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Abstract

Federated Learning is a collaborative machine learning
paradigm that enables multiple clients to learn a global
model without exposing their data to each other. Conse-
quently, it provides a secure learning platform with privacy-
preserving capabilities. This paper introduces a new
dataset containing 23,326 images collected from eight dif-
ferent commercial sources and classified into 31 categories,
similar to the Office-31 dataset. To the best of our knowl-
edge, this is the first image classification dataset specifi-
cally designed for Federated Learning. We also propose two
new Federated Learning algorithms, namely Fed-Cyclic
and Fed-Star. In Fed-Cyclic, a client receives weights from
its previous client, updates them through local training, and
passes them to the next client, thus forming a cyclic topol-
ogy. In Fed-Star, a client receives weights from all other
clients, updates its local weights through pre-aggregation
(to address statistical heterogeneity) and local training, and
sends its updated local weights to all other clients, thus
forming a star-like topology. Our experiments reveal that
both algorithms perform better than existing baselines on
our newly introduced dataset.

1. Introduction
Federated Learning (FL) is a distributed learning

paradigm that can learn a global model from decentralized
data without having to exchange sensitive data across the
clients [24] [29].

Traditional Machine Learning requires users to upload
their data to the centralized server for the learning and in-
ference task. The end-user has no power and control over
how the data is used [11]. Moreover, uploading the data
to a central server incurs severe costs. Maintaining such
a vast volume of data and communicating the learning pa-
rameters back to the user is costly. To overcome the privacy
challenges and issue of maintaining a large amount of data
in the centralized setting, the Federated Learning paradigm
was proposed by Google [22], which aims to overcome

these issues.
The Federated Learning framework addresses sensitive

data privacy and data access issues [41]. Federated Learn-
ing models are trained via model aggregation rather than
data aggregation. It requires model to be trained locally
on the data owner’s machine or the local edge devices, and
only the model parameters are shared. Federated Learning
has found successful applications in the IoT, healthcare, fi-
nance, etc [23] [31]. The traditional Federated Learning op-
timization methods involve local client training on the local
datasets for a fixed number of epochs using an SGD opti-
mizer. The local clients then upload the model weights to
the central server, where the weights are averaged to form
a global model whose parameters are shared with the lo-
cal client. This method is known as FedAvg [29], which
facilitates the local client to learn features from different
clients while preserving privacy. However, FedAvg may
have convergence issues in case the clients exhibit statis-
tical heterogeneity, which may lead to non-convergence of
the model [25] [21] [16]. Thus, a simple FedAvg algorithm
may not be helpful when dealing with device-level hetero-
geneity.

In this work, we aim to understand the real-world sce-
nario where different commercial image sources can col-
laborate in a Federated setting to perform the image classi-
fication task with privacy preservation.

Most previous research works applied the Federated
Learning algorithm on a single dataset distributed among
the clients in an IID or non-IID manner. This is not close to
a real-world scenario where different clients may have dif-
ferent data distribution due to domain shift (statistical het-
erogeneity) among them [34] [30]. Another challenge in
Federated Learning is the convergence issue when the data
distribution is different among the clients, which may in-
crease the communication cost between the clients and the
central server and leads to suboptimal model performance.

Motivated by the above challenges, we propose our
dataset in which each client’s dataset is sampled from dif-
ferent commercial image sources to simulate the real-world
scenario where each client exhibits a domain shift. This is
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because each commercial image source has its own unique
image set, causing domain shift amongst clients. The
dataset is inspired by the Office-31 dataset [37]. We also
propose two novel algorithms, namely Fed-Cyclic and Fed-
Star. Fed-Cyclic is a simple algorithm in which, a client
gets weights from the previous client, trains the model lo-
cally and passes the weights to the next client in a cyclic
fashion. In this way, a global model is simply being passed
from one client to another in a cyclic manner. The global
server need not involve here. Even if it is required that we
want to involve it to preserve anonimity, the global server
does not have to perform any computation and can be used
only for passing the parameters of one client to another.
Fed-Star requires each client to receive weights from all
the other clients during pre-aggregation in a star-like man-
ner after the local training of each client on its train set.
While pre-aggregating, every client prioritizes learning the
outlier features present in different clients while retaining
the common features to train a more robust model impervi-
ous to statistical heterogeneity among the client’s data dis-
tribution, followed by aggregation via a global server after
a fixed number of periods. Experiments show that our algo-
rithms have better converegence and accuracy.

To summarize, our contributions are three-fold:

• We propose the an image classification dataset specif-
ically designed for Federated Learning, which is close
to a real-world scenario where each client has a unique
dataset demonstrating domain shift.

• We propose Fed-Cyclic, a simple algorithm, which is
communicationally efficient and attains higher accu-
racy than baselines.

• We propose the Fed-Star algorithm, which trains a
model that prioritizes learning of generalized and out-
lier features to create a model personalized to each
client’s heterogeneous dataset distribution and attains
faster convergence than the baselines with higher ac-
curacy.

2. Related Works
Many distributed optimization algorithms have been de-

veloped to process and draw inferences from the data up-
loaded [47], [36], [9] [2] [1]. However, such distributed
method requires uploading of data to the central server,
which incurs the considerable cost of maintaining data cen-
trally, and processing it requires a lot of power [32] [8].
Also, the privacy issue persists as the user has no control
over how personal data is used and shared.

The first application of the Federating Learning algo-
rithm is FedAvg, proposed by Mcmahan et al. [29]. Fe-
dAvg performs reasonably well when the data distribution
is IID among the clients and shows faster convergence of

the global model. The issue arises in real-world scenarios
when the data follow the non-IID distribution as proposed
by Zhao et al. [48].

Federated Learning with data heterogeneity: The
vanilla FedAvg faces convergence issues when there is data
heterogeneity among the clients. To tackle this challenge,
different methods have been proposed. FedProx [24] adds
a proximal term by calculating the square distance between
the server and client with local loss to optimize the global
model better. FedNova [43] proposes normalized averag-
ing to eliminate objective inconsistency with heterogeneous
Federated optimization. FedMax, as proposed by Chen et
al. [7], aims to mitigate activation-divergence by making ac-
tivation vectors of the same classes across different devices
similar. FedOpt proposed by Reddi et al. [35] applies dif-
ferent optimizers to the server, like Adam, Yogi, and Ada-
Grad. VRL-SGD [26] incorporates variance-reduction into
local SGD and attains higher accuracy while decreasing the
communication cost. FedCluster [5] proposes grouping lo-
cal devices into different clusters so that each cluster can
implement any Federated algorithm. RingFed, proposed
by Yang et al. [46], minimizes the communication cost by
pre-aggregating the parameters among the local clients be-
fore uploading the parameter to the central server. SCAF-
FOLD [20] uses variance-reduction to mitigate client drift.
Chen et al. [6] proposes FedSVRG that uses stochastic vari-
ance reduced gradient-based method to reduce the commu-
nication cost between clients and servers while maintain-
ing accuracy. Jeong et al. [18] proposes Federated aug-
mentation (FAug), which involves the local client jointly
training the generative model to augment their local dataset
and generate the IID dataset. In this paper, we aim to
train models robust to data heterogeneity with faster conver-
gence and lower communication costs via our proposed al-
gorithms. One of our proposed method, Fed-Star is similar
to RingFed [46]. RingFed involves simple pre-aggregation
of weights between adjacent clients, whereas our method
involves pre-aggregation of weights between all the local
clients using the accuracy metric.

Personalized Federated Learning FedAvg also suffers
from creating a generalized global model as the parameters
are averaged, which gives poor representation to a client
with heterogeneous data. Personalized Federated Learn-
ing involves training the global model using any Federated
vanilla algorithm followed by personalizing the model for
each client via locally training the model on each client
[19] [28] [48] [11]. Data heterogeneity among clients is
the reason for personalized Federated Learning. Data aug-
mentation is explored to account for local data heterogene-
ity and involves local clients to jointly generate IID data
distribution [12] [44]. Wang et al. [42] proposes FAVOR
and selects a subset of clients at each round to mitigate
the bias introduced by non-IID data. Chai et al. [4] pro-
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poses the TiFL method to cluster the clients in different tiers
and train the clients belonging to the same tier together for
faster training. Sattler et al. [38] proposes a hierarchical
clustering-based approach based on the cosine similarity of
the client gradient to segment similar clients in similar clus-
tering for training to train the local clients properly. Xie et
al. [45] proposes Expectation Maximization to derive opti-
mal matching between the local client and the global model
for personalized training. Deng et al. [10] proposes APFL
algorithm to find optimal client-server pair for personalized
learning.There are different clustering-based approaches as
explored by different authors [3] [14] [17] [13]. Tan et
al. [40] provides deeper analysis of personalized Federated
framework. In our work, we aim to personalize the model at
the global level by proposing an algorithm that better cap-
tures the outlier features of the client while retaining the
generalized features.

Federated Image classification datasets Most Feder-
ated Learning algorithms are simulated on datasets belong-
ing to a single domain with an artificial partition among
the clients or use existing public datasets. The dataset dis-
tribution may differ for different clients in the real-world
scenario as the clients exhibit domain shift. The first work
proposing the real-world image dataset [27] contains more
than 900 images belonging to 7 different object categories
captured via street cameras and annotated with detailed
boxes. The image dataset has applications in object detec-
tion. In our work, we propose the first real-world image
dataset for the image classification task to better understand
the performance of the Federated algorithm in a real-world
setting.

3. Proposed Methods

3.1. Objective

In Federated Learning (FL), different clients (say K
clients) collaborate to learn a global model without having
to share their data. Let the weights of such a model be w,
and let the loss value of the model for sample (xi, yi) be
L(xi, yi;w). The objective now is to find optimal w such
that the following objective is achieved:

min
1

|D|

|D|∑
i=1

L(xi, yi;w) (1)

where D denotes the union of all the data owned by differ-
ent clients, as shown below:

D =

K⋃
k=1

Dk (2)

where Dk denotes the data owned by the kth client. Given
this, we can rewrite our objective function as follows:

min
1

|D|

K∑
k=1

|Dk|∑
i=1

L(xi, yi;w) (3)

If we represent the average local loss Lk of kth client
using

Lk =
1

|Dk|

|Dk|∑
i=1

L(xi, yi;w), (4)

we can reformulate the objective as follows:

min

K∑
k=1

|Dk|
|D|

Lk (5)

which suggests that our objective is to minimize the
weighted sum of local losses incurred by our clients, and
the weights are proportional to the number of data samples
clients have with them. This objective function is similar
to same as [29]. We discussed it to make our paper self-
contained.

This formulation motivated FedAvg [29] to aggregate
the local model weights in the weighted averaging manner
to obtain w as shown below:

w =

K∑
k=1

|Dk|
|D|

wk (6)

This aggregation happens iteratively, where, in a given
iteration, the central server sends the global model to the
local clients, where local models are updated and then sent
back to the global server for aggregation, as shown in Fig-
ure 1. This happens until the global model converges.

Global Model

…

W1 W2 W8

3

1 1

 Wk: Weights of kth client

 DK : Data of kth client

3

1. Sharing weights to clients
2. Local training
3. Sharing weights to Global 
model
4. Weight averaging

1

2 2 2

3

4

D1 D2 D8

Local 
Models

Figure 1. FedAvg algorithm [29]

However, it can take several communication rounds for
the FedAvg algorithm to converge, especially when there
is statistical heterogeneity in clients’ datasets. As a result,
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the accuracy drops too [15]. Also, FedAvg creates a gen-
eralized model by averaging the parameters from the local
clients, forcing the local model with statistical heterogene-
ity to learn a generalized representation that may differ from
its data distribution, leading to poorly trained local clients.
In that case, local clients do not find the global model satis-
factory.

Considering these limitations of FedAvg, we propose
Fed-Cyclic and Fed-Star algorithms, which cater to the sta-
tistical heterogeneity of data across the clients and ensure
the satisfactory local performance of global models despite
that.

3.2. Fed-Cyclic

We propose the Fed-Cyclic algorithm to overcome the
challenges faced by the FedAvg algorithm, which suffers
from a communication bottleneck due to a large number of
edge devices uploading the parameters to the central server,
which causes congestion in the network. The model visual-
ization is shown in Figure 2

D1

D2

D3

D4

D5

D6

D7

D8

Wk    : Weights of kth client

DK : Data of kth client

W1

W2

W3

W4

W5

W8

W7

W6

Figure 2. Proposed model using Fed-Cyclic showing passing of
weights cyclically by the clients after local training.

In the Fed-Cyclic algorithm, we use a global model to
initialize the weight of one of the clients in the network,
followed by training the client’s local model for E local
epochs. The optimizer used is SGD at the local client. The
updated weights are then used to initialize the weight of the
next client in the network, as shown in equation (7), and
the process continues until all the clients are trained cycli-
cally in this manner, constituting one training round. In our
Fed-Cyclic algorithm, the clients can either directly pass the
weights to the next client or involve the global server to do
so to preserve the anonymity of the last client. After the end
of each round, the global weights w get updated.

It is a communication-efficient algorithm since the
clients can directly pass the weights to the next client with-
out involving the global server. Even if the global server is
involved in passing the weights from one client to another,
no processing is done, and only parameters from a single

Algorithm 1 Proposed Fed-Cyclic Algorithm
Input Initial weights winit, number of global

rounds R, number of local epochs E, learning rate η,
K clients indexed by k (with local data Dk and local
weights wk) and local minibatch size b.

Output Global weights wR (after R rounds)
Algorithm:

Initialize w0 ← winit // Global weights initialized
w0

1 ← w0

for r=0 to R− 1 do
for k=1 to K − 1 do

wr+1
k ← ClientUpdate(wr

k, k) using SGD
wr

k+1← wr+1
k

wr+1
K ← ClientUpdate(wr

K ,K) using SGD
wr+1

1 ← wr+1
K

wr+1← wr+1
K

function ClientUpdate(w, k)
B ← (split Dk into batches of size b)
for e=1 to E do

for d ∈ B do w← w - η∇g(w;d)
return w

client are passed at a time. We explain it in Algorithm 1 in
greater detail. The most important step is the following:

wr
k+1 ← wr+1

k (7)

where we use kth client to initialize (k + 1)th client.
The algorithm is robust to statistical heterogeneity as ev-

ery client gets an opportunity to train the global model on
the local data. Moreover, we can take the view that the
global model is being periodically trained on different por-
tions of the dataset (D), as if they are mini-batches (Dk).
Hence, this algorithm is somewhat analogous to a typical
deep learning approach from the point of view of the global
model. As a result, convergence also gets ensured, unlike
FedAvg, where we expect convergence for simple aggrega-
tion of weights.

3.3. Fed-Star

Although Fed-Cyclic can converge faster than FedAvg,
it is a very simple algorithm, similar to FedAvg. Also, it
lacks aggregation of any kind. Here, we propose the Fed-
Star algorithm, where we address these limitations.

In Fed-Star, for some time, the local models are trained
locally for some epochs in a parallel manner. Once the
given epochs are complete, we perform pre-aggregation of
weights locally at each client by sharing their models with
each other. Each client gets models from every other client,
and they are evaluated on the local training set of the given
client. The accuracy obtained helps us determine how much
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Algorithm 2 Proposed Fed-Star Algorithm
Input: Initial weights winit, number of global rounds

R, number of local epochs E, learning rate η, K clients in-
dexed by k (with local data Dk and local weights wk), local
minibatch size b, number of period P , and weight matrix M
of dim K ∗K.

Output: Global weights wR (after R rounds)
Algorithm:

Initialize w0 ← winit // Global weights initialized
for r=0 to R− 1 do

wr,0
k ← wr,∀k ∈ {1, · · · ,K}

for p ∈ {, · · · , P − 1} do
for k ∈ {1, · · · ,K} parallely do

wr,p+1
k ← ClientUpdate (wr,p

k , k)
for j ∈ {1, · · · ,K} do

transfer wr,p+1
j to kth client

M(k, j) = 1−Acc(wr,p+1
j , Dk)/100

wr,p+1
k =

K∑
j=1

M(k,j)∗wr,p+1
j

K∑
j=1

M(k,j)

wr+1 = 1
K

K∑
k=1

|Dk|
|D| w

r,P
k

function ClientUpdate(w, k)
B ← (split Dk into batches of size b)
for e=1 to E do

for d ∈ B do w← w - η∇g(w;d)
return w

function Acc(w,D)
return Accuracy of w on train set of D

weightage should be given to the models of each client dur-
ing pre-aggregation. These pre-aggregated weights are now
used to reinitialize the local model for training. These steps
are iteratively carried out, and these iterations are called pe-
riods. This interaction for model sharing is analogous to star
network topology, where every client interacts with every
other client in a network. After a certain number of periods
P , the local weights are aggregated on the central servers,
so a round has P periods in it, where local models are being
shared with each other, they are getting pre-aggregated at
each client for initialization to train the model in the next
period.

In any period p of round r, a weightage matrix M gets
developed, which is computed as follows:

M(k, j) = 1−Acc(wr,p+1
j , Dk)/100 (8)

where Acc(wr,p+1
j , Dk) denotes the training accuracy of

wr,p+1
j on training set of dataset Dk. It denotes the weigh-

tage value for the model coming from jth model while pre-
aggregating at kth client.

D1

D2

D3

D4

D5

D6

D7

D8

 Wk: Weights of kth client

 DK : Data of kth client

W1

W2

W8

W7

W3

W4

W5

W6

Global 
Model

Figure 3. Proposed model using Fed-Star demonstrating pre-
aggregation of the parameters in star topology manner among local
clients and is given by equation (9). This is followed by the trans-
ferring of weight to the global model where aggregation of weights
is performed.

Note here that we give more weightage to the client
significantly different from the reference client during pre-
aggregation because we want each client to learn the outlier
features from the clients while retaining the generalized fea-
tures during pre-aggregation.

The pre-aggregated weights for kth client are depicted as
follows:

wr,p+1
k =

K∑
j=1

M(k, j) ∗ wr,p+1
j

K∑
j=1

M(k, j)

(9)

where we normalize the weightages with their sum while
performing the pre-aggregation of weights.

Thus, each local model tends to learn more from the
other client that is significantly different. The Fed-Star al-
gorithm is explained further in Algorithm 2 and can be vi-
sualized through Figure 3.

This algorithm is communication intensive since each
client has to interact with every other client. Still, the to-
tal communication overhead is reduced significantly as the
pre-aggregation step among clients decreases the reliance
on the global server for convergence. Our algorithm attains
faster convergence than FedAvg with lesser communication
overhead with the global server and higher accuracy. Fed-
Star retains outlier features well and helps create a global
model that is also personalized to the local clients.

4. Proposed Dataset
We propose a dataset containing 23,326 images which

we collected from 8 different image-hosting websites. Each
of the 8 sources represents 8 different clients in our Fed-
erated learning setting. The average number of images

6538



Figure 4. Sample images from our dataset.

Classes Mean Std. dev. Total Img.

back pack 108.50 37.98 868
bike 108.62 31.73 869
bike helmet 94.25 26.54 754
book shelf 77.13 25.93 617
bottle 89.38 11.61 715
calculator 111.50 31.43 892
desk chair 125.38 27.61 1003
desk lamp 106.87 24.87 855
desktop computer 99.00 19.13 792
file cabinet 65.38 20.13 523
headphone 105.63 22.36 845
keyboard 76.38 35.14 611
laptop 111.38 25.39 891
letter tray 26.38 13.47 211
mobile phone 84.88 15.06 679
monitor 112.38 37.35 899
mouse 116.87 25.97 935
mug 117.38 25.19 939
notebook 98.00 23.78 784
pen 108.50 25.20 868
phone 113.63 21.80 909
printer 108.25 22.64 866
projector 72.63 33.86 581
puncher 66.88 32.37 535
ring binder 65.63 31.26 525
ruler 90.13 19.50 721
scissors 127.13 51.77 1017
speaker 67.63 18.6 541
stapler 105.25 21.75 842
tape dispenser 82.38 37.9 659
trashcan 103.25 33.36 826

Table 1. The mean, standard deviation and the total number of
images in the classes across different commercial sources.

for each source is approximately 2916, divided across 31
categories. This dataset is inspired from the Office-31

dataset [37], which contains common objects in the office
settings like keyboard, printer, monitor, laptop, and so forth.
Our dataset includes the same categories of images as were
in the Office-31 dataset. We took extra care to ensure that
only relevant and high-quality images from each source
were taken. We removed poor quality, duplicate or irrele-
vant images by manually curating the dataset. The statistics
showing how images are distributed within the classes and
across the sources are summarized in Tables 1 and 2. The
sample images are shown in Figure 4.

Source Mean Std. dev. Total Img.

123rf 94.16 26.96 2897
Adobe Stock 101.16 27.25 3104
Alamy 102.80 40.65 3155
CanStockPhotos 95.06 33.24 2915
Depositphotos 101.41 38.59 3112
Getty Images 63.06 21.99 1923
iStock 90.10 33.01 2761
Shutterstock 112.61 36.34 3459

Table 2. The mean, standard deviation of images distribution
across the classes of the dataset together with total images in each
source.

5. Experiments
5.1. Implementation Detail

In this section, we describe the experiments we per-
formed to evaluate our Federated image classification algo-
rithms. We leverage the pretrained VGG-19 [39] network
available from PyTorch pretrained model library [33] for
initialization purpose. We freeze its convolutional layers
and replace the rest of the network with three new fully con-
nected layers (of size 1024, 256 and 31) and a softmax layer.
In the first two fully connected layers, we use ReLU activa-
tion and a dropout rate of 0.5. We have used SGD optimizer
with a batch size of 64. We use the 80:20 train-test split of
the data at any client. The evaluation metric used is classi-
fication accuracy, but we have also evaluated using Macro
F1 score and weighted F1 score. The default learning rate is
3e-4 (3x10−4). The different iteration parameters used are
given in Table 3.

5.2. Results

We evaluate all four algorithms (FedAvg [29],
RingFed [46], Fed-Cyclic, Fed-Star) on our dataset.
For RingFed, we kept γ=0.8, as we obtained the best
accuracy for RingFed using this value, as shown in Table 4.

We provide results of both global evaluation and local
evaluation. While local test sets are used for local evalua-
tion, their union is used for global evaluation. As we can see
in Table 5, where we provide the global evaluation results,
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Method Local Epochs (E) Period (P ) Global Rounds (R)

FedAvg 3 - 250
RingFed 3 2 50
Fed-Cyclic 3 - 150
Fed-Star 3 2 50

Table 3. Iteration Parameters

γ Accuracy

0.2 89.22%
0.5 88.96%
0.8 89.65%
1.0 89.39%

Table 4. γ vs accuracy for RingFed

Method Accuracy Weighted F1 Macro F1

FedAvg [29] 89.11% 88.98% 88.47%
RingFed [46] 89.65% 89.53% 89.14%
Fed-Cyclic (ours) 91.15% 90.89% 90.33%
Fed-Star (ours) 91.72% 91.17% 90.58%

Table 5. Experimental results show that both the Fed-Star and Fed-
Cyclic attains higher accuracy than FedAvg and F1-scores. Here,
red denotes the best value and blue denotes the second best value.

our two proposed methods, Fed-Cyclic and Fed-Star, per-
form better than FedAvg and RingFed. Fed-Star performs
the best among the four, with an accuracy of 91.72%. More-
over, our methods converge very fast. Fed-Star requires 50
global rounds on our dataset, as mentioned in Table 3. Al-
though RingFed also requires the same number of global
rounds, its accuracy is lower than Fed-Star.

In Table 6, where we provide the results of the local eval-
uation, we compare our methods with competing Federated
Learning methods and the baseline of the respective local
model (using E = 250). As can be seen, our Fed-Star al-
gorithm gets the best results on all the clients. Our Fed-
Cyclic algorithm comes second in 6 out of 8 cases, losing
to the local model on Depositphotos and iStock. As far as
FedAvg and RingFed are concerned, they lose to 5 and 4
local clients, respectively. This suggests that FedAvg and
RingFed do not help much from a personalization point of
view.

5.3. Learning Rate (η) Experiments

We also performed our experiments while varying the
learning rate. For FedAvg, we have observed that accuracy
steadily increases with the decrease in the learning rate, and
maximum accuracy is obtained for the learning rate of 3e-3
with the value of 91.43%. For RingFed, we observed that

Dataset Model Test Accuracy

123rf

Local Model 85.51%
FedAvg 83.79%
RingFed 84.47%

Fed-Cyclic (Ours) 86.38%
Fed-Star (Ours) 88.90%

Adobe Stock

Local Model 92.43%
FedAvg 91.46%
RingFed 92.07%

Fed-Cyclic (Ours) 94.52%
Fed-Star (Ours) 94.96%

Alamy

Local Model 86.84%
FedAvg 87.32%
RingFed 87.98%

Fed-Cyclic (Ours) 88.90%
Fed-Star (Ours) 90.14%

CanStockPhotos

Local Model 89.53%
FedAvg 89.20%
RingFed 89.56%

Fed-Cyclic (Ours) 90.40%
Fed-Star (Ours) 91.68%

Depositphotos

Local Model 98.07%
FedAvg 96.95%
RingFed 97.76%

Fed-Cyclic (Ours) 97.91%
Fed-Star (Ours) 98.33%

Getty Images

Local Model 89.35%
FedAvg 90.13%
RingFed 91.06%

Fed-Cyclic (Ours) 92.72%
Fed-Star (Ours) 93.87%

iStock

Local Model 85.71%
FedAvg 83.72%
RingFed 84.68%

Fed-Cyclic (Ours) 84.89%
Fed-Star (Ours) 86.47%

Shutterstock

Local Model 89.45%
FedAvg 89.60%
RingFed 90.16%

Fed-Cyclic (Ours) 91.56%
Fed-Star (Ours) 92.11%

Table 6. Fed-Star outperforms all the local models trained using
traditional ML method and baselines and Fed-Cyclic on different
sources.

the value of accuracy increased with an increase in learn-
ing rate from 1e-3 to 7e-3 (91.81% to 92.17%), followed
by dropping in accuracy for the learning rate of 3e-4 to
89.65%. For the Fed-Cyclic algorithm, maximum accuracy
is obtained for the learning rate of 3e-3 with an accuracy
value of 92.52% and minimum accuracy of 91.15% for the
learning rate of 3e-4. Fed-Star attains maximum accuracy
of 92.77% for a learning rate of 1e-3. The accuracy drops
with an increase in the learning rate, falling to the value of
91.72% for the learning rate of 3e-4. The detailed results
are captured in Figure 5 and Table 7.
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Figure 5. The graph shows how the accuracy of FedAvg, RingFed, Fed-Cyclic and Fed-Star changes with different learning rates (lr).

Learning FedAvg RingFed Fed-Cyclic Fed-Star
Rate (η) [29] [46] (Ours) (Ours)

1e-3 91.39% 91.81% 92.42% 92.77%
3e-3 91.43% 92.09% 92.52% 92.68%
7e-3 91.33% 92.17% 92.35% 92.53%
3e-4 89.11% 89.65% 91.15% 91.72%

Table 7. The table shows the accuracy value after convergence at-
tained by FedAvg, RingFed, Fed-Cyclic and Fed-Star for different
values of learning rates.

Conclusion

We proposed two Federated Learning algorithms, Fed-
Cyclic and Fed-Star, along with a new federated image
classification dataset collected from 8 commercial image
sources, making the setup much closer to a real-world sce-
nario than other image classification setups where an ex-
isting dataset itself is artificially divided. Our algorithms
have better convergence and better accuracy than FedAvg
and RingFed algorithms. Also, they perform much better
from the personalization point of view, making them very

relevant for meaningful collaboration amongst clients hav-
ing statistical heterogeneity (domain shift).
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[22] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter
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