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Abstract

Photometric stereo (PS) is a major technique to recover
surface normal for each pixel. However, since it assumes
Lambertian surface and directional light to estimate the
value, a large number of images are usually required to
avoid the effects of outliers and noise. In this paper, we
propose a technique to reduce the number of images by
using distributed light sources, where the patterns are op-
timized by a deep neural network (DNN). In addition, to
efficiently realize the distributed light, we use an optical
diffuser with a video projector, where the diffuser is illu-
minated by the projector from behind, the illuminated area
on the diffuser works as if an arbitrary-shaped area light.
To estimate the surface normal using the distributed light
source, we propose a near-light photometric stereo (NLPS)
using DNN. Since optimization of the pattern of distributed
light is achieved by a differentiable renderer, it is connected
with NLPS network, achieving end-to-end learning. The ex-
periments are conducted to show the successful estimation
of the surface normal by our method from a small number
of images.

1. Introduction

Among the wide variety of active lighting-based 3D ac-
quisition methods, photometric stereo (PS) has attracted re-
searchers for more than 40 years because it has a unique
feature in that it is capable of robust recovery of the pixel-
wise surface normal just from images where the scene is il-
luminated from various light directions [13]. To efficiently
estimate the surface normal, linear solution assuming Lam-
bertian surfaces and directional light sources have been pro-
posed. By using the technique, it is possible to recover sur-
face normal for each pixel just using three inputs (pixel val-
ues for three lighting directions) in theory. However, since
there are many types of reflections, such as specularity or
subsurface scattering, a large number of images are usually
required to suppress those effects as well as outliers and

noise. In addition, there are many types of light sources,
such as a point light source or area light sources, non-linear
techniques are usually applied after the linear solution, e.g.,
a near light photometric stereo (NLPS) [2, 9] or deep neural
network solution [21, 24, 40, 34, 22] are proposed recently.

In this paper, we propose a technique to reduce the num-
ber of images by using distributed light sources, where the
patterns are optimized by a deep neural network (DNN). To
deal with this problem, we propose a method to simulta-
neously design arbitrary-shaped distributed light sources as
well as train DNN for NLPS. In the method, since the de-
sign of the distributed light pattern is optimized by using a
differentiable renderer, it is connected with NLPS module
to achieve end-to-end learning.

In terms of the realization of arbitrary-shaped distributed
light sources, one approach is to physically arrange many
point light sources, which is a laborious task. In our method,
we propose to use diffuse optics for flexible measurements.
In the system, an optical diffuser with a static video projec-
tor is used, which has not been proposed yet for PS, since it
is not equivalent to directional light. If the diffuser is illu-
minated from behind by the video projector, the illuminated
area on the diffuser works as an arbitrary-shaped area light.
i.e., a large number of point-light sources are arranged on
the diffuser.

The experimental results are shown that the proposed
method can estimate the surface normals effectively, not
only for simulation data but also for real environments by
achieving shape reconstruction with a small number of mea-
surements. We have made the following contributions,

• DNN solution for NLPS, which is designed to use light
parameters as the input being allowed arbitrary distri-
bution of light sources without retraining, is proposed.

• Optimal distribution of light patterns is designed by
DNN in an end-to-end manner, which allows robust
estimation of surface normal using a small number of
inputs. Although a rigorous analysis of the number
of measurements is practically difficult, it was in part
verified by our experiments.
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• Efficient capturing system using an optical diffuser
with a video projector, which can achieve precise and
arbitrary distribution of light sources without actually
setting up independent light sources, is proposed.

2. Related work
2.1. Diffuse optics for active measurement

Diffusers have been used as light sources to perform ac-
tive measurements, but little for PS. For example, when
diffused by an isotropic diffuser, a specular reflection is
known to vary its intensity according to the normal direc-
tion and this property has been used for processing objects
with specular reflections, such as metal objects, as same as
Lambertian objects [12, 30, 29]. Similarly, Nayar et al. re-
alized structured light on a metallic object by projecting an
encoded pattern onto a diffuser [28]. On the other hand, the
concept of the use of light projected on a diffuse wall as a
light source for PS was presented by Schechner et al. [35].
Since the diffuse reflection is weak, it can capture only dark
shading images, and thus, to improve its signal-to-noise ra-
tio, they proposed a light multiplexing method, requiring
a huge number of images. In addition, to approximate the
projected area as an infinite light source, the technique can
recover only small objects even in a large acquisition room.

In contrast, since intensity distribution to forward direc-
tion is dominant for an optical diffuser, energy efficiency
can be much improved and a small data acquisition room is
possible. In addition, by introducing NLPS, the room size
can be further reduced.

2.2. PS for non-Lambertian surface and NLPS

One of the most challenging problems for PS is the mate-
rial of the non-Lambertian surfaces. As possible methods to
remove non-Lambertian reflection, such as specular reflec-
tions, a method that uses shading images with four or more
light sources [3] and a method that separates the reflec-
tion components using the optics have been proposed [27].
As an algorithm for specular reflection removal, a median
filter-based method [25], methods based on bidirectional re-
flectance distribution function (BRDF) models [23, 8], and
a method based on low-rank matrix completion [38] have
all been proposed. Recently, DNN-based methods have
been proposed [39, 32, 11, 7, 33, 34] in which the DNNs
are trained on datasets that include a variety of materials to
handle the non-Lambertian surfaces. However, their tech-
niques can only recover the normals under the same setting
for training. In the paper, we improve the DNN to use light-
ing information as the input so that the network can estimate
normals for arbitrary lighting conditions other than training
ones.

Another challenge for PS is a non-directional light
source, such as a point light source or an area light source.

Because normal estimation using point light sources is
dependent on depth and cannot be computed in a lin-
ear system, several algorithms for NLPS have been stud-
ied [21, 24, 40, 34, 22]. Since they assumed isotropic light
distribution, precise and complicated calibration is required,
which is usually a difficult task. There is another NLPS that
used an area light source using a computer display [36],
where rectangular patterns were projected onto a display,
and the normal and depth were then reconstructed. Since a
typical liquid crystal display (LCD) has complex emission
characteristics, including angular dependence, the recon-
structed shapes had limited quality. In our method, DNN is
first trained by CG for arbitrary light distributions followed
by a fine-tune using real data sets to achieve sufficient qual-
ity.

2.3. Optimal illumination for the measurement

Li et al. proposed a method to improve the normal es-
timation accuracy, even when a small number of measure-
ments is used [19]. In the technique, they assumed direc-
tional light and decided the optimal directions of the light
by considering the presence of cast shadows caused by self-
occlusion. In contrast, our method estimates the distribution
of multiple point light sources, which can not only compen-
sate for cast shadows but also improve the accuracy for low
light conditions.

There is a technique to find optimal light distribution for
acquiring BRDF [17], but not for PS. They used a multi-
plexing approach to reduce the number of measurements
using a device with a high-density LED array. A DNN was
used to learn how to multiplex light and decode BRDFs
from observed images when the number of measurements
performed was limited. We also apply a similar approach
to estimate the distribution of light sources to reduce the
necessary number of measurements for PS.

3. PS using a spatially distributed light source
3.1. PS with an optical diffuser

Conventional PS requires the light source information,
such as the direction of each light source, to be known and
requires calibration. In our method, rather than using phys-
ical light sources, we use an optical diffuser lit by a video
projector that projects light patterns as shown in Fig. 1. The
diffuser lit by a light pattern works as an area light source,
which is equivalent to numerous point light sources dis-
tributed on the diffuser. The normals of the scene are es-
timated by extended NLPS using DNN.

This setup offers the following advantages. 1. The opti-
cal diffuser has strong intensity to forward direction and can
achieve better energy efficiency than reflection ones [35].
2. By simultaneously illuminating multiple positions of the
diffuser by the video projector, it outputs more energy than
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Figure 1: Illustration of the measurement setup. A spatially
distributed light source is realized on the diffuser.

illuminating a single position, achieving a high SN ratio.
3. Multiplexed illuminations soften the shadows, reducing
the effects of shadows near object boundaries with complex
shapes and making normal estimations easier. Furthermore,
it allows a flexible set-up, allowing the camera to be placed
in front of the diffuser.

3.2. Optimal distribution of light source for NLPS

Multiple shading images under different lighting condi-
tions are required to estimate surface normals, but the op-
timal distributions of light sources for NLPS are not obvi-
ous. In our approach, to determine a suitable distribution
of light sources, we design the pattern for the video projec-
tor such that the accuracy of the estimated surface normals
is high. One of the difficulties involved in this approach is
that no general method is available to estimate the normals
from scene images shaded under the set of arbitrarily dis-
tributed light sources. Therefore, in the proposed method,
we design the patterns and the normal estimation algorithm
simultaneously. For this purpose, we use a DNN-based PS-
module for estimating normals and a differentiable renderer
for synthesizing shading images from the light patterns that
are optimized. Details are described in Sec. 4.

3.3. Algorithm overview

An overview of our proposed algorithm is shown in
Fig. 2. During training (Fig. 2a), we use the differentiable
renderer to synthesize shading images under arbitrary mul-
tiplexed lighting conditions. The inputs to the renderer are
surface normals and depth maps, which are computed by
rasterizing meshes in advance. Light parameters, including
the center, pose, and size of the area light source, is also
input. The renderer module then generates shading images
based on the light parameters and weights representing the
lighting patterns. The PS module then takes these shading
images as inputs. To deal with a variety of lighting condi-
tions, light information (i.e., parameters and patterns) is also
input. An end-to-end architecture is used that combines the
renderer and PS modules to learn the area-lighting patterns
and perform PS estimation simultaneously.

In the method, the PS module is trained independently
by fixing the weights used for the arbitrary lighting condi-
tions (Fig. 2b). The PS module is first pre-trained as part of
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Figure 2: Algorithm overview.

the end-to-end architecture, with subsequent fine-tuning be-
ing performed using photo-realistic rendered images or real-
world observations to compensate for global illumination,
which is not rendered by the renderer module. For real-
world data, the shading images of objects, where ground
truth is known such as a sphere or a box, are captured using
the learned patterns. The surface normal is then estimated
using the PS module based on the shading images, the pre-
calibrated light parameters, and ground truth.

4. Implementation
4.1. Renderer module

The renderer module generates a shading image under an
arbitrary distributed light source. The shading image is gen-
erated by summing the basic shading images corresponding
to each light source. We use two approaches to rendering
basic shading images, and the algorithms are described in
detail in Sec. 4.4. The module’s input is a base shading im-
age Bi of each source i in the distributed light source turned
on at unit intensity, and a vector Ei represents the intensity
of each light source. The generation of the basic shading
image is described in the dataset chapter. The intensity of
the observed shading image I is calculated as follows:

I = min

(∑
i

Ei ⊙Bi + ϵ, 1

)
, (1)

where ⊙ denotes element-wise multiplication. Here, to
reproduce the observation in the real world, noise ϵ ∼
N (0, σ2) is added to the whole image according to a nor-
mal distribution, and pixel values exceed 1 is clipped to sim-
ulate saturation.

The intensity vector of the distributed light source is the
parameter to be optimized. In the case of a projector, it cor-
responds to each pixel value of the projected pattern and
technically may have any value within the range of output
bit depths. However, the network may learn to rely on small
changes in light source intensity, which is too sensitive to
noise and leads to estimation failure for real-world projec-
tors with nonlinear intensity response curves. To prevent
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this, we apply a Gumbel softmax function [15] GS to the
network parameters to learn the binary intensities:

Ei = GS(ci, τ), (2)

where ci denotes a raw weight value for intensity of the i-
th source and τ denotes temperature parameter of Gumbel
softmax.

4.2. PS module

The PS module estimates the surface normal from the
shading images. The amount of light received by an object’s
surface is given by the integral of the contributions made
by point-light sources defined by the pattern of the video
projector. Because each contribution is dependent on the
distance between the point light source and the object sur-
face, it is difficult to determine the object’s normal analyti-
cally from the shadings when the object shape is unknown,
which is typical chicken and egg problem. We, therefore,
use DNN-based machine learning to estimate the surface
normals from the shading.

The shading image depends on light source positions.
Thus, a model trained on a dataset obtained under a spe-
cific light source configuration will not estimate the normals
correctly for a different lighting configuration. One solution
is uncalibrated PS [4, 26, 10], which recovers the normals
without knowing lighting information, however, normals
and lighting configurations are not determined uniquely
only from shadings; this is known as bas-relief ambigu-
ity [5]. Therefore, to estimate the normals under arbitrary
light source configurations other than the trained one, we in-
put both the shading images and the light source parameters
to the PS module.

As shown in Fig. 3a, the network consists of a shading
branch for processing the shading images, a light branch for
processing the light source parameters, and a decoder. The
shading branch and the decoder form a U-Net convolutional
neural network structure to estimate the normal while also
maintaining the geometry features. The input to this net-
work is a stack of shading images, and its output is the nor-
mal. The input to the light branch is a two-dimensional im-
age that describes the spatial distribution of the light source
and the position and intensity of each source. Each pixel
of the image is a four-dimensional vector which is given by
concatenating 3D coordinates of the center of the discrete
area of P and its intensity Ei. This representation allows us
to handle spatially distributed light with an arbitrary shape
in any position and with any orientation. The light source
information is encoded into a feature vector through a light
branch. The features that are extracted by the encoder for
the shading branch and the features of the light source in-
formation are then concatenated to form the decoder input.

The shading branch consists of three downsampled lay-
ers and the decoder consists of three upsampled layers that

are connected via skip connections. The light branch con-
sists of three downsampled layers. Batch normalization
(BN), convolution, and activation (rectified linear unit or
ReLU) processes are performed twice in each layer.

4.3. Training details

During training, the two modules are connected and are
then used as an end-to-end architecture to learn the area
lighting patterns and perform PS estimation simultaneously.

Two learning strategies are used to achieve the two goals
of this work: learning efficient patterns and obtaining the
required generalization performance for the light source lo-
cations. When learning efficient patterns, we use an aug-
mentation approach with a small range of light source pa-
rameter variations to accelerate the training of the network
weights that represent the lighting patterns by allowing the
PS module to converge quickly. To obtain the generaliza-
tion performance required for light source placement, we
fix the network weights that represent the patterns and then
train the PS module only. The generalization performance
can be improved by increasing the number of variations in
the light source configuration. The OR dataset, which will
be presented in Sec. 4.4, is rendered online during training
to allow augmentation with respect to light source configu-
ration.

To deal with real-world images, which include global
illumination, we fine-tuned the PS module using either
photo-realistic computer graphics or real-world images.
During the fine-tuning process, only the weights of the en-
coder layer in the shading branch are updated by the addi-
tional training.

We use the L-1 norm for the ground truth and the pre-
dicted normal as the loss function for the training as follows

L = ∥n− ñ∥1. (3)

The adaptive moment estimation (ADAM) algorithm [18] is
used for the optimization process. The learning rate is 0.001
and the number of epochs is 300.

4.4. Training dataset

The existing PS dataset cannot be used to train our
network because it uses directional light. We create two
datasets with different purposes for training.

The first is Online Rendering (OR) dataset that covers
many variations of light source placement by augmenting
them online during training. To achieve this, normal and
depth maps are rasterized before training, and shading im-
ages are generated online from these maps during training
according to the light source placement. The shading im-
ages are computed using linear matrix calculations based on
the formulations of diffuse and Phong materials. We select
8 meshes from the blobby shape dataset [16] as the shape,
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Figure 3: (a) Network architecture of PS module. (b) Four patterns are learned for diffuse and Phong material, respectively.
Each pattern is different for the same material, and patterns are different from the other material. In the example shading
images of Phong material, it is confirmed that specular component does not always stay in the same place.

the translation of the object center is randomly set from (-
0.5, -0.5, -0.5) to (0.5, 0.5, 0.5), and the rotation is from
-180 degrees to 180 degrees about x, y, z axis, and the size
is from 0.1 to 1.5. The dataset contains 4000 for diffuse and
4000 for Phong materials. Shading images are generated
from the remaining 2 meshes in the same way and used for
test.

The second one is Eevee Prerender (EP) dataset, which
is generated by the Eevee renderer [1] implemented in
Blender and contains a variety of materials. This rendering
cannot be done during training, so we use pre-rendering.
As a GPU-based renderer, Eevee is fast and can handle
many types of materials and light sources, although it is
not as realistic as path-tracing. To cover real-world mate-
rials, a composite image of the material is generated with
various parameters. Following [11], we set different param-
eter sets for the three classes (diffuse, specular, metallic) in
Disney’s principled BSDF. We set the following parameters
with slight modification from the original work: baseColor,
metallic, specular, roughness, sheen, sheen tint, IOR. Please
see supplemental material for the range of each parame-
ter. Shapes are generated using the random shape generator
plugin which can generate shapes with edges and smooth
shapes using subdivisions. The dataset contains 2000 for
diffuse, 1000 for specular, and 1000 for metallic. Images
are rendered at a resolution of 256x256 and resized upon
loading.

In both datasets, the translation of the center of the dif-
fuser is randomly set from (-0.5, -0.5, 4.5) to (0.5, 0.5, 5.5),
and the rotation is set from -15 to 15 degrees for the x, y,
and z axes, and the size from 0.5 to 2.0. In the OR dataset,
these parameters change at each iteration, whereas in the EP
dataset parameters are fixed during training.

5. Experimental results

5.1. Evaluation with synthesized data

Comparison with other NLPS methods: We evaluate the
accuracy of the proposed method’s normal estimation in a
simulation environment. The estimation accuracy of several
state-of-the-art NLPS techniques [31, 20, 33] are compared
for objects 1–5 made of different materials as shown in the
Fig. 4a. [31] is an iterative calibrated PS method. It takes 8
shading images as input, with the light source position and
camera parameters as inputs. [20] is a weakly calibrated
method, and takes as input 6 shading images taken with the
light source positioned in a roughly specified direction. [33]
is a calibrated PS method based on DNN, so the camera and
light source positions are given as input. The test dataset is
generated by rendering the same scene as the setup shown
in [33] with the EEVEE renderer since the provided pre-
trained model is dependent on their training data. The light
sources are placed on a 16x16 flat array. The resolution
in this comparison is 64x64. The proposed method uses 16
optimized pattern images, and the model is fine-tuned to the
setup. Since all methods use the light source position as an
input also leads us to expect that all methods will perform
well on this test data.

The qualitative evaluation is shown in the Fig. 4a. Ob-
jects #1–3 are dominated by diffuse components. The nor-
mal of #1 is consistently estimated by all the techniques,
while [31] shows a normal shift in the upper part of the
object. Object #2 is composed of planes and has an oc-
clusion boundary; the DL-based techniques [20, 32] and
proposed method succeed in estimating the boundary, while
[31] fails. The fact that the plane is estimated as a curved
surface also indicates that the simultaneous estimation of
normal, depth, and albedo is an unstable computation. The
proposed method is also accurate in the upper occlusion re-
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Table 1: Error comparison with the state-of-the-art near
light PS methods.

[31] [20] [33] Proposed
MSE 0.621 0.430 0.347 0.193
MAE 38.10 26.46 21.57 13.68

gion, showing the effect of diffuse light sources. #3 is a
glossy material, and the DL-based methods [20, 32] show
an overall normal shift, indicating that the trained model
cannot adequately deal with the shading of this material.
Object #4 has a specular component, and [32] has an arti-
fact in the center of the object. On the other hand, [20] and
the proposed method shows some artifacts, but the overall
normal quality is high. #5 is a metallic material, and it can
be seen that [20] cannot deal with this material given its
low normal accuracy, while [31] fails to estimate the nor-
mal because the convergence condition of the optimization
is not satisfied. The proposed method can deal with differ-
ent shadings of the materials, and the estimation accuracy is
high even in occlusion regions, confirming that there is no
problem even in the presence of occlusion boundaries. The
errors are shown in table 1 in Mean Squared Error (MSE)
and Mean Angular Error (MAE). The results show the pro-
posed technique outperforms other techniques. The high-
resolution results (256x256) for the proposed method are
shown in Fig. 4b. The most part of the estimation is highly
accurate, but there is an error in the specular scene due to
the cast shadows that are constantly existing.
Evaluation of optimized patterns: The estimated patterns
for diffuse and Phong materials, where four patterns were
assumed to be projected onto the scene to estimate surface
normal, are shown in Fig. 3. In the patterns for the diffuse
material, it is found that the patterns are divided into two
regions where the boundaries of the regions are clean and
smooth. In contrast, in the patterns for the Phong material,
although the patterns are mostly divided into two parts, it
is found that the shapes of the boundaries are complicated
with small structures. We thought this is because such high-
frequency patterns will make distinctive highlights at differ-
ent locations as illustrated in the same figure(bottom right),
which helps to estimate surface normals.

We compare the learned pattern to a random pattern to
confirm that the learned pattern improves the accuracy of
the normal estimation. The random pattern is binarized and
approximately 50% of the total pixels are on. The test is
performed on 100 diffuse and 100 specular object shapes
generated by the simulation. The results are shown in Fig. 5.
The diffuse material can estimate the normals from a small
number of observations in different light source directions,
and the proposed method achieves high accuracy from four
images, while the accuracy of the random pattern does not
increase as the number of images increases because the

Table 2: Error comparison of the proposed method with
sparse PS method [41]. Errors are shown in MAE.

σ Proposed SPLINE-Net [41]
0.000 13.01 10.00
0.050 15.03 26.13
0.100 13.78 35.36
0.400 36.60 N/A

Table 3: MAE on different material dataset.

Model diffuse specular metallic
D 2.52 6.40 10.78

DSM 4.81 6.55 7.78

shading changes little depending on the pattern, and the ac-
curacy is affected by the distribution of the images. For
specular materials, the overlap between light sources leads
to incorrect estimation. The proposed method automatically
optimizes the combination of patterns with less overlap as
the number of patterns increases, and the highest accuracy
is obtained when the number of patterns is 16. On the other
hand, the accuracy of random patterns does not change as
the number of patterns increases, indicating that the shading
is not effectively used.
Comparison with sparse PS: We compared our technique
with sparse PS technique [41] which estimates high quality
normal from a small number of the measurement. We used a
pre-trained model for inference with [41] which is provided
by the authors trained for DiLiGenT dataset [37]. The test
data are generated by physics-based rendering [14] in the
same setup as the DiliGenT dataset. We rendered 100 real-
istic shading images of blobby shapes with strong specular
effects. Note that the models of the proposed method are
generated by different renderers for a fair comparison. To
make the simulation realistic, we also added photon noise,
where the noise becomes large if the exposure becomes low.
MAE of the estimated normals of both methods is shown in
table 2. If there is no noise, both [41] and our technique can
estimate the surface normal with high accuracy. However,
if the noise ratio increases, the input of our method does
not change its appearance because distributed light keeps
enough energy at each pixel by global illumination, whereas
signal noise ratio (SNR) drastically decreases for [41] be-
cause directional light can provide limited energy at a point,
and thus, it is confirmed that accuracy of the estimated sur-
face normal of our method is better than [41].
Evaluation of generalization ability across materials: In
this experiment, the network is trained and tested by using
three different materials to evaluate its generalization ability
across materials. The EP dataset [1] is divided into two and
the network is trained using them: D model is trained on
dataset consisting of 1000 diffuse objects and DSM model
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Figure 4: (a) Comparison with state-of-the-art techniques. #1, #2 are diffuse, #3 is glossy, #4 is specular, and #5 is a metallic
material. The proposed technique stably estimates the surface normal of different materials, even in the presence of the
occluding area and boundaries. (b) Additional results for the proposed method. (c) Evaluation of generalization performance
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0

5

10

15

20

4 8 16

M
A

E

# of patterns

proposed random

(a) Diffuse.

M
A

E

# of patterns

proposed random

0

5

10

15

20

4 8 16

(b) Specular.

Figure 5: Evaluation of optimized patterns. (a) The pro-
posed method achieves high accuracy from a small number
of measurements for diffuse material. (b) For specular ma-
terials, the accuracy increases with the number of optimal
patterns because it is easier to prevent overlapping reflec-
tions of light sources in different patterns.

is trained on dataset consisting of 600 diffuse, 200 specular,
and 200 metallic objects. The estimated normal errors for
each network model on 200 test data for three materials are
shown in table 3. The D model has the highest accuracy
when test with diffuse objects, but has low accuracy for two
other materials. The DSM model is more accurate than the
D model for metallic materials, keeping certain accuracy on
diffuse and specular objects.
Evaluation of generalization performance for the con-
figuration: Next, we evaluate the effectiveness of the pro-

posed network structure in terms of its generalization per-
formance for the configuration of a camera, a diffuser, and
a projector position. To show the generalization ability of
our method in terms of system configuration, we compared
our method with/without the light branch. We evaluated the
error of estimated surface normals by changing the diffuser
center position randomly in a bounding box. We tested with
two bounding boxes sized, such as small (1) and large (4)
and the results are shown in Fig. 4c. From the graph, it is ob-
served that the models which are trained with light branches
are better than those without. In addition, the small bound-
ing box is better than the large one, probably because more
data are required to improve the accuracy when there are
large variations for training, such as the large bounding box.
These results show that the proposed network achieves a
sufficient generalization performance, even if the number
of variations for training is small.

5.2. Real-world measurement

We verify the effectiveness of the proposed method in
a real environment. The measurement setup consisted of a
diffuser (plastic), an LCD projector, and a camera as shown
in Fig. 6a. The area lighting on the diffuser is calibrated
using the highlight positions for two metal spheres. The
diffuser center is located 47.3 degrees left and 405 mm from
the object center. As the area light sources, patterns are
projected onto a square area of 387mm× 387mm.
Surface normal estimation of various materials: We
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Figure 6: Real-world experiment and results. (a) Setup of the system. It is shown that the distance between the optical
diffuser and the target object is close so that the system becomes compact. (b) Comparison with other NLPS techniques.
#1 and #2 are diffuse, and #3 is specular material. The normals restored by each method agree closely, and the details are
well reconstructed. (c) Normal estimation for real objects of different materials. Each object has a different material; diffuse
plastic, glossy ceramic, and shiny ceramic from top to bottom. 3D reconstructions are shown on the rightmost column.

measure objects made of various materials. We use 16 pat-
terns trained by the EP dataset. The setup of this experiment
is slightly modified: the diffuser is placed in front of the ob-
ject, the distance of the diffuser from the object is 400 mm,
and the projected area of the pattern is 650mm x 650mm.

Figure 6b shows a comparison with other NLPS tech-
niques. #1 is a sphere with a diffuse surface. The normals
estimated by each technique are smooth and nearly identi-
cal. Material #2 shows weak sub-surface scattering. Each
method correctly estimates the global shape. The proposed
method estimates slightly smaller bumps on the nose and
eyes, but this is due to the lack of scattering material in the
training data. #3 is a specular material. [31] shows an over-
all shift of the normals, due to the presence of an occluding
boundary on the top of the object, which negatively affected
the optimization. [33] and the proposed method’s normals
are DL-based and the training data contains specular ma-
terial, resulting in the correct normals. The estimation ac-
curacy has been evaluated for #1 whose ground-truth nor-
mals is calculated by assuming it to be spheres. MAE of
[31], [33], and the proposed method are 21.44, 19.76, and
14.04, respectively, which quantitatively confirms that the
proposed method is the most accurate.

In the Fig. 6c, another object is shown with its shading
image, the normals obtained by the proposed method, and
the 3D shape estimated from the normals. For the 3D re-
construction, we use Poisson normal integration as imple-
mented in [6]. Overall, the normals are correct and con-
sistent, and there is no clear degradation in the accuracy
of normal estimation, even if materials have glossy reflec-
tion, which is observed in #4 and #5. Because the shape
variations are covered by the dataset, the bottom edges of
the box are reproduced, as the two planes of the box are

correctly reproduced with almost orthogonal to each other.
Also, the result of #5 and #6 shows the ability the repro-
duction of detailed shapes. This is because the EP dataset
used to train the model includes more shape variation. On
the other hand, #5 shows distortions in the 3D reconstruc-
tion. This is because the 3D reconstruction assumes an or-
thographic projection model although the camera is a per-
spective projection in reality, and the normals are inconsis-
tent at the boundaries where the normals are discontinuous.

6. Conclusion

In this paper, we proposed a method to estimate surface
normals by the NLPS using distributed light patterns pro-
jected by a video projector onto the optical diffuser. The
network, which consists of a differentiable renderer and a
PS module, is designed to generate optimal distributed light
patterns to estimate surface normals from a small number
of measurements. We also construct a network where the
PS module can learn surface normals from not only shading
images, but also independent of light configuration param-
eters as inputs, which greatly generalizes the method. In
the experiments, we demonstrated the effectiveness of the
proposed method in both simulation and real data and con-
firmed that the proposed method is effective for various ma-
terials under low exposure conditions. Construction of opti-
mal patterns for textured objects as well as high-frequency
shape reconstruction NSPS is our future work.
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