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Abstract

Spatiotemporal control over incoherent light sources is
critically important for applications such as displays, re-
mote sensing, clean energy, and illumination. Incoherent
light emission made up of randomized wavefronts is incom-
patible with known beam steering techniques that rely on
coherent electromagnetic wave interference. The emerging
field of tunable dielectric metasurfaces consisting of sub-
wavelength arrays of optical nanoresonators has recently
enabled active re-direction of incoherent light (photolumi-
nescence, PL) emission. This was achieved by illuminating
(pumping) the metasurface with a pump laser reflecting off
a programmable spatial light modulator (SLM) with saw-
tooth grating patterns as input. Achieving efficient beam
steering requires the generation of optimal pump patterns
programmed into the SLM to maximize the PL emitted to-
wards a given direction. Given the innumerable possibil-
ities and the lack of a theoretical physical framework to
guide the exploration of pump patterns, we use an active
learning algorithm running a closed loop optical experi-
ment with a generative model to explore and optimize novel
pump patterns. We achieve up to an order of magnitude
enhancement in the steering efficiency by using pump pat-
terns that are generated by a variational auto-encoder, with
minimal number of experiments. The results presented in
this paper highlight the unique ability of generative models
and active learning to dramatically improve steering effi-
ciency by finding novel optical pump patterns that are be-
yond human intuition. Our combination of advanced ma-
chine learning techniques driving closed loop nanophotonic
experiments might pave the way to derive the underlying
physics of emergent light-matter phenomena.

1. Introduction
The ability to achieve dynamic spatiotemporal control

over incoherent light emission has been an elusive target, re-

stricting applications to those using mostly coherent lasers
[1, 2]. Typical incoherent emitters like light emitting diodes
(LEDs) and light bulbs emit over a wide angular field of
view with randomized wavefronts making it impossible to
steer using coherent phased-array concepts. Metasurface-
based optics with sub-wavelength control over the ampli-
tude, phase [3, 4], and polarization [5] of light raise the
possibility of controlling incoherent emission or photolumi-
nescence (PL) [6]. Recently, researchers have demonstrated
static control of incoherent emission from light emitting
metasurfaces with polarized, directional [7], and focused
[8] emission. These results may enable new possibilities
for low-cost integrated holographic augmented and virtual
reality displays [9, 10], LED-based remote sensing [11] and
communication modules for LiFi [12, 13], etc.

Dynamic steering of incoherent emission from within the
metasurface was demonstrated by superimposing a refrac-
tive index pattern on the metasurface sample. This pattern
is created by illuminating (pumping) the metasurface with
a spatially patterned wide laser beam. This spatial pattern
is created by reflecting the laser beam off a programmable
spatial light modulator (SLM) that can be fed arbitrary spa-
tial patterns of varying intensity [14]. The traditional saw-
tooth grating pattern [15] within the optical pump has been
shown to dynamically re-direct the PL from the metasur-
face over a 70◦ field of view. In this paper, we develop a
machine-learning framework to steer incoherent light emis-
sion into a particular direction by structuring the optical
pump pattern. We propose a combination of a variational
autoencoder (VAE) to create novel optical pump patterns
with active learning to optimize the PL steered into a par-
ticular direction using minimal experiments.

Metasurfaces limit the emission directions of light to
certain fixed angles (or momentum) due to their sub-
wavelength arrangement (periodicity) of optical nano-
resonators [3]. Reconfigurable metasurfaces [16, 17, 18, 11]
with the ability to arbitrarily control the phase (ϕ) between
0 and 2π) can enforce arbitrary momentum (⃗kM = ∂ϕ

∂x ) on
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Figure 1. A) Photoluminescence steering setup: The schematic shows how the optical pump pattern on the 800nm pump laser is imaged
onto the sample using the SLM. The PL from the sample is collected by a detector (on a translation stage) at different emission angles. The
blue arrows indicates interface of the machine learning framework with the experiment where the image generated by the VAE forms the
input for the SLM and the active learning leverages the closed-loop feedback of the detector. B) Schematic of the array of GaAs metasurface
resonators with embedded InAs quantum dots (QDs) grown epitaxially on a distributed Bragg reflector (DBR) made of Al0.3Ga0.7As and
AlAs layers on a GaAs substrate. The yellow semi-transparent sheet on top of the resonators represents the spatial pattern of the optical
pump inducing the emission from the InAs QDs and producing a spatially varying refractive index pattern in the resonators. C) Example
grating order pump patterns: The two sub-panels show two example pump patterns (line profiles) and the corresponding SLM images used
for steering PL. The pump patterns are characterized by the grating order (+25 and -12 for the top and bottom sub-panel respectively),
where the grating order relates to the spatial periodicity of the pump pattern. Note that pattern has variations only along the x-axis of 3840
pixels while it is repeated along the Y-axis for 2160 pixels to generate the SLM image. D) Photoluminescence steering from the dielectric
metasuface: The angular emission characteristics of the metasurface are normalized per optical pump pattern from the SLM.

the emitted light. This imposed momentum is used to steer
the incoherent emission that is generated from within the
metasurface. Here, we design and fabricate a reconfigurable
semiconductor (GaAs) metasurface with embedded InAs
quantum dot (QD) emitters. The refractive index change
within the resonator caused by the absorption of the optical
pump from the SLM results in an optical phase shift at the
emission wavelength of the QDs [16, 17, 19]. The 800nm
laser reflected from the SLM, carries the information of the
spatial structure of the refractive index profile which gets

translated into dynamic spatial momentum distributions on
the sample. See Fig. 1A for a schematic of our experimental
setup. Hence by spatially structuring the optical pump using
a SLM (Fig. 1B) [20], we can impart additional momentum
to the light emission. More details about the growth, fab-
rication and measurement setup used here are available in
the supplementary information. We measure the far-field
emission pattern from the metasurface to demonstrate con-
tinuous PL over an 80◦ field of view (limited by the setup)
as a function of the spatial frequency of a saw tooth wave
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(grating order) applied using the SLM (Fig. 1D).
The dynamic steering of PL from the GaAs metasurfaces

based on the applied grating order pump pattern forms the
forward physical model to estimate the far-field emission
based on single periodic pattern in the SLM pump image.
Theoretically, a grating saw-tooth should provide the cor-
rect pattern to cause angular steering. However, given the
physics of light generation and several other physical pro-
cesses that are interconnected in such complex light emit-
ting metasurfaces, we have observed that this pattern is far
from optimal. Using traditional optimization techniques
leads to an intractable problem given the innumerable possi-
bilities of pump patterns and the lack of a theoretical phys-
ical framework to guide this optimization. Even most ad-
vanced electromagnetic wave simulation tools tackle inco-
herent sources one at a time rendering them unsuitable for
an array of incoherent source emitting from the metasur-
face. Thus a closed loop active learning process in combi-
nation with a image generator forms an ideal combination
to enable us to rapidly find the optimal SLM image to max-
imize the PL steering.

2. Machine Learning Framework
The PL steering problem can be characterized within a

machine learning framework as follows: A pump pattern
(input image) is passed to the optical system through the
SLM, which generates a PL (output) intensity along mul-
tiple emission angles. Beam steering is achieved by maxi-
mizing the output intensity at one specific emission angle,
while minimizing the intensity everywhere else. The state-
of-the art has explored a set of grating order (spatial fre-
quency) based pump profiles (Fig. 1D) to identify that beam
steering of PL is a possibility. However, there has been no
attempt made to optimize this property or explore the re-
sponse of the emitter to a vast combinatorial search space of
> 22

12000

images of input pump patterns. The large search
space prohibits brute force searches for an optimal input
profile. Additionally, current human intuition and subject
matter expertise are unable to reduce the dimensionality of
the search space. This implies that we do not know a set of
basis functions that can be used to generate new input pump
pattern image. Hence, human intuition or subject-matter ex-
pertise cannot be used to explore more input profiles since
the underlying relationship between input profile and output
beam steering is unknown. Our problem is thus twofold:
(1) We wish to find novel input pump patterns that maxi-
mize beam steering in a specific direction and (2) we wish
to find these profiles in an efficient manner since a brute
force search across pump-pattern space is unfeasible. To
this end, we develop a machine learning workflow shown in
Fig. 2 A.

To solve problem (1) we use a generative model (VAE
[21] in this work) to (a) characterize input optical profiles

Figure 2. A) Machine learning flowchart highlighting the combi-
nation of the generative model (red dashed box) for image gener-
ation (VAE) used as the optical pump pattern in combination with
a closed-loop active learning experiment (blue dashed box). B)
The generative capability of the VAE illustrated by showing the
distribution of patterns explored by the VAE (orange) compared
to the distribution of state-of-the-art saw-tooth patterns (blue), and
the distribution of human-intuition based patterns (green) used to
hand-craft the training set for the VAE.

that can be expressed in a low dimensional, compact rep-
resentation (latent dimension) unknown to subject matter
experts and (b) sample the learnt latent dimension distri-
bution to generate optical profiles beyond a limited, hand-
crafted training set. While the VAE allows us to generate
an infinite number of profiles by sampling the latent dimen-
sion, we need an efficient manner of exploring these pro-
files such that beam steering is optimized. To solve prob-
lem (2) above, we use an active learning scheme that is cou-
pled to the latent dimension of the VAE. The active learning
scheme finds the latent dimension values such that beam
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steering is optimized, following which we use the trained
VAE to decode the latent dimension and visualize the input
pump pattern.

VAEs consist of an encoder that reduces an input pump
pattern image x to a latent dimension z by learning a prob-
ability distribution Q(z|x), and a decoder that expands the
latent dimension z into an output pump pattern image x by
learning the probability distribution P (x|z). The latent di-
mension z is learnt as a Gaussian distribution, and sampling
this distribution allows the VAE to generate new pump-
pattern samples similar to those in the training set. Train-
ing a VAE involves maximizing the likelihood of generat-
ing pump pattern images similar to the training set X , for-
mulated as minimizing the negative log-likelihood of P (X)
over the network parameters θ

P (X) =
∏

x=Xi

∫
P (x|z; θ)P (z)dz. (1)

This minimization can be formulated as minimizing the
Evidence Lower Bound (ELBO) loss:

ELBO = Ez∼Q(z|X) logP (X|z)−D [Q(z|X)||P (z)] ,
(2)

where the first term is a reconstruction error that mea-
sures the ability of the decoder to generate images close
to the input image, and the second term is the Kullback-
Liebler (KL) divergence term that measures the similarity
of latent space learnt by the VAE to a zero mean unit co-
variance Gaussian prior:

D[Q(z|X)||P (z)] = Ez∼Q[logQ(z|X)− logP (z)]. (3)

The reconstruction term here is formulated as a mean
squared error between the input and the reconstructed im-
age, assuming P (X|z) = N(f(X|z; θ), I). We leverage
the innate properties of the VAE [21] to encode the in-
put pump patterns into a low dimensional continuous latent
space – dramatically reducing the search space by orders of
magnitude. Additionally, the Gaussian distribution of the
latent dimension allows us to generate novel pump pattern
profiles beyond the set of training profiles without imposing
constraints on the functional forms used. This generative
property of VAEs derived from the continuous distribution
of its latent dimensions are specifically useful for generat-
ing images in the physical sciences [22, 23, 24]. VAEs addi-
tionally allow for interpretability of learned representations
[25, 26, 27], which is critical to developing an understand-
ing of the underlying physics.

Here we optimize a one dimensional (1D) input pump
pattern by using a VAE that generates an input pattern of
3840 pixels. The 2D SLM pump pattern input is gener-
ated by repeating the 1D-VAE generated pattern along the

Y axis of the image with 2160 pixels. We limit ourselves to
this repetition of the 1D curve along the Y-axis since our
experimental setup (Fig. 1A) measures the PL variations
only along the X-axis. Our VAE uses an encoder network
with three standard feedforward hidden layers consisting of
1000, 1000, and a 100 units respectively. The decoder mir-
rors this architecture. The training set for the VAE consists
of a variety of periodic 1D profiles generated by sampling
the previously measured grating order profiles (Fig. 1D) and
extending these to include polynomial Bezier curves defin-
ing the intensity profile within each period of the periodic
pattern. We used 50,000 profiles as a part of our training
set, normalizing profiles between 0 and 1. This VAE was
implemented using Pytorch [28], using a mean squared er-
ror loss to quantify the reconstruction error, and using the
Adam optimizer [29] with a learning rate of 0.001. For fur-
ther details on the training, please refer to the Supplemen-
tary material. To illustrate the generative capability of the
VAE in our context, Fig. 2 B shows the range of patterns ex-
plored by VAE. Each input pattern can be characterized by
a set of local slopes (calculated after unwrapping the signal
to account for periodicity). A distribution of these slopes
across all the patterns in a dataset gives us a measure of the
range of patterns explored. The blue region Fig. 2 B shows
that the state-of-the art saw-tooth patterns only form a minor
region of the design space. The green region demonstrates
human intuition in generating the training set for the VAE.
While this range is greater than the state of the art (blue),
the VAE is clearly able to learn key features of patterns from
the training set and use this to explore a significantly wider
range of patterns (orange) compared to state-of-the art or
human intuition.

We minimize the number of experiments required to
find the optimal optical pattern using a closed loop active
learning process (Fig. 2) [30, 31, 32, 33] We choose ac-
tive learning in this work because the use of a Gaussian-
process based active learning scheme allows us to handle
experimental noise. The active learning protocol consists of
a Gaussian process surrogate model that predicts the out-
put beam steering, and an acquisition function that uses the
Gaussian process surrogate model to identify which exper-
iment to conduct next in order to achieve a target figure of
merit, such as maximizing beam steering. This protocol be-
gins with a small initial training set, following which sub-
sequent experiments are identified using acquisition func-
tions. Acquisition functions can be of various types de-
pending on the need to balance exploration and exploita-
tion, some examples are Maximum Expected Improvement
(MEI) and Maximum Uncertainty (MU):

MEI :x∗ = argmax E (max(F (x)− F (x∗)), 0) (4)
MU :x∗ = argmax σ(F (x)), (5)
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Figure 3. A) Normalized PL signal measured with the active
learning optimizing over grating orders. Active learning is redis-
covering a known result with 10% the number of experimental
iterations required for a brute force search at an emission angle of
-40◦. The inset shows the normalized pump amplitude at the end
of the active learning process, corresponding to a grating order of
80. B) Measured PL signal at the same emission angle with the
active learning with pump patterns generated using the VAE. The
inset here again shows the optimized pump pattern at the end of
the active learning process with a 12× improvement in the signal
w.r.t grating order based optimization in panel A represented by
the black dashed line. The blue dots in this figure represent the
training data while the final 100 experiments in red demonstrates
how quickly the active learning optimizes the pump pattern.

where x∗ is the next selected experiment, and x represents
the set of possible experiments, and F (x) is the collection
of predicted outputs for all possible experiments x, as pre-
dicted by a surrogate model.

In this work we perform active learning on the latent
dimension of the trained VAE, implementing the active
learning using the Ax library [34]. We use the MEI ac-
quisition function, where the initial training set is gen-
erated using Sobol sequences [35]. We use 1000 ini-
tial training points and query the active learning acquisi-
tion function for 100 subsequent experiments. The code
for our work is available at https://github.com/
saakethdesai/ml-optics-WACV2023.

3. Results and Discussion

We initially prove the capability of the active learning
process to optimize for beam steering at a fixed emission
angle (Fig. 3A). This is done to demonstrate that we can
rediscover a previously known result (Fig. 1D), where a
specific input pattern periodicity (grating order) optimizes
beam steering at this angle. We find that the active learn-
ing scheme can identify this specific grating order using
only 10% of the experiments required to obtain the result
in Fig. 1D. Even though this is a trivial one-dimensional
optimization, the result shows that the active learning is
working as intended. Subsequently, we maximize the signal
steered along the same angle using patterns generated from
the VAE. We find that the wide range of patterns generated
by the VAE enables us to find a pattern that shows a signif-
icant 12× improvement in the PL signal strength (Fig. 3B)
compared to the saw tooth patterns measured previously in
Ȧ closer look at the pump pattern that leads to this dramatic
increase (inset, Fig. 3B) shows that the discovered pattern
has a higher average value than the saw tooth patterns ex-
plored before. This implies that the active learning scheme
learnt that a higher average pump power results in more
PL emission from the metasurface, as would be expected
from physics. Interestingly, this also means that our ML
framework found a way to ‘cheat’ and obtain high output
intensities at a specific angle. In this case, our framework
obtained a high intensity at a specific angle not by steer-
ing light, but by increasing the overall photoluminescence
across all emission angles. As shown in Fig. 3A, the active
learning scheme was able to identify this pattern within the
first 10 experiments, a feat that would not be possible with
the current understanding of the underlying physics. The
ability of the VAE and active learning to maximize beam
steering at a specific angle effectively represents the ability
of our framework to learn one of the basic energy conserva-
tion laws of physics.

Encouraged by this success, we now update the active
learning figure of merit to optimize for the directivity of
emission, defined as:

Directivity =
f(θe)∑
θe
f(θe)

. (6)

where f(θe) represents output signal at a specific steering
angle θe

Using Eq. (6) as our target for the active learning results
in a clear maximization of directivity, as shown in Fig. 4 A,
bottom panel. The pump pattern that resulted in this max-
imum directivity shows interesting saw-tooth-like charac-
teristics, but with perturbations to the pattern inside each
period, see Fig. 4 A, top panel. This pattern shows a steer-
ing efficiency that is 3.4 times greater than the state-of-the-
art saw-tooth patterns. A similar result is obtained across
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Figure 4. Active Learning PL directivity: A),B) & C) represent the active learning process to maximize the directivity of the far-field
emission from the metasurface at -9°, +9° & +25° respectively. The top panel in each of these figures represent the optimized optical pump
pattern generated by the VAE whose far-field emission patterns are plotted in panel D as indicated by the colored legends. As a control
experiment, the orange curve in panel D shows the far-field emission of an unoptimized pump pattern generated by the VAE

multiple emission angles, as illustrated in Fig. 4 B and C.
Our framework improves the steering efficiency by 5.6 and
8.7 times respectively w.r.t the grating order based steer-
ing demonstrated in Fig. 1D. Interestingly, the patterns that
achieve this steering are different from the pattern in Fig.
4 A, with the pattern in 4 B showing a mixture of pulse
and saw-tooth characteristics, while the pattern in 4 C is
a very high-frequency pattern with sharply varying spatial
intensity. These results are even more encouraging when
we consider that the figure of merit (directivity) involves
a summation of output intensities across multiple emission
angles. This summation implies that the inherent exper-
imental noise associated with capturing intensity at each
emission angle is now amplified, and we find it encourag-
ing that the active learning framework is able to optimize
for specific patterns despite this noise. The final optimized
far-field emission profiles are plotted in Fig. 4D, showcas-
ing how the various pump patterns optimize for steering at
various emission angles, highlighting the capability of this

machine learning framework.

In conclusion, we have demonstrated nearly an order of
magnitude improvement in the PL steering efficiency from
metasurfaces using an active learning process combined
with a variational auto-encoder to generate novel pump pat-
terns that go beyond subject matter expert intuition. This
is one of the first implementations of a machine-learning
framework to actively improve a macroscopic observable
such as PL steering without a guiding theoretical frame-
work. We have demonstrated for the first time that non-
trivial structuring of the the optical pump pattern can be
lead to emergent light-matter interactions at the nano-scale.
This demonstration proved that the active learning process
working off a generative model can indeed learn and guide
us towards new physical possibilities with minimal experi-
mental iterations. Additionally, this architecture lays down
a foundational template to explore novel physical processes
driven by structured illumination while accounting for large
experimental noise. This improvement in PL steering effi-
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ciency opens up the possibility of using these low-form fac-
tor metasurface emitters in real-world applications includ-
ing displays for augmented and virtual reality holographic
displays. Moving forward, we are planning on leveraging
the continuous distribution of the latent dimensional space
of the VAE to develop a structure-property relationship be-
tween the PL steering efficiency and the pump pattern fea-
tures. Ultimately, the results presented in this paper high-
light the exceptional ability of computer vision based gen-
erative models to accelerate and advance our understanding
of new physical processes.
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