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Abstract

Deep neural networks (DNNs) have rapidly become a de
facto choice for medical image understanding tasks. How-
ever, DNNs are notoriously fragile to the class imbalance in
image classification. We further point out that such imbal-
ance fragility can be amplified when it comes to more so-
phisticated tasks such as pathology localization, as imbal-
ances in such problems can have highly complex and often
implicit forms of presence. For example, different pathol-
ogy can have different sizes or colors (w.r.t.the background),
different underlying demographic distributions, and in gen-
eral different difficulty levels to recognize, even in a metic-
ulously curated balanced distribution of training data. In
this paper, we propose to use pruning to automatically and
adaptively identify hard-to-learn (HTL) training samples,
and improve pathology localization by attending them ex-
plicitly, during training in supervised, semi-supervised, and
weakly-supervised settings. Our main inspiration is drawn
from the recent finding that deep classification models have
difficult-to-memorize samples and those may be effectively
exposed through network pruning [15] - and we extend such
observation beyond classification for the first time. We also
present an interesting demographic analysis which illus-
trates HTLs ability to capture complex demographic imbal-
ances. Our extensive experiments on the Skin Lesion Lo-
calization task in multiple training settings by paying ad-
ditional attention to HTLs show significant improvement of
localization performance by ∼2-3%.

1. Introduction

In the past decade, deep learning advancements have sig-
nificantly influenced numerous medical imaging applica-
tions such as automated pathology diagnosis, detection, lo-
calization, and registration [27, 47, 16, 31, 30, 2, 17, 12, 19].
The success of these applications has motivated several re-
searchers in the community to develop large-scale public
datasets that can improve task performance. Although these
real-world datasets have helped to build high-quality deep
learning solutions, they usually suffer from class imbalance

problems that can go way beyond the common perception
of different training sample numbers across categories. In-
deed, imbalance in medical imaging datasets can have
highly complex and subtle forms of presence, e.g., dif-
ferent pathology can have different colors and sizes, and
can be difficult to recognize even in meticulously curated
training data. Additionally, it can further have many im-
plicit imbalances based on gender, race, ethnicity, and de-
mographics of individuals and can be very difficult to ac-
count for. While there have been numerous efforts to han-
dle imbalance during DNNs training using data-level ap-
proaches such as oversampling, undersampling, synthetic
sampling [23, 22, 3, 32, 33, 5], or cost-sensitive learning-
based approaches [28, 44, 45, 39], these efforts primarily
rely on the assumption of known class distribution and over-
look the more complicated forms of imbalance. The gener-
alization ability of DNNs can suffer significantly when data
imbalance is overlooked during training, resulting in poor
sensitivity towards minorities and substandard performance
[40, 14]. Many works [43, 1, 29, 42, 10, 41] have recently
observed that DNNs tend to prioritize learning simple pat-
terns. More concretely, the DNN optimization is content-
aware, taking advantage of patterns shared by more training
examples, and therefore inclined towards memorizing the
majority samples. Since minority samples are underrepre-
sented in the training set, they tend to be poorly-memorized,
and more prone to be easily-forgotten by the model. In the
context of image classification, a recent empirical finding
by [15] observed that network pruning which usually re-
moves the smallest magnitude weight in a trained DNN, dis-
proportionately impact various classes and samples, hurting
poorly-memorized samples more. In simple words, minor-
ity samples are not “memorized well” and suffer signifi-
cantly as a consequence of network pruning.

Inspired by this observation, in this paper, we attempt to
ask an interesting question: Can we identify instances which
are difficult to memorize by DNNs and can be representa-
tive of complex and implicit imbalance?. We for the first
time, study network pruning impact on the spatial mem-
orization/forgetting effect. We go beyond image classifi-
cation to explore DNNs sensitivity towards instance-level
spatial region imbalance, on the real-world skin lesion lo-
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Figure 1. Localization as foreground vs background classification. Spatial Imbalance can be subtle and complex (eg. indistinguishable
color, irregular shape, small size etc.).

calization task(S-LLT). Figure 1 illustrate the S-LLT task
as foreground vs background classification. We observed
that pruning of a trained localization model has a varying
impression on spatial memorization, where it significantly
impacts foreground performance while having a marginal
impact on the background (Figure 2). Considering fore-
ground as the representative of pathology and region of in-
terest, we propose using drop-in localization (foreground)
performance as a proxy to identify training instances which
are poorly-memorized and can encode complex imbalance
– we call them “hard-to-learn” (HTLs) due to their high
sensitivity to pruning, and show that by explicitly and adap-
tively paying additional attention to them during training,
we can achieve notable performance gain in their localiza-
tion. Interestingly, an in-depth analysis of HTLs using de-
mographic attributes such as gender and age reveals that
pruning impact some demographics more significantly
than others, diligently eliciting the complex and subtle im-
balances in the data, going beyond class distribution. Ad-
ditionally, our work demonstrates, for the first time, that
pruning can elicit the demographic bias of trained models
using real-world dataset instead of curated datasets such as
CIFAR and CelebA. We selected S-LLT as our evaluation
task (although it can be easily adapted to any localization
task) considering the technique-friendly availability of ISIC
2017, 2018 datasets [7, 6], which will allow us to show
the effectiveness of our technique in a supervised, semi-
supervised, or unsupervised setting along with a detailed
demographic study of HTLs. Our primary contributions can
be summarized as:

• We propose pruning as an indicator to expose the
spatial weakness of a trained localization model and
show the existence of “hard-to-learn” training exam-
ples. For the first time, we reveal that pruning dispro-
portionately impacts the foreground and background
classes, where the foreground performance of some
training examples can drop by a much larger margin
than the background, indicating their high sensitivity
to pruning.

• Tailored for the localization problem, we present
three novel HTL mining strategies in the supervised,
semi-supervised, and weakly-supervised settings using

ground truth labels, pseudo-labels, and saliency maps
respectively. We additionally show that by attending
HTLs by fine-tuning, we can significantly improve lo-
calization performance.

• We have conducted extensive experiments and abla-
tion studies to understand the specialty of HTLs on the
S-LLT. Additionally, we provide an interesting demo-
graphics analysis of HTLs and illustrate our method’s
ability to capture complex implicit imbalances. More-
over, our extensive experiments show a significant and
consistent performance gain of ∼2-3% IoU across
different settings for S-LLT.

2. Methodology
2.1. Network pruning

The fundamental hypothesis behind the NN pruning is
that DNNs are overparameterized, and a comparatively
smaller network (sparse network) can be used to achieve
a similar level of performance. Provided a dataset D =
{(xi, yi)}ni=1, and a preferred sparsity level κ (i.e, number
of non-zero weights), NN pruning can be written as a con-
strained optimization problem:

min
w

L(w;D) = min
w

1

n

n∑
i=1

l(w; (xi, yi)), (1)

s.t. w ∈ Rm, ||w||0 ≤ κ (2)

where, l(·) is a standard loss function, w is a set of pa-
rameters of NN, m is the total number of parameters, and
|| · ||0 is L0 norm. The traditional approach to minimize
the above equation is by adding sparsity enforcing penalty
terms or saliency-based methods. Saliency-based methods
solve the above equation by removing redundant parameters
in the NN using a good criterion. Popular criterion includes
magnitude-based weight pruning (i.e., weight below a cer-
tain threshold is redundant) [11, 9], or hessian of loss wrt.
weights (i.e., the higher the value of hessian, the higher the
parameter importance) [25, 13].

In this work, we have used magnitude-based unstruc-
tured weight pruning due to its simplicity and keep the focus
on the “forgetting” behavior of sparse NNs [15]. To avoid
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Heavy Impact of pruning on Foreground
Low impact of pruning 
on Background 

Figure 2. Impact of magnitude-based pruning (70%) of a trained U-Net based localization network on the IoU of foreground and background
classes in the supervised setting. Pruning heavily impact the foreground IoU compared to background IoU.

(a) (b)

Figure 3. (a) Randomly sampled examples of HTLs identified by pruning U-Net based localization network by 70% in supervised setting.
(b) Classical U-Net architecture used in our experiments for our Lesion localization. Our simple model choice ensures retaining focus on
highlighting the relation between network pruning and implicit complex imbalance in dataset.

possible confusion, we do NOT use pruning for any model
efficiency purpose. In our framework, pruning would be
better described as “selective brain damage”. It is mainly
used for effectively spotting HTLs not yet well memorized
and learned by the current model.

2.2. Hard-to-Learn (HTL) Instances

DNNs can be compressed to significantly huge levels at
startlingly little loss of test accuracy using various pruning
methods [25, 38, 20, 8, 36, 26, 18]. Recently, some works
have identified the deeper connection of pruning with gen-
eralization/memorization, beyond considering it just as an
ad-hoc compression tool [21, 46]. The most relevant work
by [15] used pruning as a mean to expose the weakness of
a trained model in generalization. More specifically, [15]
identified that pruning a trained image classifier, produces
a non-uniform impact on long-tail less frequent instances.
In this paper, we study this observation for the first time to
identify “easily forgotten” training examples for pathology
localization in supervised, semi-supervised, and weakly-
supervised settings. Using S-LLT as our experimental task,
we identified that pruning disproportionately impacts the
foreground and background class, hurting the foreground
significantly (Figure 2). We observed that foreground per-
formance of some training examples drops by a large mar-

gin, indicating their high sensitivity to pruning. We term
these most impacted images as “hard-to-learn” (HTLs).

We would like to highlight that our idea of HTLs is a
bold attempt to explore beyond the class-wise label im-
balance. Even artificially class-balanced datasets such as
CIFAR-10/100 and ImageNet. have many hidden inher-
ent forms of imbalance such as class-level difficulty vari-
ations or instance-level feature distribution, which reflect in
the performance of trained DNNs. Since HTLs are label-
agnostic and completely rely on DNN’s memorization abil-
ity and learning patterns, it is applicable to various more
complicated forms of imbalance in real data, such as com-
plex attribute imbalances [35] and demographic imbalances
[37, 24]. Our in-depth analysis for S-LLT using ISIC-
2017 validates the ability of HTLs to capture implicit de-
mographic (gender and age) imbalances in the real-world
dataset, which provide an opportunity to explicitly pay at-
tention to them during training. Figure 3(a) presents some
sampled examples of HTLs identified by pruning U-Net
based localization network by 70% in supervised setting.

2.3. Mining HTLs

Medical imaging real-world datasets exhibit subtle forms
of imbalances where various feature attributes have very
different frequencies (eg. pathology color, size, and shape)
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Figure 4. An overview of our Pruning Assisted NN training paradigm for localization.

Algorithm 1: Supervised pruning assisted localization

1 Input: Data D = {xi}ni=1, Localization labels Y = {yi}ni=1, Model = f(θinit, ·), Pruning algorithm = P ,
thresoldHTL = τ

2 Learn f(θintermediate, ·) by minimizing
∑n

i=1 Llocalization(θinit, D, Y )

3 Prune f(θintermediate, ·) by p% using P to get f(θintermediate ⊙m, ·) where m ∈ {0, 1}∥θ∥0 is the prune mask.
4 Identify D̃HTL = {{x̃i, ỹi} st. IoU(f(θintermediate ⊙m, x̃i))− IoU(f(θintermediate, x̃i)) > τ}
5 Fine-tune f(θintermediate, ·) → f(θfinal, ·) by minimizing

∑∥D̃HTL∥
i=1 Llocalization(θinit, D̃HTL, YHTL)

6 Return f(θfinal, ·)

and instance-level difficulty variations. Broadly speaking,
such imbalances are not only limited to the standard major-
ity versus minority class but extend to implicit forms based
on gender, race, ethnicity, as well as demographics of in-
dividuals and can be very difficult to account for. In this
section, we present three different HTLs (inherently cap-
turing subtle imbalances in a label-agnostic way) mining
strategies for localization in supervised, semi-supervised,
and weakly-supervised settings.

2.3.1 Supervised Setting:

Our supervised setting considers the availability of segmen-
tation masks ({yi}ni=1) corresponding to every training im-
age ({xi}ni=1). We first train a U-Net model (Figure 3) using
the supervised cross-entropy loss (Llocalization) to fit on our
labeled training data. In order to identify HTLs (D̃HTL)
from the training data, we prune the trained network us-
ing a pruning algorithm P by p% and look for instances
which are highly sensitive to pruning (i.e., observed signif-
icant drop in foreground IoU performance). The complete
supervised pruning assisted localization process is summa-
rized in Algorithm 1. The final network is generated by
fine-tuning with additional attention to spotted HTLs.

2.3.2 Semi-supervised Setting:

Our semi-supervised setting considers the availability of
segmentation masks ({yi}ni=1) corresponding to n input
training images ({xi}ni=1). Additionally, it make use of
k pathology images ({x̃i}ki=1) for which no segmentation
mask is available. We first train a U-Net model (Figure
3) using the supervised cross-entropy loss (Llocalization)
to fit on our labelled training data (D). Next, we generate
pseudo-labels for k unlabelled pathology images. In order

to identify HTLs (D̃HTL) from the training data, we prune
the trained network using a pruning algorithm P by p% and
look for pseudo-labels instances which are highly sensitive
to pruning (i.e., observed significant change in bounding
box generated using [17]). The complete semi-supervised
pruning-assisted localization process is summarized in Al-
gorithm 2. The final network is generated by fine-tuning
with additional attention to spotted HTLs.

2.3.3 Weakly-supervised Setting:

In our weakly-supervised setting, we do not use any seg-
mentation label corresponding to the input training dataset.
Instead, we propose to use high-level classification labels to
train our U-Net backbone using an additional MLP layer
and supervised classification loss (Lclassification). We
have used ISIC-2018 dataset, which provides 10,015 im-
ages without segmentation masks divided into eight dif-
ferent clinical scenarios and evaluated performance on the
ISIC-2017 test set with segmentation labels. In this set-
ting, we pass the feature tensor from the last convolutional
layer of the U-Net model trained with classification loss to
GradCAM++[4] and generate a bounding box using [17].
To identify HTLs, we compare the bounding boxes gener-
ated for input images before and after pruning the backbone
network by p% using the pruning algorithm P . We summa-
rize the complete weakly-supervised pruning-assisted local-
ization process in Algorithm 3. The final network is gener-
ated by fine-tuning with additional attention to HTLs.

2.4. Unified Pipeline

Our completed pruning-assisted localization pipeline is
presented in Figure 4. Given a neural network f(θ, ·), we
first train f using the training dataset D. Next, we identify
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Algorithm 2: Semi-supervised pruning assisted localization

1 Input: Data D = {xi}ni=1, Localization labels Y = {yi}ni=1, Unlabelled Data D̃ = {x̃i}ki=1, Model = f(θinit, ·),
Pruning algorithm = P , thresoldHTL = τ

2 Learn f(θintermediate, ·) by minimizing
∑n

i=1 Llocalization(θinit, D, Y )

3 Generate localization pseudo-labels Ỹ = fθintermediate
(x̃i) for i = 1, 2, ..., k

4 Prune f(θintermediate, ·) by p% using P to get f(θintermediate ⊙m, ·) where m ∈ {0, 1}∥θ∥0 is the prune mask.
5 Identify D̃HTL = {{x̃i, ỹi} st. BB(f(θintermediate ⊙m, x̃i))−BB(f(θintermediate, x̃i)) > τ}
6 Fine-tune f(θintermediate, ·) → f(θfinal, ·) by minimizing

∑∥D̃HTL∥
i=1 Llocalization(θinit, D̃HTL, ỸHTL)

7 Return f(θfinal, ·)

Algorithm 3: Weakly-supervised pruning assisted localization

1 Input: Data D = {xi}ni=1, Classification labels Y = {yi}ni=1, Heatmap Generator = GradCAML(·), Model =
f(θinit, ·), Pruning algorithm = P , thresoldHTL = τ

2 Learn f(θintermediate, ·) by minimizing
∑n

i=1 Lclassification(θinit, D, Y )
3 Generate heatmap as YCAM = GradCAML(f(θintermediate, xi)) for i = 1, 2, ..., n, where L represents tensor

output of L-th layer of f(θintermediate, ·). Note that heatmap is an indicator of localization.
4 Prune f(θintermediate, ·) by p% using P to get f(θintermediate ⊙m, ·) where m ∈ {0, 1}∥θ∥0 is the prune mask.
5 Generate heatmap ỸCAM = GradCAML(f(θintermediate ⊙m,xi)) for i = 1, 2, ..., n

6 Identify D̃HTL = {{x̃i, ỹi} st. BB(YCAM (xi))−BB(ỸCAM (xi)) > τ}
7 Fine-tune f(θintermediate, ·) → f(θfinal, ·) by minimizing

∑∥D̃HTL∥
i=1 Lclassification(θinit, D̃HTL, YHTL)

8 Return f(θfinal, ·)

HTLs using methods proposed in section 2.3 which high-
lights the weakness of our trained network f(θ, ·). Finally,
we fine-tune our network f by paying additional attention
to HTLs using weighted cross-entropy loss as:

ln = −
C∑
i=1

wc × log
exp(x̃n,c)

exp(
∑C

i=1 x̃n,i)
× ỹn,c (3)

where x̃ ∈ D̃HTL, ỹ is the target, w is the weight of class
c, C is the number of classes (i.e, foreground, background),
and n is n-th training example. Our extensive experimental
analysis indicates that the fine-tuned network achieve sig-
nificantly high foreground performance gain on the ISIC
2017 test set across all three training paradigms.

3. Experimental Settings
Dataset Details: Our experiments used skin lesion local-
ization (S-LLT) as our evaluation task and acquired der-
moscopic images from the ISIC-2017 [7] and ISIC-2018
[6] challenge. The ISIC-2017 dataset consists of 2000,
150, and 600 lesion images in JPEG format for training,
validation, and test along with the corresponding expert-
annotated binary segmentation mask images in PNG for-
mat. It additionally provides demographic metadata entries
of age and sex for the patients which we have used to vali-
date our method’s ability to elicit complex and sophisticated

demographic imbalances. For our semi- and weakly- su-
pervised task we have used ISIC-2018 dataset, which pro-
vides 10,015 images without segmentation masks divided
into eight different clinical scenarios. Although our method
can be adapted to any task, ISIC datasets provide metadata
information (demographic details such as gender and age)
along with high-quality segmentation annotations as well
as unannotated images with classification labels. This facil-
itates a unique opportunity to effectively evaluate the bene-
fits of our proposed method (Section 2.3) in multiple train-
ing settings (i.e., supervised, semi-supervised, and weakly-
supervised) along with demographic analysis.

Training and Fine-tuning Details: In our experiments,
all models are trained using similar settings and seed val-
ues (10, 20, 30). We have used an SGD optimizer with a
momentum of 0.9 and weight decay of 2e−4. The initial
learning rate is set to 0.1, and the networks are trained for
100 epochs with a batch size of 64. The learning rate decays
by a factor of 10 at the [20, 50, 80]th epoch during the train-
ing. We have used standard augmentation techniques to flip,
rotate, and mirror the images during training. For pruning,
we have used a global unstructured-magnitude based prun-
ing and prune ratio of 70% across all experiments. Dur-
ing the fine-tuning stage, we started with a smaller learning
rate of 0.01 and retrained the network with HTLs for 20
epochs with a decay at the 15th epoch. All our models have
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Supervised Semi-supervised

Prune Ratio 25% 50% 75% 99% 25% 50% 75% 99%

Foreground 12.41% (↓) 26.64% (↓) 42.19% (↓) 86.15% (↓) 9.72% (↓) 15.33% (↓) 43.01% (↓) 81.98% (↓)
Background 0.95% (↓) 6.03% (↓) 17.11% (↓) 48.30% (↓) 0.26% (↓) 4.87% (↓) 11.32% (↓) 47.71% (↓)

Table 1. Percentage drop in IoU of training samples in ISIC-2017 dataset when the trained network is pruned by p% using unstructured
magnitude-based pruning in supervised and semi-supervised settings. Disproportionate impact of pruning can be clearly observed for the
background and foreground classes.

Figure 5. Examples of the visualization of segmentation mask generated by Baseline 1 and our method on HTL samples. With additional
attention to HTL samples in fine-tuning, the model is able to generate better segmentation masks for HTLs improving overall performance.

been trained using 4 Quadro RTX 5000 GPUs and we have
evaluated our models using foreground and background IoU
scores against different baselines.

Additional Implementation Utility Details : In all our
experiments (except ablation), we have used unstructured
magnitude-based pruning, where we find and remove the
least salient connections (weight magnitude) in the model
wherever they are. For bounding box generation in Algo-
rithm 2 and 3, we pass the feature tensor of the last convo-
lution layer to GradCAM++[4] to extract the heatmaps. We
further scale the heatmap intensity to the range [0-255] and
use an ad-hoc threshold (pixel value = 180) to binarize the
heatmap. In last, we followed the pseudocode proposed in
[17] to create the bounding box. We have used two popular
evaluation metrics (IoU and DICE) to compare our method
performance against different baselines.

Baseline Comparison: In our experiments, the first base-
line is a U-Net architecture trained to perform the S-LLT.
We have adapted the original vanilla U-Net (Baseline 1)
version proposed in [34] to avoid any design overhead and
highlight the importance of HTLs. Our second baseline is
the top-performing architecture from ISIC-2017 challenge
leaderboard (Baseline 2). Our third baseline uses focal loss
[28], which has been one default choice to handle imbal-
ance (Baseline 3). In our fourth baseline, we randomly
sample exactly the same number of instances (not specif-
ically picked HTLs) and fine-tune our network similar to
our proposed method, to validate the significance of iden-
tifying and using HTLs (Baseline 4). Next, in our fifth
baseline, we randomly sampled exactly the same number of
instances following the class distribution in S-LLT dataset
where minority classes are sampled with higher probabil-

ity to fine-tune our network (Baseline 5). Lastly, our final
baseline randomly sampled exactly the same number of in-
stances following the demographics distribution (gender) to
fine-tune our network (Baseline 6). The performance com-
parison of all baselines compared to our HTL-based fine-
tuning is reported in Table 2, which clearly unveil the effec-
tiveness of our method. Note that the main goal of our work
is to elicit the effectiveness of network pruning in identi-
fying complex implicit imbalances in medical datasets, and
propose a simple and unified approach to identify data sam-
ples suffering from imbalance during training, rather than
proposing a task-specific novel class imbalance algorithm.

4. Main Results and Discussion
In this section, we present a comprehensive analysis of

the impact of pruning in eliciting the weakness of trained lo-
calization models, and its high sensitivity towards the fore-
ground performance compared to the background. Addi-
tionally, we provided a performance comparison of our pro-
posed pruning-assisted localization algorithms 1,2, and 3
against several baselines. Finally, we provide an interesting
observation of demographic bias captured by our pruning-
based HTLs, where some demographics have a higher im-
pact of pruning compared to others. Last, we have con-
ducted an ablation study to illustrate that our observations
are agnostic to various pruning methods, and HTLs identi-
fied by any pruning methods have similar benefits.

How does pruning impact foreground vs background?
We find that pruning consistently amplifies the disparate
treatment of foreground performance for all levels of com-
pression we consider. Figure 2 illustrate when a U-Net
based trained localization network is pruned by 70% us-
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Method Supervised Semi-supervised Weakly-supervised

B(IOU) F(IoU) Mean(IoU) DICE B(IoU) F(IoU) Mean(IoU) DICE B(IoU) F(IoU) Mean(IoU) DICE

Baseline 1 0.894 0.654 0.774 0.855 0.901 0.661 0.781 0.865 0.622 0.420 0.521 0.637
Baseline 2 0.891 0.637 0.764 0.849 0.876 0.642 0.759 0.813 0.568 0.390 0.479 0.596
Baseline 3 0.892 0.663 0.775 0.863 0.906 0.669 0.788 0.872 0.614 0.411 0.513 0.644
Baseline 4 0.883 0.660 0.772 0.852 0.894 0.662 0.778 0.866 0.609 0.407 0.508 0.641
Baseline 5 0.878 0.659 0.769 0.844 0.900 0.647 0.774 0.859 0.610 0.399 0.504 0.635
Baseline 6 0.880 0.665 0.773 0.859 0.891 0.671 0.781 0.871 0.619 0.413 0.516 0.640

Our Method 0.890 0.681 0.785 0.871 0.904 0.695 0.800 0.884 0.643 0.438 0.542 0.657
Std ±0.002 ±0.001 ±0.001 ±0.003 ±0.001 ±0.001 ±0.001 ±0.002 ±0.006 ±0.008 ±0.007 ±0.005

Table 2. Performance comparison of our method against different baselines using unstructured magnitude-based pruning with prune ratio
of 70% on ISIC-2017 test set. Our method significantly improves the Foreground performance compared to all baselines.

0 10 20 30 40 50
Percentage

Instance Percentage (%)
ISIC-2017 Data

Instance Percentage (%)
Mined HLTs

Avg. Percentage Drop 
(Foreground IoU)

Gender
Male
Female

0 10 20 30 40
Percentage

Instance Percentage (%)
ISIC-2017 Data

Instance Percentage (%)
Mined HLTs

Avg. Percentage Drop 
(Foreground IoU)

Age
Age <= 30
30 < Age <= 50
Age > 50

Figure 6. (a) Gender distribution, (b) Age distribution of instances in ISIC-2017, and mined HTLs using unstructured pruning (70%) of
trained U-Net in supervised setting. Clearly, pruning differently impacts different age and gender groups’ foreground performance.

ing magnitude-based unstructured pruning. We observe that
nearly ∼18% instances lose their foreground performance
(IoU) significantly by >=40%, compared to ∼1% losing
their background performance (IoU) by >=40%. Addi-
tionally, Table 1, presents a detailed analysis of the dis-
proportionate impact of pruning with varying thresholds
p ∈ {25%, 50%, 75%, 99%} on the foreground and back-
ground IoU in supervised and semi-supervised settings. It
can be observed that across all the pruning thresholds, the
foreground suffers more than the background in both train-
ing settings. Note that at very high sparsity (eg. 99%), the
network performance becomes significantly low, and even
the background performance drop significantly by > 47%,
making it unsuitable for HTL mining. Based on our exper-
iments, we recommend 60-80% pruning ratio for unstruc-
tured magnitude-based pruning.

How does HTL-aware training benefit overall perfor-
mance? In our work, we hypothesized HTLs to be repre-
sentative of prevalent complex and implicit imbalance in the
medical imaging dataset. In order to justify the benefits of
workload to capture HTLs, it is important to illustrate how
they can help in improving localization performance. Table
2 presents the comparison of our method (mean across 3
independent runs with seed 10, 20, 30) against three afore-
mentioned baselines for supervised, semi-supervised, and
weakly-supervised settings. It can be clearly observed that
our pruning-assisted algorithms 1, 2, and 3, provide con-
sistent and significant performance gain for two popular
localization metrics IoU and DICE across all three train-
ing settings. More precisely, our proposed method achieve

significant gain (IoU) of +2.7%,+3.4%, and +2.1% over
baseline 1 in supervised, semi-supervised, and weakly-
supervised settings for desired foreground class. Our
method performance is significantly high when compared
with ISIC leaderboard performance (Baseline 2). Focal loss
proposed in [28] has been a very popular choice to handle
imbalance but it is limited by the requirement of class dis-
tribution and the inability to capture subtle implicit imbal-
ances. Compared to focal loss based baseline 3, our method
achieves +1.0%,+1.2%, and + 2.9% better performance
for three training settings.

To confirm that HTLs are special instances, our Base-
line 4 randomly samples exactly same number of train-
ing instances in the dataset followed by fine-tuning us-
ing the same training protocols as HTLs. Table 2 eluci-
date the importance of HTLs when compared to baseline
4. Next, to our surprise Baseline 5, which samples fine-
tuning instances following the class distribution, performs
significantly worse than Baseline 4, which randomly sam-
ples HTLs without following any class distribution. An in-
depth analysis reveals that although minority classes der-
matofibroma and vascular lesion corresponds to only ∼
0.9% and ∼ 1% in the dataset, they have almost per-
fect performance on the test set (98.7%, and 98.6% re-
spectively). Sampling additional samples to fine-tune these
classes doesn’t help (possibly leads to over-fitting on mi-
nority samples). This clearly bolsters our motivation that
the imbalances are not only limited to the standard major-
ity versus minority class but extend to implicit and subtle
forms such as feature attributes (e.g., pathology color, size,
and shape) and based on demographics (e.g., gender, race,
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Method Full Network 20% 70% 95%

Random Pruning 0.654 0.431 (↓0.223) 0.218 (↓0.436) 0.022 (↓0.632)
Unstructured MB-Pruning 0.654 0.580 (↓0.074) 0.409 (↓0.245) 0.296 (↓0.358)
Structured MB-Pruning 0.654 0.533 (↓0.121) 0.387 (↓0.267) 0.215 (↓0.439)

Table 3. Impact of various pruning methods with varying sparsity on foreground performance in supervised setting.

ethnicity), and can be very difficult to account for. Lastly,
the proportion of diagnoses associated with males and fe-
males is 50.81% and 49.19% in S-LLT dataset. Our last
Baseline 6, which randomly samples following the gender
distribution, has marginal benefit over Baseline 4 (+0.5%
foreground performance), which further suggests the com-
plexity of imbalance. Finally, Figure 5 illustrates a visual-
ization of the segmentation mask generated by Baseline 1
and our method on some randomly selected samples from
HTL mining. With additional attention to HTL samples in
fine-tuning, the UNet-based localization model can gener-
ate better segmentation masks for HTL instances, improv-
ing the overall performance.

Figure 7. Localization performance of different pruning methods
in supervised setting (HTLs mined with prune ratio 70%).

How do HTLs capture subtle demographic imbalance?
HTLs are our bold attempt toward exploring complex and
implicit imbalances which go beyond the class distribution
in localization settings. In this section, we present an in-
teresting in-depth demographic analysis of HTLs and vali-
date that our pruning-assisted HTL mining indeed captures
the demographic bias of the trained U-Net localization net-
work. Figure 6 illustrates the gender and age group distri-
bution of data points in ISIC-2017 dataset and mined HTLs.
It can be clearly observed that although ISIC-2017 is fairly
balanced from the gender perspective (50.82% and 49.18%
for males and females), mined HTLs subset has a skewed
gender distribution favoring females by ∼ 4%. Moreover,
the average drop in foreground performance for females
is >8% compared to men, which is an indicator of the
model favoritism towards learning instances belonging to
men patients. In addition, from the age group perspective,
it can be observed that patients belonging to the age group
within 30-40 years constitute the second largest proportion
in data (∼30.95%), but they are least impacted by pruning
and share only ∼26.52% in HTLs subset and have a mini-
mal drop in foreground IoU performance. However, inter-
estingly, patients belonging to the age group <=30 years
which have the least share in the data (∼23.79%), are heav-
ily impacted by pruning and contribute ∼32.11% in the
HTLs subset which again points out the model’s difficulty to

learn patients belonging to this age group. This analysis is a
strong indicator of pruning ability to uncover demographic
bias in medical imaging datasets in localization tasks.

Impact of pruning algorithms on performance: To in-
vestigate that our observation of the disproportionate im-
pact of pruning is agnostic to pruning methods, we
carry out ablation studies on random pruning, unstruc-
tured magnitude-based pruning, and structured magnitude-
based pruning. Table 3 illustrates the disproportionate
impact of pruning methods with varying pruning ratio
p ∈ {0%, 20%, 70%, 95%} on foreground, with marginal
impact on background IoU. In our experiments, we ob-
served that p has minimal sensitivity to performance, and
we achieve approximately similar performance gain of
∼2.812%±0.369 for p ∈ {50%, 60%, 70%, 80%} in the su-
pervised setting. Note that a large value of p will lead the
pruned network to forget a lot of information, and due to
overparametrization of DNNs, a small value of p will have
no effect. Note that in all our experiments, we have used a
pruning ratio of 70% considering its slightly better perfor-
mance. Lastly, Figure 7 illustrates the localization perfor-
mance of different pruning methods in supervised settings.
Clearly, it can be observed that without hurting background
IoU, all the pruning methods help in improving the fore-
ground IoU significantly.

5. Conclusion
Contrary to the popular usage of pruning as an ad-hoc

compression tool, in this paper, we present pruning as a
technique to expose the weakness of a trained localiza-
tion model and show the existence of “textithard-to-learn”
training examples. We present three HTL mining strategies
in supervised, semi-supervised, and weakly-supervised set-
tings using ground truth labels, pseudo-labels, and saliency
maps. We experimentally show that by attending HTLs dur-
ing fine-tuning, we can significantly improve localization
performance. Lastly, we present an interesting demographic
analysis which illustrates HTLs ability to capture complex
demographic imbalances. Our future work will aim for
more theoretical understanding of the HTLs and their sig-
nificance.
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