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Abstract

Multi-task learning (MTL) has found wide application
in computer vision tasks. We train a backbone network
to learn a shared representation for different tasks such as
semantic segmentation, depth- and normal estimation. In
many cases negative transfer, i.e. impaired performance in
the target domain, causes the MTL accuracy to be lower
than training the corresponding single-task networks. To
mitigate this issue, we propose an online knowledge distil-
lation method, where single-task networks are trained si-
multaneously with the MTL network to guide the optimiza-
tion process. We propose selectively training layers for each
task using an adaptive feature distillation (AFD) loss with
an online task weighting (OTW) scheme. This task-wise fea-
ture distillation enables the MTL network to be trained in a
similar way to the single-task networks. On the NYUv2 and
Cityscapes datasets we show improvements over a baseline
MTL model by 6.22% and 9.19%, respectively, outperform-
ing recent MTL methods. We validate the design choices
in ablative experiments, including the use of online task
weighting and the adaptive feature distillation loss.

1. Introduction

Multi-task learning (MTL) helps scaling real-world ap-
plications, where multiple tasks need to be solved simulta-
neously. MTL has been used extensively in the domain of
computer vision [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
NLP [14, 15, 16] and speech recognition [17, 18]. Specif-
ically, we focus on pixel-wise prediction tasks, such as se-
mantic segmentation, depth estimation, and surface normal
estimation from images. Most existing MTL techniques
rely on a branched architecture, where the majority of pa-
rameters are shared between all tasks, with fewer parame-
ters allocated exclusively to each task. Such a shared net-
work architecture is memory-efficient and increases infer-
ence speed. However, MTL models often exhibit worse per-
formance compared to the corresponding single task mod-
els. This problem is referred to as “negative transfer”, in

which the performance improvement in one task leads to
the performance degradation of another. A number of tech-
niques have been proposed to mitigate this issue, including
task weighting [10, 19, 20], feature fusion [1, 2], feature se-
lection [21], task affinity [22] and knowledge distillation [8,
9, 23, 24].

Vision transformers (ViT) have emerged as a successful
technique for many tasks, such as image classification [25,
26], object detection [3, 27] and pixel-wise prediction prob-
lems such as depth estimation [28, 29] and semantic seg-
mentation [30]. Transformer-based techniques for multi-
task scene understanding have been proposed recently [31,
32, 33]. Owing to their excellent performance across differ-
ent tasks, we also use a ViT-based MTL architecture with
a shared backbone and task-specific heads to learn multiple
tasks simultaneously.

Knowledge distillation methods have shown promising
results when applied to multi-task learning [8, 9], where
current state-of-the-art methods use pre-trained models as
teacher models. An online distillation method (‘rocket
launching’) was proposed by Zhou et al. [34] for learning
light-weight models,where simultaneous training of booster
and light networks is performed. By simultaneous train-
ing, the booster network transfers knowledge and guides
the light-weight model via a hint loss throughout the train-
ing process. Inspired by this, we propose training an MTL
network with multiple single task networks, where the sin-
gle task networks guide the MTL network throughout the
training process. This leads to reduced inference time and
memory requirements, while achieving comparable accu-
racy to single-task models. The difference of the proposed
method to alternative knowledge distillation approaches [8,
9] is the simultaneous training of single task and multi-task
models with the help of adaptive feature distillation (AFD)
and online task weighting (OTW), compared to the use of
pre-trained models.

The AFD component selectively distills feature know-
ledge from single-task models to the multi-task model in
each iteration during training. The idea of adaptive feature
distillation is motivated by the observation that different
layers of the shared backbone contribute differently to each
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Figure 1: Model Overview. Multiple single-task models are trained simultaneously along with the multi-task model. Task-specific losses
are used to train the task heads of both the single task (Li

STL) and multi-task models (Li
MTL). An adaptive feature distillation loss (AFD)

is used between intermediate features of single models and the multi-task model. At inference time, only the MTL model is used.

task [21]. Since the single-task and MTL models are trained
together, the training of the MTL model for each task can
be monitored with respect to that of single-task models. In
addition to feature weighting, we also introduce an online
task weighting (OTW) scheme, where weights are based on
the loss values of both single and multi-task models at each
iteration. The overall framework is shown in Fig. 1.

In summary, the contributions in this paper are (1) a
novel simultaneous training strategy of single- and multi-
task models with online knowledge distillation, (2) using
task weights computed from single-task and multi-task loss
values, and (3) using an adaptive feature distillation strat-
egy. We demonstrate the effectiveness of this approach in
experiments on two public datasets, and evaluate the design
choices in ablation studies.

2. Prior Work
Our method majorly explores the use of Vision Trans-

formers for Multi-task Learning (MTL) with the help of on-
line knowledge distillation. Here, we discuss related work
on multi-task networks and knowledge distillation.

Multi-task learning. The aim of multi-task learning
(MTL) is to exploit information in the training data of re-
lated tasks to learn a shared representation [1, 19, 35, 36,
37, 38, 39, 40]. A recent survey paper discusses various
approaches to multi-task learning [41]. In computer vision,
MTL has been used for a wide range of tasks, including
image classification [36], facial landmark localization [39],
scene understanding tasks [19].

Several MTL techniques for scene understanding have

been proposed. Task weighting schemes estimate suitable
weights for combining the loss function of each task [6, 7,
10, 11, 19, 20]. Gradient-based methods, such as Grad-
Norm [4], change the gradient magnitudes of tasks to regu-
larize training. PCGrad [42] modifies the gradient in order
to project a task gradient onto the normal plane of the gra-
dient of any other task that has a conflicting gradient. This
helps to mitigate the negative transfer, commonly found in
MTL [4, 42]. Another approach taken in [1, 2] is to first
train separate single-tasks models and then fuse the inter-
mediate features to obtain better generalization. Attention-
based methods, e.g., [20], as well as other feature weighting
methods [21, 43] have been proposed, which compute the
importance of feature layers for each task.

Recently, a number of different weighting schemes for
task losses have been introduced. Guo et al. [5] observed
that the imbalances in task difficulty can lead to an unde-
sired emphasis on easier tasks, leading to slower progress
on difficult tasks. To allow the model to dynamically priori-
tize difficult tasks with larger weights, dynamic task priori-
tization is proposed. Similarly, Kendall et al. [19] weigh the
losses of multiple tasks using task-dependent homoscedas-
tic uncertainty of model outputs during training. Sener et
al. [10] formulate MTL as a multi-objective optimization
task and propose Pareto optimization using the Frank-Wolfe
algorithm to learn weights of losses. A dynamic weight av-
eraging (DWA) strategy based on the progression of loss
for each task is computed in [20]. As an extension to DWA,
the method in [11] divides the learning process into three
phases. The first phase uses equal weights for all tasks, the
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second phase computes weights based on the task-level loss
and overall loss, and the third phase uses a difficulty fac-
tor based on the loss weights of the previous two phases.
The magnitude of the loss gradient in each iteration is con-
sidered as the task weight in [6]. A low gradient magni-
tude signifies that the task is being learned correctly, and
the corresponding weight may be decreased. On the other
hand, a large gradient magnitude suggests abrupt training
for the task and requires further attention. Other work pro-
posed cross-affinity patterns [44] or pattern structures using
graphlets [22], and propagate them among and across tasks.
A few recent works [23, 24, 45, 22, 33] perform multi-task
learning in stages, where a multi-task network is first em-
ployed for initial predictions, the features from which are
used to obtain predictions for other tasks. We propose an
online knowledge distillation based task weighting strategy,
where the MTL network is encouraged to have similar loss
to that of the STL network.

Knowledge distillation (KD). Our work is related to
Knowledge distillation [46, 47, 48, 49, 50]. Hinton et
al. [46] show that knowledge from ensemble networks can
be distilled to a neural network, thus helping in achieving
better performance with lower inference time. Romero et
al. [47] extended this work by introducing various hint
losses for knowledge distillation. Knowledge distillation
has also been used in various MTL techniques as well. The
works by Parisotto et al. [51], Clark et al. [52] use deep rein-
forcement learning and model compression to train a single
network that learns to perform multiple tasks using know-
ledge distillation. Rocket launching, which simultaneously
trains a lighter network along with large (booster) network,
is proposed in [34]. The work in [34] proposed joint train-
ing of booster and lighter networks with knowledge distil-
lation, for model compression. In this paper we propose
online knowledge distillation for training a multi-task net-
work, with similar computation and memory requirements
as that of single task networks. We also design task weights
based on the loss values of single tasks and that of MTL.

KD methods have recently been shown to perform well
for multi-task learning on scene understanding tasks [8, 9,
53, 54]. KD-MTL [8] and multi-teacher knowledge distil-
lation [53] trains in two stages, where the first stage trains
single-task models, and the second stage trains the MTL
model by distilling knowledge from the penultimate feature
layer of each single-task model. The method in [54] uses
a self-distillation loss, where knowledge is distilled from
the same network for MTL. A self-coordinated knowledge
amalgamation network is proposed in [9], where the student
learns from the heterogeneous pre-trained teachers. Some
work proposed to distill information from the initial pre-
dictions of other tasks of the same multi-task network at a
single scale [23] or multiple scales [24]. In contrast to these
papers, which employ pre-trained models or use predictions

of auxiliary tasks for KD to train a multi-task model, our
method trains both single and multi-task networks jointly.

Vision Transformers. Transformers have been pro-
posed for the tasks of image classification [25, 26], visual
question answering (VQA) [55, 56], object detection [3,
27], semantic segmentation [30, 57], and depth estima-
tion [28, 29]. Multi-task models with transformers have
been proposed in the field of natural language process-
ing. Recently, transformer-based methods have been intro-
duced for multi-modal tasks, involving both language and
vision [12, 13]. This is concurrent with recent work [33, 31,
32], which explores multi-task learning with transformers.
While the method [33] incorporates multi-scale aggregation
and self-attention message passing to produce task-specific
prediction at a high resolution, the method [31] uses task-
specific queries and cross-task attention module in trans-
formers for multi-task learning. Meanwhile, [32] explores
the problem exploring the generalization of multitask trans-
formers to unseen domains. We propose a backbone ag-
nostic knowledge distillation training method for multi-task
learning ad focus on the design of the transformer architec-
ture for image prediction tasks, owing to the success of the
transformer models.

3. Method

Our framework, shown in Fig. 1, consists of a multi-
task network with a shared Vision Transformer (ViT) [25]
backbone and separate heads for N tasks. The architecture
also consists of single task networks with single heads and
ViT backbone, specific to one task. We propose a training
strategy in which we train single-task models and a multi-
task model simultaneously on Nt tasks. The single-task
networks guide the optimization of the multi-task network
throughout the training process. The multi-task network
weights are tied to the single-task networks through distil-
lation losses on intermediate features. The model is trained
in an end-to-end fashion by minimizing the following loss
function:

L = LAFD +

Nt∑
i=1

(
Li
STL + λiL

i
MTL

)
, (1)

where Li
STL denotes the task-specific loss for the ith

single-task network. Li
MTL is the task-specific loss for the

ith head of the multi-task network (sec. 3.2) and LAFD de-
notes the adaptive knowledge distillation loss (sec. 3.3.1)
between features of the single-task and multi-task networks.
The loss weights, λi, i = 1, 2, ..., Nt, are calculated at each
training iteration for each task based on the loss values of
single- and multi-task models (sec. 3.3.2).

2361



Figure 2: Task head details. Architectural details of (a) clas-
sification head and (b) regression head. Patch embeddings from
the transformer encoder along with class/regression queries are
passed through two transformer layers. The classification head
upsamples and takes the argmax of the embeddings, whereas the
regression head passes the embeddings through MLP and upsam-
ples them to obtain predictions.

3.1. Model Architecture

The pretrained ViT-tiny [25] model is used as the back-
bone for transformer models. The multi-task model consists
of a shared backbone with N heads, and the single mod-
els each have their separate backbone network and a sin-
gle head. The input images are partitioned into P patches
of 16 × 16 pixels. Each patch is mapped via a patch em-
bedding network and passed to the ViT encoder. After di-
viding an image of size W × H into patches, the size of
the patch grid is W/16 ∼ Wpatch × H/16 ∼ Hpatch.
The patches are passed to a linear embedding network and
the Npatch = Wpatch × Hpatch embeddings are input to
the transformer encoders of both single and multi-task net-
works.

As part of a system for visual scene understanding we
consider multiple pixel-wise classification and regression
tasks. We adopt the design of the Mask Transformer [30] for
the pixel-wise classification task (Fig. 2 (a)). Semantic seg-
mentation is an example of a pixel-wise classification task.
Let E be the embedding size of patches and tokens passed to
the transformer layers. The patches extracted from the ViT
encoder (of dimension Npatch ×E) backbone are passed to
the pixel-wise classification head. Class queries (of dimen-
sion Ncls ×E) are introduced along with the patch embed-
dings and passed to two transformer layers. The number
of class queries (Ncls) are taken as the number of classes
for classification task. A scalar product of class queries
and patch embeddings is computed (of output dimension,
Npatch×Ncls). The output is then upsampled and reshaped
to the image size. We obtain Ncls class maps, each of the
same size as the input image. Pixel labels are estimated as
the argmax of the Ncls class maps.

Pixel-wise depth and surface normal prediction are for-
mulated as regression tasks. We use a similar design as that
of the classification head, see Fig 2 (b). Let Nreg (empiri-

cally set as 128) be the number of query embeddings passed
along with Npatch embeddings, each of dimension E, to the
regression head with two transformer layers. A scalar prod-
uct of the output queries and patches from transformer lay-
ers is computed (of output dimension, Npatch ×Nreg) and
passed through an MLP block. We use a sequence of linear
layers in the MLP block, with the output dimension of the
last linear layer according to the task. The output dimension
for depth estimation is Npatch × 1, whereas that of surface
normal estimation is Npatch × 3. The output is upsampled
and reshaped to the image size.

3.2. Task-specific losses

Given the different nature of the tasks, we use task-
specific loss functions. We use cross-entropy loss for se-
mantic segmentation (L1

MTL), L1 loss for depth estima-
tion [58] (L2

MTL), and cosine similarity loss for surface
normal estimation (L3

MTL), similar to that of [7, 8, 20].
Both multi-task (Li

MTL) and single task (Li
STL) networks

are trained using the same loss functions.

3.3. Online Knowledge Distillation

A well-known challenge in multi-task learning is ‘neg-
ative transfer’. To mitigate this problem, we propose on-
line knowledge distillation. The intuitive idea behind this is
that the optimization of multiple single task models guide
the multi-task model during the training phase. The know-
ledge of features of the single task transformer encoders are
distilled to that of the multi-task model in each iteration.
We propose two components for online distillation, Adap-
tive Feature Distillation (AFD) and Online Task Weighting
(OTW). To provide a good starting point for our MTL net-
work, we use a warm-up training phase of the single-task
models for 5 epochs each.

3.3.1 Adaptive feature distillation (AFD)

The first component of the proposed online knowledge dis-
tillation is adaptive feature distillation (AFD), a method for
sharing intermediate features of the backbone models. We
perform online weighted knowledge distillation on interme-
diate features from the shared backbone of the multi-task
network. Let L denote the number of layers in the shared
transformer encoder, ωl

i the learnable parameter for the ith

task in the lth layer. The AFD loss, LAFD, is defined as:

LAFD =

L∑
l=1

∣∣∣∣∣∣∣∣fMTL(l)−
Nt∑
i=1

ωl
if
i
STL(l)

∣∣∣∣∣∣∣∣2 (2)

where fMTL(l) are features extracted from the lth layer of
the shared MTL backbone, fiSTL(l) are the l-layer features
from the ith single-task model. The degree of alignment
of the STL features of each task towards the MTL features
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Figure 3: Illustration of Online Task Weighting (OTW) showing smoothed task loss functions of MTL and STL networks for (a) online
distillation without OTW, (b) online distillation with OTW. Loss function values at a specific iteration (t = 15K) are shown, where the STL
loss value is higher than the MTL loss value for task 1, whereas for both task 2 and task 3 the STL loss remains lower than the MTL loss.
Task 3 has the largest difference at this time step, resulting in the largest task weight. Online task weighting reduces the gap between the
MTL and STL losses.

is decided by the parameter, ωl
i. The AFD function en-

sures that the feature space of the MTL network is aligned
with that of STL networks. This function ensures cross-
task learning from the STL features. The parameter ωl

i is
learned along with the network parameters using the same
optimizer and scheduler. Note that we stop the gradients
from the AFD function from being back-propagated to the
STL networks, as suggested in [34]. Otherwise the STL
network performance may be impaired by the MTL param-
eters. We therefore detach the single tasks tensors (fiSTL)
from the computational graph, while computing the AFD
function.

3.3.2 Online task weighting (OTW)

Secondly, we propose the use of task weights during si-
multaneous learning of single and multi-task networks. The
multi-task network is trained using a linear combination of
task-specific losses, where task weights are based on the
performance of the multi-task model with respect to the sin-
gle task models. Let the multi-task model loss at any itera-
tion t be Li

MTL(t) and the single task loss Li
STL(t) for the

ith task. The task weight for the ith task at iteration t is
computed as a temperature-scaled softmax function of the
ratio of multi-task to single-task loss:

λi(t) = Nt

exp(
mi

t

T )∑Nt

j=1 exp(
mj

t

T )
, mi

t =
Li
MTL(t)

Li
STL(t)

. (3)

Higher weights are given to tasks for which the multi-task
loss is larger than the corresponding single-task loss. T rep-
resents a temperature term which controls the task weight-

ing [46]. A large T results in a more evenly distributed
weights for different tasks. Nt is number of tasks in the
softmax function and ensures that

∑Nt

i=1 λi = Nt. Empiri-
cally, we set T = 0.1.

The effect of OTW in training is illustrated in Fig 3. The
plots show the task-specific loss STL and MTL functions
during the training process. Using online task weighting,
the difference between MTL and STL losses during training
is reduced.

4. Results

The proposed method is evaluated on two public
datasets, NYUv2 [59] and Cityscapes [60]. The NYUv2
dataset [59] contains 1,449 densely labeled images, col-
lected from a variety of indoor scenes with an RGBD sen-
sor. The images were hand selected from 435,103 video
frames to ensure diverse scene content. We use the same
training and test split as in the original work and evaluate
performance on three learning tasks: semantic segmentation
(13 labels), depth estimation, and surface normal estima-
tion. The Cityscapes [60] dataset contains high-resolution
street-view images for semantic segmentation and depth es-
timation. It contains 2,975 images for training and 500 for
testing, respectively. The images are sparsely sampled from
video clips. This dataset is used for evaluating performance
on two tasks: semantic segmentation (7 labels) and depth
estimation.

4.0.1 Implementation details.

We use the pre-processed datasets for NYUv2 and
Cityscapes provided in the code repository of MTAN [20].
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Table 1: Comparison with implemented SOTA on 3-task NYUv2 dataset. Performance evaluation of state-of-the-art methods and the
proposed method, implemented on ViT-tiny architecture. The last column shows the average performance improvement.

Sem. Segm. Depth estimation Surface Normal Prediction

Method mIoU↑ pAcc↑ abs↓ rel↓ <11◦ ↑ <22.5◦ ↑ <30◦ ↑ mean↓ median↓ ∆ ↑

Single Task 51.29 72.23 0.4423 0.1789 34.88 55.19 63.27 31.65 21.14 4.19
Baseline (MTL) 50.47 73.20 0.4431 0.1904 29.98 50.83 59.94 33.20 23.87 0

DWA [20] 51.58 73.76 0.4137 0.1743 32.56 53.49 62.03 32.33 22.25 4.79
GradNorm [4] 51.28 73.63 0.4179 0.1757 33.17 53.83 62.33 32.26 22.02 4.67
UW [19] 51.21 73.64 0.4126 0.1724 32.27 52.97 61.59 32.50 22.46 4.57
RLW [7] 50.85 73.63 0.4158 0.1744 32.16 53.34 61.98 32.30 22.28 4.32
Cross Stitch [1] 47.98 71.14 0.4310 0.1824 31.46 51.86 60.55 33.17 23.35 0.58
KD-MTL [8] 51.07 73.82 0.4102 0.1717 32.47 53.31 61.87 32.35 22.29 4.92

OKD-MTL 51.99 73.75 0.4112 0.1701 33.58 54.74 63.20 31.82 21.50 6.22

We use the ViT-Tiny [25] model fine-tuned on Ima-
geNet [61] as the backbone network. Images are resized
to 384 × 384 pixels before passing them as input to ViT.
The patch size for the input is taken as 16× 16 and the em-
bedding dimension, E, is 192. We train all models with
the AdamW optimizer [62] and the OneCycleLR sched-
uler [63]. The initial learning rate is set to 10−3 and models
are trained for 200 epochs for each dataset.

4.0.2 Baseline models

We compare our approach with the following baselines.
First, we consider a single-task baseline, where we train
networks for each task separately, using a task-specific
backbone and a task-specific head. Second, we use a
multi-task baseline, in which all tasks share the same vi-
sion transformer [25] backbone network, but have sepa-
rate task-specific heads. We use uniform task losses as
the baseline. We compare several recent multi-task learn-
ing approaches, including task-weighting schemes such as

Table 2: Comparison with implemented SOTA 2-task
Cityscapes dataset. Performance evaluation of state-of-the-art
methods and the proposed method, implemented on ViT-tiny archi-
tecture. The last column shows the average performance improve-
ment.

Sem. Segm. Depth estimation

Method mIoU↑ pAcc↑ abs↓ rel↓ ∆ ↑

Single Task 74.93 93.03 0.0092 0.1422 7.56
Baseline (MTL) 72.12 92.76 0.0110 0.1575 0

DWA [20] 73.90 93.46 0.0092 0.1432 7.17
GradNorm [4] 73.65 93.35 0.0099 0.1483 4.65
UW [19] 74.86 93.72 0.0095 0.1413 7.19
RLW [7] 73.84 93.36 0.0092 0.1396 7.69
Cross Stitch [1] 71.09 92.56 0.0101 0.1551 2.02
KD-MTL [8] 73.81 93.35 0.0098 0.1418 5.96

OKD-MTL 75.40 93.97 0.0091 0.1360 9.19

DWA [20], RLW [7] and Uncertainty Weighting (UW) [19],
feature fusion methods such as Cross-Stitch Networks [1],
gradient-based methods such as Gradnorm [4], and know-
ledge distillation based techniques KD-MTL [8]. Similar
to the evaluation in [8], we use the same backbone and
task-specific heads in all methods for a fair comparison. To
separately evaluate the performance of the proposed online
knowledge distillation scheme, we compare with previous
methods using CNNs instead of transformers. We also com-
pare the performances on the MTAN baseline [20] on CNN
models. Similar to the experiments in [7, 8] we compare the
methods with both MTAN (DeepLabV3-MTAN) as well as
the baseline CNN (DeeplabV3 [64]). The MTAN [20] base-
line comparison was not performed with transformer mod-
els, as they require fusing of CNN layers with the trans-
former layers.

4.0.3 Evaluation Metrics

In both NYUv2 and Cityscapes, semantic segmentation is
evaluated via mean intersection over union (mIoU) and
pixel accuracy (pAcc). For surface normal prediction, we
use mean and median angle distances between the predic-
tion and ground truth of all pixels. We also measure the
percentage of pixels whose angle prediction error is within
11.25◦, 22.5◦ and 30◦. For depth prediction, we compute
absolute and relative errors as the evaluation metrics. The
performance of a method relative to the baseline is com-
puted as follows [7]:

∆ =
1

Nt

Nt∑
n=1

1

Nn

Nn∑
m=1

(−1)pn,m(Mn,m −MB
n,m)

MB
n,m

×100% .

(4)
Here, Nt is the number of tasks, and Nn the number of met-
rics for the nth task. Mn,m and MB

n,m denote the metric of
current method and the baseline, respectively, for metric m
of task n. The sign is controlled via pn,m, which is set to 1
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Table 3: Comparison with implemented SOTA on 3-task NYUv2 dataset with DeeplabV3 and DeeplabV3-MTAN backbone. Perfor-
mance evaluation of state-of-the-art methods and the proposed method, implemented on DeeplabV3 and DeeplabV3-MTAN architectures.
The last column for each architecture shows the average performance improvement.

DeepLabV3 backbone DeepLabV3-MTAN backbone
Sem. Segm. Depth estimation SN Prediction Sem. Segm. Depth estimation SN Prediction

Method mIoU↑ pAcc↑ abs↓ rel↓ mean↓ median↓ ∆ ↑ mIoU↑ pAcc↑ abs↓ rel↓ mean↓ median↓ ∆ ↑

Single Task 49.57 72.88 0.5052 0.1962 27.15 22.11 0.15 48.69 72.87 0.6228 0.2344 26.41 21.07 0.15
Baseline 48.11 72.38 0.4792 0.1859 28.63 23.60 0 46.25 72.01 0.5314 0.2151 28.28 23.59 0

DWA [20] 48.21 72.29 0.4703 0.1817 28.54 23.54 0.81 46.58 72.23 0.5337 0.2079 27.79 23.10 1.39
GradNorm [4] 48.14 72.49 0.4816 0.1842 28.54 23.59 0.14 46.76 72.26 0.5304 0.2072 27.81 23.11 1.64
UW [19] 48.17 72.39 0.4773 0.1844 28.52 23.43 0.42 46.72 72.05 0.5351 0.2136 28.23 23.62 0.36
RLW [7] 48.39 72.43 0.4756 0.1871 28.67 23.57 0.18 46.24 71.64 0.5371 0.2050 28.03 23.57 0.48
Cross Stitch [1] 48.20 72.86 0.4789 0.1834 28.57 23.87 0.11 - - - - - - -
KD-MTL [8] 48.78 73.07 0.4605 0.1841 28.08 23.04 1.96 47.35 72.50 0.5148 0.2031 27.66 22.94 3.04

OKD-MTL 49.06 72.91 0.4880 0.1883 27.04 21.52 2.45 48.30 72.58 0.4957 0.1971 27.36 22.33 5.18

Table 4: Component ablation study on NYUv2. In this experiment we compare models with different key components: Online knowledge
distillation (OKD), adaptive feature distillation (AFD), and online task weighting (OTW).

Model OKD AFD OTW mIoU↑ abs↓ rel↓ mean↓ median↓ ∆ ↑

STL - - - 51.29 0.4423 0.1789 31.65 21.14 4.19

Baseline (MTL) - - - 50.47 0.4431 0.1904 33.20 23.87 0

OKD-MTL-AFD ✓ ✓ - 51.60 0.4125 0.1735 31.43 21.36 5.75
OKD-MTL-OTW ✓ - ✓ 51.23 0.4200 0.1770 31.80 21.54 4.96

MTL-pretrained-AFD - ✓ - 51.18 0.4204 0.1771 31.82 21.50 4.94
OKD-MTL-AFD-OTW ✓ ✓ ✓ 51.99 0.4112 0.1701 31.82 21.50 6.22

Table 5: Ablation study on AFD component (left) and hyper-
parameter T (right). We compare models with different con-
figurations of AFD: AFD for last layer only (AFD-last layer),
equal weighting (AFD-equal), softmax weighting (AFD-softmax),
select/skip policy (AFD-select/skip) and the proposed random ini-
tialization (AFD-ours) for knowledge distillation on intermediate
features. The right table shows an ablation study on the different
values of T (eqn. 3).

Model ∆ ↑ T ∆ ↑

AFD-last layer 4.89 0.01 3.11
AFD-equal 5.28 0.05 5.55
AFD-softmax 5.68 0.10 6.22
AFD-select/skip 4.39 0.30 5.32
AFD-ours 6.22 1.00 2.11

if a higher value indicates better performance and -1 other-
wise. A larger ∆ value indicates a larger improvement over
the baseline. The number of metrics taken for the seman-
tic segmentation, depth and surface normal estimation are 2
(mIoU , pAcc), 2 (abs, rel) and 4 (< 11◦, < 22.5◦, < 30◦,
mean, median) in all the tables.

4.1. Experimental settings for comparing methods

We re-implemented a subset of prior methods and re-
placed the CNN with a ViT-tiny model [25] for a fair
comparison. The techniques, DWA [20], Gradnorm [4],
UW [19] and RLW [7] are task weighting schemes. The
respective task weights are computed and used in the loss
function, similar to our proposed OTW function. Cross-
Stitch [1] performs fusion of single task network features.
This feature fusion is performed in each block. While the
original method combines convolution layers, we take lay-
ers of the transformer encoder to form a block. In the Cross-
Stitch network implementation, we use a linear combination
of single-task network features using learnable parameters.

4.2. Results on NYUv2 and Cityscapes datasets

Table 1 shows the results on the NYUv2 dataset. The
last column shows the performance of each method rela-
tive to the baseline. The proposed method shows a 6.22%
improvement over the baseline. The second best perform-
ing method is KD-MTL [8] with an improvement of 4.92%.
Table 2 shows the results on the Cityscapes dataset. Our
method shows an improvement of 9.19% over the baseline.
The Random Loss Weighting (RLW) method [7] comes a
close second, with a 7.69% improvement.
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4.3. Ablation Study

We analyze the performance of proposed online distilla-
tion framework on CNN models as well. Table 3 shows the
performance using a DeepLabV3 [64] backbone. We also
show the performance of various methods with the popular
MTAN model as backbone [20]. The training configura-
tion is unchanged to [7, 8, 20]. Similar to the transformer
model, the proposed online distillation method performs the
best for the CNN model (with and without MTAN) as well,
with an improvement of 2.45% and 5.18% over the baseline.

Table 4 shows the contribution of the different com-
ponents, measured on the NYUv2 dataset. We evaluated
various components, including adaptive feature distillation
(AFD), pretrained AFD, and online task weighting (OTW).
In the table, ‘OKD’ indicates whether the method is per-
forming simultaneous training of single and multi-task net-
works, ‘STL’ indicates single-task performance, ‘Baseline
(MTL)’ indicates the vanilla MTL network. Other rows
show the performance of our method using different com-
ponents. The row ‘MTL-pretrained-AFD’ indicates offline
knowledge distillation with features of single tasks taken
from pre-trained models. The components AFD and OTW
leads to an improvement of 5.75% and 4.96% over the
MTL baseline, respectively. Offline knowledge distilla-
tion, ‘MTL-pretrained-AFD’, provides an improvement of
4.94%. The combination of both AFD and OTW yields the
largest improvement of 6.22%.

We evaluate different feature weighting approaches for
adaptive knowledge distillation on the NYUv2 dataset, see
Table 5 on NYU dataset. The first row apply feature distil-
lation on the penultimate layer only, similar to that of [8].
Learnable weights (AFD-last layer) was applied for distilla-
tion from STL networks. The proposed method uses learn-
able weights, randomly initialized, for feature distillation
(AFD-ours). A softmax function on the weights for each
layer (AFD-softmax) ensures that the layer-wise weights
are normalized across tasks. A select/skip policy (AFD-
select/skip) distills knowledge from only one task, which
is decided by the argmax of the softmax weighting. In the
equal weighting approach (AFD-equal), ωl

i is set to 1, where
distillation of MTL features is performed equally across all
the tasks. As seen in Table 5, AFD-equal provides an im-
provement of 5.28% over the MTL baseline. AFD-softmax
and AFD-select/skip techniques show an improvement of
5.68% and 4.39%. AFD-ours performs the best among the
compared weighting techniques. We also show the ablation
study on the parameter T for NYU dataset, where the per-
formance is the best for T = 0.1.

Figure 4 shows the variation of ω values for a 5-layer
network trained on the NYU dataset for 3 tasks. Red stars
in each box plot shows the final value after 100 epochs. In-
terestingly, the contribution from layers is different for each
task. For the semantic segmentation task, contributions are

Figure 4: Ablation study on ω. Box plots of ω with 5 layers of
DeeplabV2 backbone. The plots show the variation in the values
for each task across 100 epochs, with the final value plotted as a
red star.

largest from layers 2,4, and 5. Information from layers 3
and 1 are the most vital for the depth and surface normal
tasks, respectively.

Discussion. Online knowledge distillation is able to train
multi-task networks with similar accuracy and inference
time of STL networks. Single-task networks with the ViT-
tiny architecture consist of 26M parameters each, whereas
the multi-task model uses 33M parameters. The simulta-
neous training of single and multi-task networks on three
tasks involves 111M (33M+3×26M) parameters and takes
approximately 6 hours on a single V100 GPU. The MTL
model only has 33M parameters, representing a 57% size
reduction and a 60% inference time reduction compared to
using separate STL models. Inference for a single image
takes approximately 2ms running ViT-tiny model on a V100
GPU. Note that training requires Nt STL networks along
with the MTL network, so there is a trade-off of resources
spent during training vs. inference.

5. Conclusion
We proposed a multi-task learning framework using on-

line knowledge distillation, demonstrated for jointly learn-
ing scene understanding tasks. We simultaneously train
single-task and multi-task networks and use knowledge dis-
tillation of intermediate features of the single task networks.
Additionally, we introduce a novel online task weight-
ing scheme analyzing the single- and multi-task network
losses. Experiments show improvements on two benchmark
datasets over baseline networks, achieving comparable ac-
curacy to single-task models.
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