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Abstract

In person search, we aim to localize a query person from
one scene in other gallery scenes. The cost of this search
operation is dependent on the number of gallery scenes,
making it beneficial to reduce the pool of likely scenes.
We describe and demonstrate the Gallery Filter Network
(GFN), a novel module which can efficiently discard gallery
scenes from the search process, and benefit scoring for per-
sons detected in remaining scenes. We show that the GFN
is robust under a range of different conditions by testing on
different retrieval sets, including cross-camera, occluded,
and low-resolution scenarios. In addition, we develop the
base SeqNeXt person search model, which improves and
simplifies the original SeqNet model. We show that the
SeqNeXt+GFN combination yields significant performance
gains over other state-of-the-art methods on the standard
PRW and CUHK-SYSU person search datasets. To aid ex-
perimentation for this and other models, we provide stan-
dardized tooling for the data processing and evaluation
pipeline typically used for person search research.

1. Introduction
In the person search problem, a query person image crop

is used to localize co-occurrences in a set of scene images,
known as a gallery. The problem may be split into two
parts: 1) person detection, in which all person bounding
boxes are localized within each gallery scene and 2) per-
son re-identification (re-id), in which detected gallery per-
son crops are compared against a query person crop. Two-
step person search methods [5, 9, 13, 19, 32, 40] tackle each
of these parts explicitly with separate models. In contrast,
end-to-end person search methods [2–4, 6, 8, 12, 14, 18, 20,
21, 23, 26, 34–39, 41] use a single model, typically sharing
backbone features for detection and re-identification.

For both model types, the same steps are needed: 1)
computation of detector backbone features, 2) detection of
person bounding boxes, and 3) computation of feature em-
beddings for each bounding box, to be used for retrieval.
Improvement of person search model efficiency is typically

q G1 G2 G3

Scene 
Emb

Query Gallery

Person
Emb

0.46 0.95 0.82

G2 G3 G1

0.5

Detector

g21 g22 g31 g32 g33

Query
Emb

0.57 0.89 0.91 0.16 0.32

q g31 g22 g21 g33 g32

1a. Person and scene 
embeddings are 
extracted using 
embedding (Emb) 
modules.

kept discarded

1b. Query-scene scores 
are computed using 
cosine similarity of 
extracted embeddings.

1c. Using a hard 
threshold, low-scoring 
scenes are discarded: 
no need to perform 
detection.

2a. Detection is 
performed on high-
scoring scenes.

2b. Embeddings are 
extracted from 
detected boxes.

2d. Combined scores 
are sorted to determine 
final ranking.

2c. Query-detect 
similarity scores are 
computed and 
combined with query-
scene scores.

Phase 1: S
cene R

etrieval
Phase 2: P

erson R
etrieval

Figure 1: An illustration of our proposed two-phase retrieval in-
ference pipeline. In the first phase, the Gallery Filter Network
discards scenes unlikely to contain the query person. The second
phase is the standard person retrieval process, in which persons are
detected, corresponding embeddings extracted, and these embed-
dings are compared to the query to produce a ranking.

focused on reducing the cost of one or more of these steps.
We propose the second and third steps can be avoided al-
together for some subset of gallery scenes by splitting the
retrieval process into two phases: scene retrieval, followed
by typical person retrieval. This two-phase process is visu-
alized in Figure 1. We call the module implementing scene
retrieval the Gallery Filter Network (GFN), since its func-
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tion is to filter scenes from the gallery.
By performing the cheaper query-scene comparison be-

fore detection is needed, the GFN allows for a modular
computational pipeline for practical systems, in which one
process can determine which scenes are of interest, and an-
other can detect and extract person embeddings only for in-
teresting scenes. This could serve as an efficient filter for
video frames in a high frame rate context, or to cheaply re-
duce the search space when querying large image databases.

The GFN also provides a mechanism to incorporate
global context into the gallery ranking process. Instead of
combining global context features with intermediate model
features as in [9, 20], we explicitly compare global scene
embeddings to query embeddings. The resulting score can
be used not only to filter out gallery scenes using a hard
threshold, but also to weight predicted box scores for re-
maining scenes.

We show that both the hard-thresholding and score-
weighting mechanisms are effective for the benchmark
PRW and CUHK-SYSU datasets, resulting in state-of-the-
art retrieval performance (+2.7% top-1 accuracy on the
PRW dataset over previous best model), with improved ef-
ficiency (over 50% per-query cost savings on the CUHK-
SYSU dataset vs. same model without the GFN). Addi-
tionally, we make contributions to the data processing and
evaluation frameworks that are used by most person search
methods with publicly available code. That work is de-
scribed in Supplementary Material Section A.

1.1. Contributions

Our contributions are as follows:
• The Gallery Filter Network: A novel module for learn-

ing query-scene similarity scores which efficiently
reduces retrieval gallery size via hard-thresholding,
while improving detected embedding ranking with
global scene information via score-weighting.
• Performance improvements and removal of unneeded

elements in the SeqNet person search model [21],
dubbed SeqNeXt.
• Standardized tooling for the data pipeline and eval-

uation frameworks typically used for the PRW and
CUHK-SYSU datasets, which is extensible to new
datasets.

All of our code and model configurations are made pub-
licly available1.

2. Related Work
Person Search. Beginning with the release of two bench-
mark person search datasets, PRW [40] and CUHK-SYSU
[35], there has been continual development of new deep
learning models for person search. Most methods utilize

1Project repository: https://github.com/LukeJaffe/GFN

the Online Instance Matching (OIM) Loss from [35] for the
re-id feature learning objective. Several methods [20,36,39]
enhance this objective using variations of a triplet loss [29].

Many methods make modifications to the object detec-
tion sub-module. In [2, 20, 36], a variation of the Feature
Pyramid Network (FPN) [22] is used to produce multi-scale
feature maps for detection and re-id. Models in [2, 36] are
based on the Fully-Convolutional One-Stage (FCOS) de-
tector [30]. In COAT [38], a Cascade R-CNN-style [1]
transformer-augmented [31] detector is used to refine box
predictions. We use a variation of the single-scale two-stage
Faster R-CNN [28] approach from the SeqNet model [21].
Query-Based Search Space Reduction. In [3, 23], query
information is used to iteratively refine the search space
within a gallery scene until the query person is localized.
In [9], Region Proposal Network (RPN) proposals are fil-
tered by similarity to the query, reducing the number of pro-
posals for expensive RoI-Pooled feature computations. Our
method uses query features to perform a coarser-grained but
more efficient search space reduction by filtering out full
scenes before expensive detector features are computed.
Query-Scene Prediction. In the Instance Guided Proposal
Network (IGPN) [9], a global relation branch is used for bi-
nary prediction of query presence in a scene image. This is
similar in principal to the GFN prediction, but it is done us-
ing expensive intermediate query-scene features, in contrast
to our cheaper modular approach to the task.
Backbone Variation. While the original ResNet50 [16]
backbone used in SeqNet and most other person search
models has been effective to date, many newer architec-
tures have since been introduced. With the recent advent
of vision transformers (ViT) [10] and a cascade of improve-
ments including the Swin Transformer [24] and the Pyra-
mid Vision Transformer (v2) [33], used by the PSTR per-
son search model [2], transformer-based feature extraction
has increased in popularity. However, there is still an ef-
ficiency gap with CNN models, and newer CNNs includ-
ing ConvNeXt [25] have closed the performance gap with
ViT-based models, while retaining the inherent efficiency of
convolutional layers. For this reason, we explore ConvNeXt
for our model backbone as an improvement to ResNet50,
which is more efficient than ViT alternatives.

3. Methods

3.1. Base Model

Our base person search model is an end-to-end architec-
ture based on SeqNet [21]. We make modifications to the
model backbone, simplify the two-stage detection pipeline,
and improve the training recipe, resulting in superior perfor-
mance. Since the model inherits heavily from SeqNet, and
uses a ConvNeXt base, we refer to it simply as SeqNeXt
to distinguish it from the original model. Our model, com-
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Figure 2: Architecture of the SeqNeXt person search model augmented with the GFN. Modules modified from SeqNet are colored red,
and new modules, related to the GFN, are colored green. The model follows the standard Faster R-CNN paradigm, with backbone features
from conv4 being used to generate proposals via the RPN. conv4 features are pooled for RPN proposals and passed through the conv5
head to generate refined proposals. This process is repeated with the refined proposals to generate the final boxes. conv4 features are
also used to generate both person embeddings and scene embeddings in the same way: the person box or scene passes through the pooling
block and then a duplicated conv5 head, and conv4, conv5 features are concatenated and passed through an embedding (Emb) head.
In the pooling block, RoI Align [15] is used for person and proposal features, while adaptive max pooling is used for scene features. GFN
scores are generated using person and scene embeddings from the same or different scenes. Person re-id scores are combined with the
score output of the second R-CNN stage to produce detector-weighted scores.

bined with the GFN module, is shown in Figure 2.
Backbone Features. Following SeqNet’s usage of the first
four CNN blocks (conv1-4) from ResNet50 for backbone
features, we use the analogous layers in terms of down-
sampling from ConvNeXt, also referred to as conv1-4 for
convenience.
Multi-Stage Refinement and Inference. We simplify the
detection pipeline of SeqNet by duplicating the Faster R-
CNN head [28] in place of the Norm-Aware Embedding
(NAE) head from [6]. We still weight person similarity
scores using the output of the detector, but use the second-
stage class score instead of the first-stage as in SeqNet. This
is depicted in Figure 2 as “detector-weighted re-id scores”.

Additionally during inference, we do not use the Context
Bipartite Graph Matching (CBGM) algorithm from SeqNet,
discussed in Supplementary Material Section E.
Augmentation. Following resizing images to 900×1500
(Window Resize) at training time, we employ one of two
random cropping methods with equal probability: 1) Ran-
dom Focused Crop (RFC): randomly take a 512×512 crop
in the original image resolution which contains at least one
known person, 2) Random Safe Crop (RSC): randomly crop
the image such that all persons are contained, then resize
to 512×512. This cropping strategy allowed us to train
with larger batch sizes, while benefiting performance with
improved regularization. At inference time, we resize to
900×1500, as in other models. We also consider a variant
of Random Focused Crop (RFC2), which resizes images so
the “focused” person box is not clipped.
Objective. As in other person search models, we employ
the Online Instance Matching (OIM) Loss [35], represented

as Lreid. This is visualized in Figure 3a. For all diagrams
in Figure 3, we borrow from the spring analogy for metric
learning used in DrLIM [11], with the concept of attractions
and repulsions.

The detector loss is the sum of classification and box re-
gression losses from the RPN, and the two Faster R-CNN
stages, expressed as:

Ldet =
∑
m∈M

Lm
cls + Lm

reg, M = {RPN, RCNN1, RCNN2} (1)

The full loss is the sum of the detector, re-id, and GFN
losses:

L = Ldet + Lreid + Lgfn (2)

3.2. Gallery Filter Network

Our goal is to design a module which removes low-
scoring scenes, and reweights boxes from higher-scoring
scenes. Let sreid be the cosine similarity of a predicted
gallery box embedding with the query embedding, sdet be
the detector box score, sgfn be the cosine similarity for the
corresponding gallery scene from the GFN, σ(x) = e−x

1+e−x ,
α be a temperature constant, and λgfn be the GFN score
threshold. At inference time, scenes scoring below λgfn are
removed, and detection is performed for remaining scenes,
with the final score for detected boxes given by
sfinal = sreid · sdet · σ(sgfn/α).

The module should discriminate as many scenes below
λgfn as possible, while positively impacting the scores of
boxes from any remaining scenes. To this end, we consider
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Figure 3: Visual representation of the re-id and GFN optimization objectives. In a), b), c), e), circles represent scene images which contain
one or more different person identities, labeled A and B. We show a system of three scenes with two unique person identities. Green
connectors represent attraction, meaning two embeddings are pushed together by an objective, and red connectors represent repulsion,
meaning two embeddings are pulled apart by an objective. In a) we show the standard re-id loss objective. In b) we show the scene-only
GFN objective. In c) we show the baseline GFN objective, and in e) we show the combined query-scene GFN objective. In d) we show
the graph form of the baseline GFN objective and re-id objective together, and in f) we show the graph form of the combined query-scene
GFN objective and re-id objective together, with green ellipses surrounding independent sets in each multipartite component.

three variations of the standard contrastive objective [7, 27]
in Sections 3.2.1-3.2.3, in addition to a number of architec-
tural and optimization considerations in Section 3.2.4.

3.2.1 Baseline Objective

The goal of the baseline GFN optimization is to push per-
son embeddings toward scene embeddings when a person is
contained within a scene, and to pull them apart when the
person is not in the scene, shown in Figure 3c.

Let xi ∈ Rd denote the embedding extracted from per-
son qi located in some scene sj . Let yj ∈ Rd denote the
embedding extracted from scene sj . Let X be the set of all
person embeddings xi, and Y the set of all scene embed-
dings yj , with N = |X|,M = |Y |.

We define the query-scene indicator function to denote
positive query-scene pairs as

IQi,j =

{
1 if qi present in sj
0 otherwise

(3)

We then define a set to denote indices for a specific pos-
itive pair and all negative pairs:
KQ

i,j = {k ∈ 1, . . . ,M | k = j or IQi,j = 0}. Define
sim(u, v) = u>v/‖u‖‖v‖, the cosine similarity between
two u, v ∈ Rd, and τ is a temperature constant. Then the
loss for a positive query-scene pair is the cross-entropy loss

`Qi,j = − log
exp (sim(xi, yj)/τ)∑

k∈KQ
i,j

exp (sim(xi, yk)/τ)
(4)

The baseline Gallery Filter Network loss sums positive
pair losses over all query-scene pairs:

LQ
gfn =

N∑
i=1

M∑
j=1

IQi,j`
Q
i,j (5)

3.2.2 Combined Query-Scene Objective

While it is possible to train the GFN directly with person
and scene embeddings using the loss in Equation 5, we
show that this objective is ill-posed without modification.
The problem is that we have constructed a system of oppos-
ing attractions and repulsions. We can formalize this con-
cept by interpreting the system as a graph G(V,E), visual-
ized in Figure 3d. Let the vertices V correspond to person,
scene, and/or combined person-scene embeddings, where
an edge in E (red arrow) connecting any two nodes in V
represents a negative pair used in the optimization objec-
tive. Let any group of nodes connected by green dashed
arrows (not edges in G) be an independent set, represent-
ing positive pairs in the optimization objective. Then, each
connected component of G must be multipartite, or the op-
timization problem will be ill-posed by design, as in the
baseline objective.

To learn whether a person is contained within a scene
while preventing this conflict of attractions and repulsions,
we need to apply some unique transformation to query and
scene embeddings before the optimization. One such option
is to combine a query person embedding separately with the
query scene and gallery scene embeddings to produce fused
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representations. This allows us to disentangle the web of
interactions between query and scene embeddings, while
still learning the desired relationship, visualized in Figure
3e. The person embedding used to fuse with each scene
embedding in a pair is left colored, and the corresponding
scenes are colored according to that person embedding. Per-
son embeddings present in scenes which are not used are
grayed out.

In the graph-based presentation, shown in Figure 3f,
this modified scheme using query-scene embeddings will
always result in a graph comprising some number of star
graph connected components. Since these star graph com-
ponents are multipartite by design, the issue of conflicting
attractions and repulsions is avoided.

To combine a query and scene embedding into a single
query-scene embedding, we define a function f : Rd,Rd →
Rd, such that zi,j = f(xi, yj) and wi = f(xi, y

xi), where
yxi is the embedding of the scene that person i is present in.
Borrowing from SENet [17] and QEEPS [26], we choose a
sigmoid-activated elementwise excitation, with � used for
elementwise product. “BN” is a Batch Normalization layer,
to mirror the architecture of the other embedding heads, and
β is a temperature constant.

f(x, y) = BN(σ(x/β)� y) (6)

Other choices are possible for f , but the elementwise-
product is critical, because it excites the features most rele-
vant to a given query within a scene, eliciting the relation-
ship shown in Figure 3e.

The loss for a positive query-scene pair is the cross-
entropy loss

`Ci,j = − log
exp (sim(wi, zi,j)/τ)∑

k∈KQ
i,j

exp (sim(wi, zi,k)/τ)
(7)

The query-scene combined Gallery Filter Network loss
sums positive pair losses over all query-scene pairs:

LC
gfn =

N∑
i=1

M∑
j=1

IQi,j`
C
i,j (8)

3.2.3 Scene-Only Objective

As a control for the query-scene objective, we also define
a simpler objective which uses scene embeddings only, de-
picted in Figure 3b. This objective attempts to learn the
less discriminative concept of whether two scenes share any
persons in common, and has the same optimization issue of
conflicting attractions and repulsions as the baseline objec-
tive. At inference time, it is used in the same way as the
other GFN methods.

We define the scene-scene indicator function to denote
positive scene-scene pairs as

ISi,j =

{
1 if si shares any q in common with sj
0 otherwise

(9)

Similar to Section 3.2.1, we define an index set:
KS

i,j = {k ∈ 1, . . . ,M | k = j or ISi,j = 0}. Then the loss
for a positive scene-scene pair is the cross-entropy loss

`Si,j = − log
exp (sim(yi, yj)/τ)∑

k∈KS
i,j

exp (sim(yi, yk)/τ)
(10)

The scene-only Gallery Filter Network loss sums posi-
tive pair losses over all scene-scene pairs:

LS
gfn =

M∑
i=1

M∑
j=1

[i 6= j]ISi,j`Si,j (11)

where [i 6= j] is 1 if i 6= j else 0.

3.2.4 Architecture and Optimization

We consider a number of design choices for the architecture
and optimization strategy of the GFN to improve its perfor-
mance.
Architecture. Scene embeddings are extracted in the same
way as person embeddings, except that a larger 56×56 pool-
ing size with adaptive max pooling is used vs. the person
pooling size of 14×14 with RoI Align. This larger scene
pooling size is needed to adequately summarize scene in-
formation, since the scene extent is much larger than a typ-
ical person bounding box. In addition, the scene conv5
head and Emb Head are duplicated from the corresponding
person modules (no weight-sharing), shown in Figure 2.
Lookup Table. Similar to the methodology used for the
OIM objective [35], we use a lookup table (LUT) to store
scene and person embeddings from previous batches, re-
freshing the LUT fully during each epoch. We compare the
person and scene embeddings in each batch, which have
gradients, with some subset of the embeddings in the LUT,
which do not have gradients. Therefore only comparisons
of embeddings within the batch, or between the batch and
the LUT, have gradients.
Query Prototype Embeddings. Rather than using person
embeddings directly from a given batch, we can use the
identity prototype embeddings stored in the OIM LUT, sim-
ilar to [18]. To do so, we lookup the corresponding identity
for a given batch person identity in the OIM LUT during
training, and substitute that into the objective. In doing so,
we discard gradients from batch person embeddings, mean-
ing that we only pass gradients through scene embeddings,
and therefore only update the scene embedding module.
This choice is examined in an ablation in Section 4.4.
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4. Experiments and Analysis
4.1. Datasets and Evaluation

Datasets. For our experiments, we use the two standard
person search datasets, CUHK-SYSU [35], and Person Re-
identification in the Wild (PRW) [40]. CUHK-SYSU com-
prises a mixture of imagery from hand-held cameras, and
shots from movies and TV shows, resulting in significant
visual diversity. It contains 18,184 scene images annotated
with 96,143 person bounding boxes from tracked (known)
and untracked (unknown) persons, with 8,432 known iden-
tities. PRW comprises video frames from six surveillance
cameras at Tsinghua University in Hong Kong. It con-
tains 11,816 scene images annotated with 43,110 person
bounding boxes from known and unknown persons, with
932 known identities.

The standard test retrieval partition for the CUHK-SYSU
dataset has 2,900 query persons, with a gallery size of 100
scenes per query. The standard test retrieval partition for the
PRW dataset has 2,057 query persons, and uses all 6,112
test scenes in the gallery, excluding the identity. For a more
robust analysis, we additionally divide the given train set
into separate train and validation sets, further discussed in
Supplementary Material Section A.
Evaluation Metrics. As in other works, we use the stan-
dard re-id metrics of mean average precision (mAP), and
top-1 accuracy (top-1). For detection metrics, we use recall
and average precision at 0.5 IoU (Recall, AP).

In addition, we show GFN metrics mAP and top-1,
which are computed as metrics of scene retrieval using GFN
scores. To calculate these values, we compute the GFN
score for each scene, and consider a gallery scene a match
to the query if the query person is present in it.

4.2. Implementation Details

We use SGD optimizer with momentum for ResNet
models, with starting learning rate 3e-3, and Adam for Con-
vNeXt models, with starting learning rate 1e-4. We train all
models for 30 epochs, reducing the learning rate by a factor
of 10 at epochs 15 and 25. Gradients are clipped to norm 10
for all models.

Models are trained on a single Quadro RTX 6000 GPU
(24 GB VRAM), and 30 epoch training time using the final
model configuration takes 11 hours for the PRW dataset,
and 21 hours for the CUHK-SYSU dataset.

Our baseline model used for ablation studies has a
ConvNeXt Base backbone, embedding dimension 2,048,
scene embedding pool size 56×56, and is trained with
512×512 image crops using the combined cropping strat-
egy (RSC+RFC). It uses the combined prototype feature
version of the GFN objective. The final model configura-
tion, used for comparison to other state-of-the-art models,
is trained with 640×640 image crops using the altered com-
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Figure 4: Effect of gallery size
on mAP for the CUHK-SYSU
dataset. SNX-CNB = SeqNeXt
ConvNeXt Base. GFN helps
more as gallery size increases.

Occluded mAP top-1

SeqNeXt 91.1 89.8
SeqNeXt+GFN 92.0 90.9

Low-Resolution mAP top-1

SeqNeXt 91.4 92.4
SeqNeXt+GFN 92.0 93.1

Table 1: Performance metrics
on two CUHK-SYSU retrieval
partitions using either Occluded
(top) or Low-Resolution (bot-
tom) query persons.

bined cropping strategy (RSC+RFC2). It uses the combined
batch feature version of the GFN objective.

Additional implementation details are given in Supple-
mentary Material Section B.

4.3. Comparison to State-of-the-art

We show a comparison of state-of-the-art methods on the
standard benchmarks in Table 2. The GFN benefits all met-
rics, especially top-1 accuracy for the PRW dataset, which
improves by 4.6% for the ResNet50 backbone, and 2.9%
for the ConvNeXt Base backbone. Our best model, Se-
qNeXt+GFN with ConvNext Base, improves mAP by 1.8%
on PRW and 1.2% on CUHK-SYSU over the previous best
PSTR model. This benefit extends to larger gallery sizes for
CUHK-SYSU, shown in Figure 4. In fact, the GFN score-
weighting helps more as gallery size increases. This is ex-
pected, since the benefit of down-weighting contextually-
unlikely scenes, vs. discriminating between persons within
a single scene, has a greater effect when there are more
scenes compared against.

The GFN benefits CUHK-SYSU retrieval scenarios with
occluded or low-resolution query persons, as shown in Ta-
ble 1. This shows that high quality query person views are
not essential to the function of the GFN.

The GFN also benefits both cross-camera and same-
camera retrieval, as shown in Table 3. Strong cross-camera
performance shows that the GFN can generalize to vary-
ing locations, and does not simply pick the scene which is
the most visually similar. Strong same-camera performance
shows that the GFN is able to use query information, even
when all gallery scenes are contextually similar.

To showcase these benefits, we provide some qualitative
results in Supplementary Material Section C. These exam-
ples show that the GFN uses local person information com-
bined with global context to improve retrieval ranking, even
in the presence of difficult confusers.

4.4. Ablation Studies

We conduct a series of ablations using the PRW dataset
to show how detection, re-id, and GFN performance are
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Method Backbone CUHK-SYSU PRW
mAP top-1 mAP top-1

Two-step
IDE [40] ResNet50 - - 20.5 48.3
MGTS [5] VGG16 83.0 83.7 32.6 72.1
CLSA [19] ResNet50 87.2 88.5 38.7 65.0
IGPN [9] ResNet50 90.3 91.4 47.2 87.0
RDLR [13] ResNet50 93.0 94.2 42.9 70.2
TCTS [32] ResNet50 93.9 95.1 46.8 87.5

End-to-end
OIM [35] ResNet50 75.5 78.7 21.3 49.4
IAN [34] ResNet50 76.3 80.1 23.0 61.9
NPSM [23] ResNet50 77.9 81.2 24.2 53.1
RCAA [3] ResNet50 79.3 81.3 - -
CTXG [37] ResNet50 84.1 86.5 33.4 73.6
QEEPS [26] ResNet50 88.9 89.1 37.1 76.7
APNet [41] ResNet50 88.9 89.3 41.9 81.4
HOIM [4] ResNet50 89.7 90.8 39.8 80.4
BINet [8] ResNet50 90.0 90.7 45.3 81.7
NAE+ [6] ResNet50 92.1 92.9 44.0 81.1
PGSFL [18] ResNet50 92.3 94.7 44.2 85.2
DKD [39] ResNet50 93.1 94.2 50.5 87.1
DMRN [14] ResNet50 93.2 94.2 46.9 83.3
AGWF [12] ResNet50 93.3 94.2 53.3 87.7
AlignPS [36] ResNet50 94.0 94.5 46.1 82.1
SeqNet [21] ResNet50 93.8 94.6 46.7 83.4
SeqNet+CBGM [21] ResNet50 94.8 95.7 47.6 87.6
COAT [38] ResNet50 94.2 94.7 53.3 87.4
COAT+CBGM [38] ResNet50 94.8 95.2 54.0 89.1
MHGAM [20] ResNet50 94.9 95.9 47.9 88.0
PSTR [2] ResNet50 94.2 95.2 50.1 87.9
PSTR [2] PVTv2-B2 95.2 96.2 56.5 89.7
SeqNeXt (ours) ResNet50 94.1 94.7 50.8 86.0
SeqNeXt+GFN (ours) ResNet50 94.7 95.3 51.3 90.6
SeqNeXt (ours) ConvNeXt 96.1 96.5 57.6 89.5
SeqNeXt+GFN (ours) ConvNeXt 96.4 97.0 58.3 92.4

Table 2: Standard performance metrics mAP and top-1 accuracy
on the benchmark CUHK-SYSU and PRW datasets are compared
for state-of-the-art two-step and end-to-end models. ConvNeXt
backbone = ConvNeXt Base.

Method Same Cam ID Cross Cam ID
mAP top-1 mAP top-1

HOIM [4] - - 36.5 65.0
NAE+ [6] - - 40.0 67.5
SeqNet [21] - - 43.6 68.5
SeqNet+CBGM [21] - - 44.3 70.6
AGWF [12] - - 48.0 73.2
COAT [38] - - 50.9 75.1
COAT+CBGM [38] - - 51.7 76.1
SeqNeXt (ours) 82.9 98.5 55.3 80.5
SeqNeXt+GFN (ours) 85.1 98.6 56.4 82.1

Table 3: Performance on the PRW test set for query and gallery
scenes from the same camera (Same Cam ID) or different cameras
(Cross Cam ID).

each impacted by variations in model architecture, data aug-
mentation, and GFN design choices.

In the corresponding metrics tables, we show re-id re-
sults by presenting the GFN-modified scores as mAP and
top-1, and the difference between unmodified mAP and top-
1 with ∆mAP and ∆top-1. This highlights the change in re-

Detection Re-id GFN

GFN Objective Recall AP mAP top-1 ∆ mAP ∆ top-1 mAP top-1

None 96.0 93.6 58.6 88.7 - - - -
Scene-Only 96.0 93.4 56.5 91.9 -0.9 +2.8 16.1 73.3
Base Batch 95.7 93.1 53.9 86.6 -2.6 -2.0 23.8 58.4
Base Proto 96.0 93.6 55.0 86.2 -3.0 -2.7 22.9 57.8
Comb. Batch 96.2 93.6 59.5 92.2 +1.1 +2.9 20.5 78.8
Comb. Proto† 96.0 93.4 58.8 92.3 +1.1 +3.5 20.4 78.5

Table 4: Comparison of different options for the GFN optimiza-
tion objective. “None” does not use the GFN, Scene-Only uses
the objective in Section 3.2.3, Base uses the baseline objective in
Section 3.2.1, Combined (Comb.) uses the query-scene objective
in Section 3.2.2, Batch indicates that batch query embeddings are
used, Proto indicates that prototype query embeddings are used.
Baseline model is marked with †, final model is highlighted gray.

id performance specifically from the GFN score-weighting.
To indicate the baseline configuration in a table, we use the
† symbol, and the final model configuration is highlighted
in gray.

Results for most of the ablations are shown in Sup-
plementary Material Section D, including model modifica-
tions, image augmentation, scene pooling size, embedding
dimension, and GFN sampling.

GFN Objective. We analyze the impact of the various GFN
objective choices discussed in Section 3.2. Comparisons are
shown in Table 4. Most importantly, the re-id mAP perfor-
mance without the GFN is relatively high, but the re-id top-
1 performance is much lower than the best GFN methods.
Conversely, the Scene-Only method achieves competitive
re-id top-1 performance, but reduced re-id mAP.

The Base methods were found to be significantly worse
than all other methods, with GFN score-weighting actually
reducing GFN performance. The Combined methods were
the most effective, better than the Base and Scene-Only
methods for both re-id and GFN-only stats, showcasing the
improvements discussed in Section 3.2.2. In addition, the
success of the Combined objective can be explained by two
factors: 1) similarity relationship between scene embed-
dings and 2) query information given by query-scene em-
beddings. The Scene-Only objective, which uses only sim-
ilarity between scene embeddings, is functional but not as
effective as the Combined objective, which uses both scene
similarity and query information. Since the Scene-Only ob-
jective incorporates background information, and does not
use query information, we reason that the provided addi-
tional benefit of the Combined objective comes from the
described mechanism of query excitation of scene features,
and not from e.g., simple matching of the query background
with the gallery scene image.

Finally, the Batch and Proto modifiers to the Combined
and Base methods were found to be relatively similar in per-
formance. Since the Proto method is simpler and more effi-
cient, we use it for the baseline model configuration.
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Figure 5: GFN score histograms for the CUHK-SYSU and PRW
test sets. Matches and non-matches (Diffs) are shown for queries
in the gallery size 4,000 set for CUHK-SYSU, and the full gallery
for PRW.

4.5. Filtering Analysis

GFN Score Threshold. We consider selection of the GFN
score threshold value to use for filtering out gallery scenes
during retrieval. In Figure 5, we show histograms of GFN
scores for both CUHK-SYSU and PRW. We introduce an-
other metric to help analyze computation savings from the
filtering operation: the fraction of negative gallery scenes
which can be filtered out (negative predictive value) when
using a threshold which keeps 99% of positive gallery
scenes (recall). For the histograms shown, this value is
91.4% for CUHK-SYSU, and only 11.5% for PRW.

In short, this is because there is greater variation in
scene appearance in CUHK-SYSU than PRW. This re-
sults in most query-gallery comparisons for CUHK-SYSU
evaluation occurring between scenes from clearly differ-
ent environments (e.g., two different movies). While the
GFN score-weighting improves performance for both same-
camera and cross-camera retrieval, shown in Table 3, query-
scene scores used for hard thresholding may be less discrim-
inative for nearly-identical scenes as in PRW vs. CUHK-
SYSU, shown in Figure 5. Still, the GFN top-1 score for
the final PRW model was 78.4%, meaning that 78.4% of
queries resulted in the correct gallery scene being ranked
first using only the GFN score.
Compute Cost. In Table 5, we show the breakdown of per-
cent time spent on shared computation, GFN-only compu-
tation, and detector-only computation. Since most compu-
tation time (∼60%) is spent on detection, with only (∼5%)
of time spent on GFN-related tasks, there is a large cost
savings from using the GFN to avoid detection by filtering
gallery scenes. Exactly how much time is saved in practice
depends on the relative number of queries vs. the gallery
size, and how densely populated the gallery scenes are with
persons of interest.

To give an understanding of compute savings for a single
query, we show some example calculations using the con-
servative recall requirement of 99%. For CUHK-SYSU, we
have 99.9% of gallery scenes negative, 91.4% of negative
gallery scenes filtered, and 61.0% of time spent doing de-
tection on gallery scenes, resulting in 55.7% computation

Shared GFN Detection
Backbone Query Emb. Scene Emb. GFN Scores RPN R-CNN(×2)

CUHK Time (%)
33.7 <0.1 5.3 <0.1 19.2 41.8

33.7 5.3 61.0

PRW Time (%)
36.9 <0.1 5.3 <0.1 16.1 41.7

36.9 5.3 57.8

Table 5: Percent computation time averaged per query of shared
feature extraction, GFN, and detection on the CUHK-SYSU
(gallery size 4,000) and PRW (gallery size full) test sets.

saved using the GFN compared to the same model without
the GFN. For PRW, the same calculation yields 6.6% com-
putation saved using the GFN.

5. Conclusion
We describe and demonstrate the Gallery Filter Network,

a novel module for improving accuracy and efficiency of
person search models. We show that the GFN can effi-
ciently filter gallery scenes under certain conditions, and
that it benefits scoring for detects in scenes which are not
filtered. We show that the GFN is robust under a range of
different conditions by testing on different retrieval sets, in-
cluding cross-camera, occluded, and low-resolution scenar-
ios. In addition, we show that the benefit given by GFN
score-weighting increases as gallery size increases.

Separately, we develop the base SeqNeXt person search
model, which has significant performance gains over the
original SeqNet model. We offer a corresponding training
recipe to train efficiently with improved regularization, us-
ing an aggressive cropping strategy. Taken together, the Se-
qNeXt+GFN combination yields a significant improvement
over other state-of-the-art methods. Finally, we note that
the GFN is not specific to SeqNeXt, and can be easily com-
bined with other person search models.
Societal Impact. It is important to consider the poten-
tial negative impact of person search models, since they
are ready-made for surveillance applications. This is high-
lighted by the PRW dataset being entirely composed of
surveillance imagery, and the CUHK-SYSU dataset con-
taining many street-view images of pedestrians.

We consider two potential advantages of advancing per-
son search research, and doing so in an open format. First,
that person search models can be used for beneficial appli-
cations, including aiding in finding missing persons, and for
newly-emerging autonomous systems that interact with hu-
mans, e.g., automated vehicles. Second, it allows the re-
search community to understand how the models work at a
granular level, and therefore benefits the potential for coun-
teracting negative uses when the technology is abused.
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