-view consistency of
collected measurements, Ev-NeRF produces a high-quality
image or depth in a novel view and effectively removes spu-
rious noises of an event camera. While there also exists a
concurrent work learning implicit volume with events [45],
Ev-NeRF extensively reveals the practical capability.

3. Background

For the completeness of discussion, we include the event
generation model of the sensor followed by the mathemati-
cal formulations of the neural radiance fields (NeRF), which
serves as the two main components for deriving Ev-NeRF.

Event Generation Model Instead of recording the ab-
solute color values of the image pixels, an event camera
records asynchronous changes of the brightness as a se-
quence of events Ek = (uk, vk, tk, pk), indicating that the
brightness change at the pixel coordinate (uk, vk) reaches a
specific threshold B at time tk,

|L (uk, vk, tk)− L(uk, vk, tk − δt)| ≥ |B| , (1)

where L = log (I) is the logarithm of brightness I and δt
is time that has passed since the last event. pk ∈ {+,−} is
the polarity denoting whether the brightness change is pos-
itive or negative. It is known that the threshold for trigger-
ing positive events is different from the one for the negative
events [15], which we denote B+ and B−, respectively. If
we accumulate the events occurring for a given period of
time ∆t, the brightness change in a specific pixel can be
approximated by [15]

∆L (u, v,∆t) =
∑

tk∈∆t,
(uk,vk)=(u,v)

pk |Bpk | . (2)

The threshold Bpi can be different under various physical
conditions, which further challenges the event-based vision,
in addition to complex noise characteristics of the sensor.

Neural Radiance Fields Ev-NeRF takes inspiration from
NeRF [32] which is trained to accumulate the volumetric
information with 2D supervision. The supervision signal
for NeRF is the total squared error between the rendered
and true pixel colors. Basically the neural network Fθ(·)
receives the input of the 3D coordinate xi ∈ R3 and the
ray direction di ∈ S2 and outputs the density σi ∈ R and
emitted radiance ci ∈ R3

Fθ : (γx(xi), γd(di)) → (σi, ci). (3)

Here γ (·) is sinusoidal positional encoding function which
successfully captures the high-frequency information along
the spatial direction. With positional encoding and coarse-
to-fine sampling techniques, a neural network is trained to
synthesize high-quality novel view images.

Following the classical volume rendering technique,
each pixel is rendered by sampling N points x1, . . . ,xN

of the volume density along the ray r(x0,d). x0 is the ini-
tial point of the ray located at the focal point of the camera
using the pinhole camera model. The final rendered color
of the pixel is aggregated along the ray as

Ĉ (r) =

N∑
i=1

Aiαici. (4)

Ai = exp
(
−
∑i−1

l=1 σlδl

)
denotes the accumulated trans-

mittance along the ray, and αi = 1 − exp (−σiδi) denotes
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Figure 2. Overview of our method. According to the measurement model of the sensor, the events Ej accumulated during a short time
interval [Tj , Tj+1) should reflect the difference in brightness. Using the implicit volume, we render intensity frames from the view points
of two adjacent event camera poses, Tj and Tj+1. Event rendering loss is the discrepancy between the accumulated event Bj(r) and
difference in the intensity of adjacent rendered frames ∆Lj(r).

the alpha value, where δi = ∥xi+1 − xi∥ is the distance be-
tween adjacent samples. Additionally, the depth along the
ray direction can be approximated with a similar formula-
tion:

D̂ (r) =

N∑
i=1

Aiαisi, (5)

where si denotes the distance between x0 and xi.

4. Method
Ev-NeRF creates neural implicit representation Fθ of a

static scene as NeRF. Since an event is triggered when the
brightness changes, we use a slice of the event sequence
Ej = {Ek = (uk, vk, pk, tk)|Tj ≤ tk < Tj+1} during a
small duration of time [Tj , Tj+1). The motion of the camera
is provided by the starting and ending poses of the period,
Tj and Tj+1. The neural network for Ev-NeRF regresses for
one dimensional emitted luminance value yi ∈ R instead of
RGB color values,

Fθ : (γx (xi) , γd (di)) → (σi, yi) . (6)

This is a natural choice considering that the event only
records the brightness change in a single channel.

After the neural network is trained, we can render the
intensity image from an arbitrary viewpoint adapting Equa-
tion 4. To elaborate, if we define the camera ray r that
passes through the pixel location (u, v) from a camera pose
T , we can sample N points along the ray and apply volume
rendering technique to find the intensity of the pixel

Î(T (r)) =

N∑
i=1

Aiαiyi. (7)

The depth measurement can also be approximated using
Equation 5.

When we combine the formulation with the event gen-
eration model, we also jointly optimize for the unknown
thresholds, B+

j and B−
j , in addition to the implicit neural

volume Fθ(·). We assume that the threshold is a function
of time and polarity, but is spatially the same for all pixels.
More specifically, we assume that the threshold is constant
in each time interval [Tj , Tj+1), but changes when the time
interval changes.

The total loss used to train Ev-NeRF is given by

Ltotal = Levent + λLthres. (8)

Levent is the event rendering loss which replaces the image
rendering loss in conventional NeRF. Here we combine the
event generation model in Section 3 with the volume render-
ing formulation of the original NeRF. Lthres is the threshold
bound loss, designed to avoid degenerate cases.

Event Rendering Loss Our loss for training Fθ compares
the recorded events and the difference in the rendered inten-
sity, as shown in Figure 2. Let us denote the intensity val-
ues of the pixel ray r at time Tj and Tj+1 as Î(Tj(r)) and
Î(Tj+1(r)), respectively, where the intensity images are ob-
tained using Equation 7. Then we can calculate ∆Lj at the
pixel ray r as

∆Lj(r) = log Î (Tj+1(r))− log Î (Tj(r)) . (9)

Using the event generation model in Equation 2, ∆Lj(r)
in Equation 9 should be measured by the accumulated sum
of the events Bj(r) =

∑
Ek∈Ej(r)

pkB
pk

j within the time
interval [Tj , Tj+1).

Our event-rendering loss Levent is the total sum of dis-
crepancy for all time intervals j and rays r available in the
batch,

Levent =
∑
j

∑
r

f2
B+

j ,B−
j

(∆Lj(r)−Bj(r)), (10)
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where the function f penalizes the discrepancy above the
sensor threshold by incorporating a dead zone [B−, B+] as
described in [3]:

fB+,B−(x) =


x−B+, if x > B+,

0, if B− ≤ x ≤ B+,

−x+B−, if x < B−.

(11)

Therefore we only focus on where the measurements pro-
vide enough evidence for the brightness changes.

Threshold Bound Loss While the joint optimization over
the unknown threshold values B+

j , B−
j improves the per-

formance of Ev-NeRF, the additional parameters further
challenge the optimization process which already is highly
under-constrained with the unknown brightness values I .
Without additional constraints, we empirically observed
that the network often converges to the trivial solution with
∆I = 0 and the threshold value 0. The threshold bound
loss is a simple prior to keep the threshold values within the
reasonable bound:

Lthres = u
(
B+

0 −B+
j

)
+ u

(
B−

j −B−
0

)
, (12)

where u (·) is a unit step function. In our experiments, we
set B+

0 = 0.3 and B−
0 = −0.3, based on our prior knowl-

edge about threshold scale [15].

5. Results
Once we train Ev-NeRF, from highly corrupted event se-

quence data, the coherent implicit volumetric representation
of NeRF is learned. The integrated representation can gen-
erate images or depth estimates in a novel view, which are
compared against previous works or designed baseline. We
evaluate Ev-NeRF on both synthetic and real dataset.

Implementation Detail The input to Ev-NeRF is the
stream of event data obtained from an event sensor moving
around a static scene. The stream data is accompanied by
a sequence of the sensor’s intermediate positions which are
time-stamped. The sensor positions can be acquired from
an additional sensor or structure from motion (SfM) using
intensity images or provided from simulator.

For real world data, we calculate the poses by running
SfM [47, 48] with the intensity frames, which are provided
in the datasets [34, 53, 65] recorded at about 24 Hz. Ex-
cept for this process, the intensity frames are not available
to Ev-NeRF during training and are used only for evalua-
tion. We use about 50 to 100 consecutive event slices Ej to
train a neural volume, where the length of each time slice
[Tj , Tj+1) is chosen to be the frame rate of intensity frames,
about 1/24s. The duration of the total event sequence used
for Ev-NeRF is roughly 2-4 seconds. For each event slice Ej

corresponding to [Tj , Tj+1), we add random events equiv-
alent to 5% of the number of events that occurred at time
slice [Tj , Tj+1) during training. We find that the additional
random noise slightly improves the quality of neural repre-
sentation in ambiguous regions, which is further described
in the supplementary material.

5.1. Robust Intensity Image Reconstruction

Ev-NeRF creates the NeRF volume that aggregates mul-
tiple observations, which is robust against a variety of per-
turbation such as the amount of noise or extreme light con-
ditions. We compare the quality of the synthesized image
against previous works on intensity image reconstruction
under noisy or low-light condition. We use three avail-
able real-world datasets that are widely used for event-based
image reconstruction, namely IJRR [34], HQF [53], and
Stereo DAVIS dataset [65] for quantitative comparison. For
the stereo DAVIS dataset, we only use the measurements
from a single event camera. Unless otherwise noted, we
use four sub sequences (dynamic 6dof, office spiral, of-
fice zigzag, hdr boxes) from the IJRR dataset, three se-
quences (reflective materials, high texture plants, still life)
from HQF dataset and two sequences (monitor, reader)
from Stereo DAVIS dataset.

Intensity Image Reconstruction Figure 3 shows exem-
plar reconstructed images, and different approaches ex-
hibit different kinds of artifacts. We compare the perfor-
mance of Ev-NeRF against three baselines: E2VID [43],
E2VID+ [53] and ssl-E2VID [37]. E2VID [43] is trained in
a supervised fashion with a large amount of synthetic data.
E2VID+ [53] adjusts the synthetic training data to better
fit the distribution of the real data. ssl-E2VID [37] tries to
overcome the domain gap and suggests a self-supervised ap-
proach achieving results comparable to E2VID+ [53] with-
out ground truth data. Unlike Ev-NeRF, which is trained for
each scene, previous works are trained in a supervised fash-
ion with a synthetic dataset composed of a pair of ground
truth images and event measurements. A quantitative com-
parison of image reconstruction on real-world scenes is
in the supplementary material. More importantly, Ev-
NeRF only enforces multi-view consistency without further
domain-dependent training, whereas previous approaches
are trained in a fixed resolution dedicated to a specific mea-
surement condition. We further validate intensity image re-
construction results on the CED Dataset [7] with a different
resolution (346×240) in the supplementary.

Noise Resistant Image Reconstruction The perfor-
mance gap becomes prominent when the measurements ex-
hibit severe noises, introducing domain shift. We use the
event camera simulator v2e [18] to synthetically add realis-
tic sensor noise due to photon fluctuations or invalid thresh-
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(b) E2VID [43] (c) E2VID+ [53] (d) ssl-E2VID [37] (e) Ours (a) Events (e) Ground Truth

Figure 3. Qualitative comparison on intensity image reconstruction.

Figure 4. Effect of noise on various image reconstruction meth-
ods. Even in serious noise conditions, Ev-NeRF can robustly re-
construct images whose quality is comparable to that of other ap-
proaches in normal conditions.

no
is

e 
0.

0
no

is
e 

0.
1

no
is

e 
0.

9
no

is
e 

0.
5

Events E2VID+ [53] Ours

Figure 5. Qualitative comparison on image reconstruction given
input with various noise levels. Ev-NeRF shows little performance
degradation even with extremely noisy inputs.

old values. The simulator allows us to control the amount
of noise, which we indicate with the ratio of the number of
noisy events added to the number of existing events. Fig-
ure 4 evaluates the SSIM of the reconstructed intensity im-
age compared against the ground truth intensity image with

the office zigzag scene in the IJRR [34]. The effectiveness
of Ev-NeRF is prominent for noisy events, where it com-
pensates the complex noise despite over 70% of noise and
achieves comparable quality as the state-of-the-art method.
In contrast, other methods rapidly deteriorate under noisy
data, as they suffer from the domain shift caused by severe
noise, which is not observed during the training neural net-
work under the supervised set-up.

Figure 5 shows the visual comparison of reconstructed
images of NeRF for inputs with different noise levels
against E2VID+ [53], which is the state-of-the-art method
for intensity image reconstruction. While E2VID+ [53] is
vulnerable even to small noise, the intrinsic multi-view con-
sistency of Ev-NeRF results in stable performance regard-
less of noise level and alleviates the effect of noise. Addi-
tional results are provided in the supplementary material.

HDR Image Reconstruction In addition to noise reduc-
tion, under extreme light conditions, the reconstructed im-
ages from Ev-NeRF naturally contain high dynamic range
information without further processing. Figure 6(a) shows
the qualitative results on HDR imaging. Compared to the
intensity images concurrently captured in low-light set-up
((b), left), which are unknown to the algorithm, the sensor
measurements detect the subtle details within the scene ((a),
left), which are compiled to produce the HDR intensity im-
ages ((a), middle). This is because Ev-NeRF generates the
intensity values to reflect the fine-grained changes in illumi-
nation without saturation and is agnostic to any prior abso-
lute values of the intensity that might be clipped to a smaller
range. While we use intensity images to find the poses, the
neural volume trained with event data contains variations
and details that could not be captured with low-quality in-
tensity images, especially in challenging lighting.

In Figure 6(b), we also present the rendering using the
neural volume of ordinary NeRF for comparison, which
is trained with the intensity images of the same sequence
obtained from a DAVIS camera [4]. The intensity-based
NeRF is trained with the MSE loss between the rendered
and measured intensity, following [32]. The reconstructed
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(b) Intensity Image based NeRF(a) Ev-NeRF

Input IntensityInput DepthIntensity Depth

Figure 6. Qualitative comparison on intensity image reconstruction and depth estimation of the NeRF volume trained with (a) event data
and (b) intensity images captured in low-light conditions.

Task E2VID+ [53] + NeRF Ev-NeRF E2VID+ [53] + NeRF Noise 0.3 Ev-NeRF Noise 0.3
Abs Rel ↓ RMSE ↓ Sq Rel ↓ Abs Rel ↓ RMSE ↓ Sq Rel ↓ Abs Rel ↓ RMSE ↓ Sq Rel ↓ Abs Rel ↓ RMSE ↓ Sq Rel ↓

Depth 0.082 0.092 0.101 0.034 0.052 0.053 0.099 0.112 0.133 0.038 0.056 0.058
MSE ↓ SSIM ↑ LPIPS ↓ MSE ↓ SSIM ↑ LPIPS ↓ MSE ↓ SSIM ↑ LPIPS ↓ MSE ↓ SSIM ↑ LPIPS ↓

Intensity 0.02 0.89 0.15 0.01 0.92 0.07 0.03 0.83 0.19 0.01 0.90 0.08
Novel View 0.03 0.85 0.17 0.01 0.91 0.07 0.04 0.75 0.25 0.01 0.89 0.09

Table 1. Quantitative results for depth estimation, intensity image reconstrunction, and novel view synthesis on synthetic datasets. Ev-
NeRF consistently outperforms the designed baseline even in noisy conditions.

images and depths are superior when using Ev-NeRF, there-
fore fully exploiting the dynamic range of the sensor.

Under extreme lighting, not only do intensity frames suf-
fer from spurious noise, but also the event data is mixed
with severe noise, and the performance of vision-based ap-
proaches severely deteriorates [24, 25]. The multi-view
consistency in Ev-NeRF compensates for the uncharacter-
istic noises and reliably reconstructs novel views and depth
information beyond the level obtained from vanilla NeRF
using intensity images.

5.2. Scene Structure Estimation

Lego

Ev-NeRFEvents

Baseline

Figure 7. Qualitative results for intensity image, dense depth by
baseline (E2VID+ [53] + NeRF) and Ev-NeRF.

Evaluation with Synthetic Data The NeRF volume ag-
gregates multiple measurements into a coherent structure
such that we can generate images from arbitrary viewpoint.

Also, the density values of NeRF volume can provide es-
timates for 3D structure as in Equation 5. Since the real-
world datasets for event-based vision lack dense depth an-
notations, the synthetic data can provide quantitative eval-
uation on the created NeRF volume. Also, the 3D points
found with existing event-based algorithms are limited to
sparse reconstruction that can generate events and no prior
work is able to reconstruct novel view images. Therefore,
we design baseline for quantitatively comparison.

For the synthetic data, we capture a high frame rate video
from typical trajectories for NeRF with Blender, and the
event simulator [18] generates events with realistic noise
from the video. For the baseline, we first reconstruct inten-
sity images from events using E2VID+ [53] and then use
them to learn vanilla NeRF [32]. The proposed method
serves as a powerful baseline that can reconstruct dense
depth and an intensity image from a novel view. Figure 7
shows an object in Blender, generated events, and the pairs
of an intensity image and the depth generated from the de-
signed baseline and Ev-NeRF.

Table 1 compares the depth estimation results using three
metrics: average relative error (Abs Rel), squared rela-
tive difference (Sq Rel), root mean squared error (RMSE).
Also the reconstructed intensity images in the given or
novel views against the ground truth intensity images
are compared using three metrics: mean squared error
(MSE), structural similarity (SSIM) and perceptual similar-
ity (LPIPS) [64]. In baseline, images reconstructed through
E2VID+ [53] lack multi-view consistency and result in an
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Figure 8. Qualitative comparison on 3D structure estimation.
Ground-truth intensity frame, semi-dense depth by [65], dense
depth, and intensity image by Ev-NeRF in order.

(a) Reflective 
materials

(b) Fine geometry 
plants

(c) HDR boxes

Figure 9. Qualitative results on depth estimation on a real dataset.
The intensity images (top) are not observed by the algorithm.

artifact, which reduces the accuracy of 3D structures. Ev-
NeRF directly integrates events and Table 1 indicates that
it is superior to the proposed baseline for depth reconstruc-
tion. Also, the high-quality 3D structure aids in more accu-
rate reconstruction of intensity images or novel-view syn-
thesis, especially in the presence of noise.

Evaluation with Real Data There is no prior work that
is bound to the exact set-up as Ev-NeRF, and no real-world
dataset with ground-truth is available to quantitatively eval-
uate the dense 3D structure. As an alternative, we com-
pare the acquired geometry against the 3D information ex-
tracted from an event-based SLAM approach [65]. Event-
based SLAM utilizes measurements from additional hard-
ware and compute the camera pose and the geometric struc-
ture. Specifically, Zhou et al. [65] use a pair of temporally
synchronized event cameras. On the other hand, Ev-NeRF
uses a single event camera with known poses. Even though
the detailed setup is different, both estimate 3D structure
from the measurements of a moving sensor observing a
static scene, whose results are provided in Figure 8. Zhou et
al. [65] reconstruct depth only in the area where the events
have occurred, and therefore recover semi-dense 3D struc-
ture (second column in Figure 8). In contrast, Ev-NeRF re-
constructs implicit 3d volume and can produce denser depth
with intensity images (third and last columns in Figure 8).

We can also find qualitative results from the dataset used
in Sec. 5.1. Figure 6 contains the depth estimation from low
lighting conditions. Additionally, Figure 9 shows that Ev-

MSE ↓ SSIM ↑ LPIPS ↓
Scene Given Novel Given Novel Given Novel
office zigzag 0.03 0.04 0.42 0.41 0.27 0.28
office spiral 0.03 0.03 0.41 0.40 0.27 0.27
boxes 0.04 0.04 0.48 0.46 0.31 0.33
dynamic 6dof 0.19 0.20 0.26 0.26 0.41 0.43
reflective materials 0.05 0.06 0.40 0.40 0.35 0.38
high texture plants 0.03 0.03 0.44 0.42 0.34 0.36
still life 0.03 0.04 0.53 0.52 0.18 0.18

Table 2. Quantitative results of novel view reconstruction. Com-
pared to given views provided during training, only a small perfor-
mance gap is observed to reconstruct images of novel views.

NeRF creates reasonable depth estimates for challenging
real-world scenes with reflective materials, fine geometry
details, or HDR measurements where existing approaches
might fail.

We also evaluate the performance of novel view syn-
thesis. We divide each sub-sequence in the dataset into a
training and test set, and synthesize the images at the view-
points included in the test set with Ev-NeRF trained with
the training set. Table 2 compares the reconstructed images
against ground truth intensity images. The reported metrics
for novel-view images are compatible with the results for
the given view. Thus, the ability of NeRF is nicely trans-
ferred to Ev-NeRF.

6. Conclusions and Future Work
We present Ev-NeRF, which learns the implicit volume

of the neural radiance field from the raw stream of events
generated by a neuromorphic camera. The inherent multi-
view consistency creates a representation remarkably ro-
bust to noisy inputs, which is a critical challenge for us-
ing a neuromorphic sensor, yet exploits the subtle bright-
ness changes detected from the sensor. Further, the cre-
ated NeRF volume can generate intensity images or esti-
mate depth, whose quality is comparable to many existing
supervised methods exclusively designed to solve a specific
task. To the best of our knowledge, Ev-NeRF is the first at-
tempt to incorporate the NeRF formulation with raw event
data and can advance with the abundant subsequent works
that overcome the limitations of NeRF, such as handling dy-
namic scenes to better incorporate the fast temporal resolu-
tion of the sensor [40, 26], reducing training and rendering
time [35, 54, 1], and alleviating the requirements of known
camera poses [61, 27].
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