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Abstract

Videos shot by laymen using hand-held cameras contain
undesirable shaky motion. Estimating the global motion
between successive frames, in a manner not influenced by
moving objects, is central to many video stabilization tech-
niques, but poses significant challenges. A large body of
work uses 2D affine transformations or homography for the
global motion. However, in this work, we introduce a more
general representation scheme, which adapts any existing
optical flow network to ignore the moving objects and ob-
tain a spatially smooth approximation of the global motion
between video frames. We achieve this by a knowledge dis-
tillation approach, where we first introduce a low pass filter
module into the optical flow network to constrain the pre-
dicted optical flow to be spatially smooth. This becomes our
student network, named as GLOBALFLOWNET. Then, us-
ing the original optical flow network as the teacher network,
we train the student network using a robust loss function.
Given a trained GLOBALFLOWNET, we stabilize videos
using a two stage process. In the first stage, we correct
the instability in affine parameters using a quadratic pro-
gramming approach constrained by a user-specified crop-
ping limit to control loss of field of view. In the second
stage, we stabilize the video further by smoothing global
motion parameters, expressed using a small number of dis-
crete cosine transform coefficients. In extensive experiments
on a variety of different videos, our technique outperforms
state of the art techniques in terms of subjective quality and
different quantitative measures of video stability. Addition-
ally, we present a new measure for evaluation of video stabi-
lization based on the flow generated by GLOBALFLOWNET
and argue that it is based on a more general motion model
in contrast to the affine motion model on which most exist-
ing measures are based. The source code is publicly avail-
able at hitps://github.com/GlobalFlowNet/GlobalFlowNet

1. Introduction

Videos acquired by amateur photographers or lay users
from hand-held cameras or mobile phones are subject to a
large magnitude of undesirable and discontinuous motion.
The process of eliminating or reducing this undesirable mo-
tion is called video stabilization. In some setups, the camera
can be mounted on stable stands or dollies, but this is infea-
sible in many commonplace scenarios. Some cameras are
equipped with hardware such as gyroscopes for stabiliza-
tion, but the state of the art in video stabilization still adopts
software-based approaches due to the gyroscope’s cost,
weight and error-pone motion estimation [20, 23]. Apart
from casual hand-held photography, the need for video sta-
bilization also arises in endoscopy [10], underwater imag-
ing [21] and aerial photography from drones/helicopters
[11]. Many video stabilization techniques consist of three
broad steps: (1) estimation of the motion between consec-
utive or temporally neighboring frames assuming a suitable
motion model, (2) temporal motion smoothing assuming an
appropriate motion model for the underlying stable video,
and (3) re-targeting or warping of the frames of the unsta-
ble video so as to generate a stabilized video. There exists
a large body of literature on video stabilization, with differ-
ences in the way these three steps are executed. Several of
these techniques are summarized below.

Related work (Classical Approaches): Many traditional
techniques assume that the motion between consecutive
frames can be approximated using 2D affine transforma-
tions or homographies [19, 6], and seek to smooth a se-
quence of such parameters to render a stabilized video. For
computing the parameterized motion, many of these tech-
niques make use of robust point tracking methods [19, 6,

]. However, 2D motion models cannot accurately ac-
count for the motion between consecutive video frames for
scenes with significant depth variation or significant camera
motion. Some methods such as [15] approximate the mo-
tion between consecutive frames by means of patch-wise
2D models or homographies. The method in [17] performs
three tasks in an iterated fashion: determining the smooth
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global background motion between consecutive frames by
detecting moving objects, inpainting the flow in those re-
gions, and smoothing per-pixel optical flow vectors across
time. There also exist methods which make use of epipolar
geometry [4] or various geometrically motivated subspace
constraints [13]. The latter technique requires fairly long
feature tracks which may not be available in many real-
world videos. Finally, many techniques which use 3D in-
formation have also been proposed, for example methods
that use structure from motion [12], a depth camera [26] or
a light field camera [24].

Related work (Deep Learning Approaches): Deep neu-
ral network (DNN) based approaches for video stabiliza-
tion have become very popular in recent years. The work in
[35] represents the warp fields using the weights of an un-
supervised DNN, which minimizes the sum of two terms:
a regularizer that encourages the warp fields to be piece-
wise linear, and a fidelity term which minimizes the dis-
tance between corresponding pixels in consecutive frames
in the stabilized video. This approach, though elegant, must
evolve the network weights afresh for every video, and has
very high computational cost. The work in [36] trains a
DNN offline on a large video dataset with synthetic unsta-
ble motion. In an unsupervised fashion, the weights of the
DNN are evolved so as to generate warp fields that (1) have
dominant low-frequency content in the Fourier domain, and
(2) yield minimal distance between corresponding pixels in
consecutive frames of the stabilized video. The work uses
frame-to-frame optical flow as initial input and requires a
number of pre-processing steps to: (1) identify regions with
moving objects from the optical flow fields using a vari-
ety of segmentation masks for typical foreground objects
obtained from [39], (2) identify regions of inaccurate op-
tical flow, and (3) inpaint all such regions using the PCA-
based approach from [32]. The work in [2] trains two DNNs
for performing video stabilization via frame interpolation
to smooth the motion between consecutive frames. The
(i—1)" and (i+1)" frames are linearly warped mid-way to-
ward each other using the bidirectional optical flow between
them. The resulting warped frames are passed through a U-
Net [22] to generate the M intermediate ‘stabilized’ frame.
This interpolation process is carried out iteratively which
may accumulate blur. To prevent this, the intermediate sta-
bilized frames are also passed through a Resnet [8]. The
motion smoothing in this approach is always linear with-
out any adaptation of the smoothing parameters to the mo-
tion at different time instants or at different depths. Similar
in spirit to [2], work in [18, 34] perform full-frame video
stabilization by bringing in border-based frame inpainting.
However, the approach in [18] is computationally expen-
sive. The approach in [30] trains a Siamese network to gen-
erate a warp grid for video stabilization using stable and
unstable video pairs from the Deepstab dataset [33]. Their

approach is based purely on color without using any motion
parameters and does not perform very well. The approach
in [33] uses spatial transformer networks along with ad-
versarial networks for video stabilization, but suffers from
problems due to inadequate training data. The work in [37],
which is called PWStableNet, uses a supervised training ap-
proach based on a cascade of encoder-decoder units to opti-
mize a combination of criteria such as fidelity w.r.t. the un-
derlying stable video, and various motion and feature-based
characteristics. This approach has limitations in terms of
training data scarcity and generalizability.

Overview of Proposed Approach: A major contribution
of our work is a novel method of estimating the global
motion between frames of an unstable video, proposed in
Sec. 2. Our method involves training a network GLOB-
ALFLOWNET in a teacher-student fashion in such a way
that it imposes a smooth and compact representation for the
global motion and is designed to not be influenced by the
motion in regions containing moving objects. Our method
yields global motion representations that are more general
than 2D affine or homography transformation and does not
require any salient feature point tracking. Given a pre-
trained GLOBALFLOWNET, we achieve video stabilization
using a two-stage process comprising a novel global affine
parameter smoothing step (Sec. 3.1) and a novel residual
level smoothing step (Sec. 3.2) involving low frequency dis-
crete cosine transform (DCT) coefficients of the residual
flow. Both these steps smooth the parameters in the tem-
poral direction. The first step acts as a very useful initial
condition, whereas the second step is necessary to signifi-
cantly improve stabilization performance. This is because
it works with a global motion model that despite being very
compact, is much more general than just 2D affine or ho-
mography. Our overall approach for video stabilization is
simple, computationally efficient and interpretable. In ex-
tensive experiments (see Sec. 4), it outperforms state of the
art techniques in terms of stability measures. We also pro-
pose a new video stabilization measure which uses the low
frequency representation from Sec. 2.2 to quantify the tem-
poral smoothness of the global motion between successive
pairs of frames. Our measure uses a more general motion
model than existing measures which largely use affine trans-
formations.

2. Global Motion Estimation

A key step in video stabilization is the estimation of
global motion between consecutive video frames (or tempo-
rally nearby video frames), followed by temporal smooth-
ing of the motion parameters. The difference between the
original global motion and the global motion in a stabilized
video constitutes the warp field, which when applied to the
unstable frames, stabilizes the video. An ideal global mo-
tion or warp field will contain motion discontinuities due to
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Figure 1: Network architecture for our knowledge distillation approach: a teacher component (B) based on PWC-Net [25]
which produces inter-frame motion estimate (D), and a modified student architecture (C) that obtains smooth global inter-
frame motion (E) after training with a robust loss). (F) represents a flow obtained by just low-pass filtering of the flow in (D)
without knowledge distillation; it is not part of the network and is shown only for comparison.

scene depth variations or occlusions. If this warp field is ap-
plied directly, it would create holes in the resulting images,
requiring non-trivial, potentially error-prone inpainting op-
erations. Hence, many methods approximate the warp fields
using continuous motion vector fields or parametrically via
2D affine transformations or homography [0, 19]. In this
work, we aim to train a network to acquire an inherent abil-
ity to produce smooth global motion between consecutive
frames in a manner not influenced by independently mov-
ing objects in the scene. We achieve this using a knowledge
distillation mechanism sketched in Fig. 1.

2.1. Knowledge Distillation Approach

Given a standard optical flow estimation network 7T
which acts as a teacher, we create a student network S, ini-
tialized with the weights of 7, by introducing a low-pass
filter module (LPM). The LPM is chosen in a manner such
that it can represent the global motion between two frames
with a high degree of accuracy, but not the motion in regions
containing independently moving objects. This is because
video stabilization is expected to smooth only global inter-
frame motion and not cause any change to the motion of
independently moving objects. Without any further train-
ing of S, the optical flow fs produced by S, would be a
blurred version of the optical flow fr produced by 7, as
shown in Fig. 1(F). Such a flow would necessarily contain
components of the motion from the independently moving
objects leaked into the neighbouring pixels, which would
create motion artifacts if used for video stabilization. In-
stead, we would want S to mimic the optical flow produced
by 7 in all regions except the moving objects. This can be

achieved by training S using a robust loss function given as:

O =YY R(Ifr(ti) - i), ()

=1 i=1

2 a/2
Eﬁ(x;a,c):m_m <($/C) +1> -1/, @

! |ae — 2|

where N is the number of pixels per image, Nt is the num-
ber of image-pairs on which the network is trained, and i, [
are indices for pixels and image-pairs respectively. The ro-
bust loss 23(.) that we use here was introduced in [1], for
which we chose shape parameter v = —0.1 and scale pa-
rameter ¢ £ 0.001 in our work.

This approach of (1) constraining the dimensionality of
fs, and (2) using a robust loss as opposed to a squared er-
ror, ensures that the training of S focuses on global motion
and is not influenced by the flow on moving objects. For the
student network S, which we henceforth refer to as GLOB-
ALFLOWNET, we use the well known PWC-Net architec-
ture for optical flow [25]. For the low pass filter module
LprM, we use low frequency (upto some cutoff frequency)
DCT basis vectors.

2.2. Low Pass Filter Module

As mentioned before, LPM should be able to represent
global motion with high accuracy and should exhibit poor
accuracy in regions with moving objects. With this aim
in mind, any low rank off-the-shelf frequency transforms
could be used for LPM. In our method, we choose low
frequency components of the Discrete Cosine Transform
(DCT). This choice is motivated by our experiments per-
formed on a large video dataset such as [16]. For our ex-
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periments, we selected pairs of consecutive frames that did
not contain independently moving objects. For such frames,
we observed that the optical flow, which is the same as the
low-frequency global motion, is accurately expressed using
a very small number of DCT coefficients with frequencies
ranging from (u,v) = (0,0) to (u,v) = (R, R) for a cutoff
frequency of R < 8, as can be seen in Figure 1 of the suppl.
material at [27].

2.3. GlobalFlowNet:
Network

The PWC-Net architecture [25], on which GLOB-
ALFLOWNET is based, has three important modules, as il-
lustrated in supplementary material [27]:

Global Motion Estimation

1. Feature extractor: This module converts the original
image into a feature map in each level of refinement.

2. Warping layer: At each level, there is an estimate of
the optical flow from previous level. The warping layer
warps the features of the target image based on this
flow. This layer helps in obtaining the optical flow for
small and fast moving objects accurately.

3. Cost volume and context network: The warped target
feature-map is correlated with the source feature-map
to obtain a cost volume. Then this cost volume passes
through an optical flow estimator and a context net-
work to produce the refined flow for a particular level.

We introduce the following changes to this architecture to
obtain our modified (student) network GLOBALFLOWNET,
as illustrated in Fig. 2 of [27]:

1. Ateach level, after the optical flow estimation, we add
a LPM as described in Sec. 2.2. The cutoff frequency
for the module is progressively made to increase from
the coarse level to the fine level, up to a maximum of 8
(in both directions).

2. We also switch off the warping layer from the original
PWC-Net, and instead use the motion estimated from
the previous layer as an initial condition for the next
one. We empirically observed better results as com-
pared to using the warping layer. Moreover, [25, Table
5e] shows that excluding this layer does not adversely
affect the optical flow accuracy significantly.

Note that at the time of deployment, only the student net-
work GLOBALFLOWNET from Fig. 1 needs to be used. The
teacher network plays a role only during training.

3. Video Motion Stabilization

Once GLOBALFLOWNET is trained, we use the optical
flows produced by it to stabilize a video through a two-stage

process. The first stage is a global motion stabilization stage
involving correcting for the affine distortions in a novel way,
detailed below in Sec. 3.1. This stage corrects a significant
amount of global instability. However, since affine transfor-
mation is not a good representation for the global motion,
this stage leaves behind some spatio-temporal distortions in
the video (see also Sec. 4 and many video results in [27]).
We correct these residual motion instabilities through a sec-
ond stage (see Sec. 3.2) involving smoothing of DCT co-
efficient representation for the remaining global inter-frame
motion.

3.1. Stage 1: Global Motion Stabilization

In this stage, we approximate the dense global motion
as a coarser affine transformation, and then smooth the se-
quence of frame-to-frame affine transformation parameters.
Estimating Affine Transformations: Affine transforma-
tions between consecutive video frames are commonly ob-
tained using salient feature point matching and a robust es-
timator involving RANSAC. However, this approach is ex-
pensive and error-prone if many salient points are concen-
trated on moving objects or in small regions of the image.
Instead, we adopt a novel approach for affine estimation:
(1) employing GLOBALFLOWNET to determine the smooth
global motion fg as detailed in Sec. 2.3, and (2) estimat-
ing the K £ 4 parameters (rotation angle 7, translation
ts,ty and logarithmic scale s) of the (partial) affine trans-
formation directly from the global motion as described in
supplementary material [27]. The computation of global
motion fg enables an efficient and fitting of affine motion
parameters between adjacent frames without any expensive
schemes like RANSAC.

Parameter Sequence Smoothing: Consider a parameter
sequence {ai};r:_ll of affine transformations between con-
secutive pairs of frames {(I;, [;41)}." in the unstable
video. Here «; is the vector of K parameters (enlisted ear-
lier) of the affine transformation from frame I; to I; 1, and
T is the total number of frames of the unstable video. We
need to smooth {ai}iT:_ll to yield a resulting (smoothed)
parameter sequence {ﬁi}g:ll, and apply the residual mo-
tion sequence {’y,-}iT;ll, where Vi,v; £ B; — oy, to the
frames of the unstable video to perform stabilization. How-
ever, excessive smoothing of {a;}7 "' can lead to a huge
loss of field of view. When a video frame is warped using
parameters -; for the purpose of stabilization, some parts
of the frame contents will fall outside the usual rectangular
canvas and intensity values will remain undefined in some
parts. The ratio of the area of the largest inscribed rectan-
gle inside the valid parts of the warped frame to the area of
the original rectangular frame is called the crop ratio and
denoted by C'r. We want to ensure that C'r is no less than
some user-specified limit x. For this, we need to constrain
the values ~; using slack parameters {&;, }#_, in such a way
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that Vk € [K],|v:(k)|< &. The cost function we seek to
minimize in order to find a smoothed parameter sequence
{B:}]=;! is given as follows:

T-1
Co({Bi 51 2 D 1Biga — 28 + Bi-1 3
1=2

such that Vi € [T — 1], Vk € [K],|8:(k) — ai (k)< &. (3)

As per cinematography principles, smoothness of the un-
derlying motion parameter sequence (MPS) is a key feature
of stabilized videos, which C5(.) promotes. Eqn. 3 rep-
resents a constrained quadratic programming problem for
which fast solvers exist.

Choice of slack parameters: The crop ratio C'r for any
frame I; is a decreasing function of {|~;(k)|},. Search-
ing for all {&,} | to maintain Cr > & is an expensive
operation. For simplicity, we express Vk € [K], & = ez
where )\, is set to be equal to the average local standard de-
viation of the values from {c;(k)}7'. Given this, we now
use binary search to select the maximum value of the param-
eter z € [0,1] so that Cr does not fall below x. Note that
this is a single parameter for the entire video. A set of sam-
ple path results obtained by solving Eqn. 3 using {&; <,
thus selected, are presented in Fig. 2.

The main differences between our technique and related
MPS smoothing approaches from [0, 15] are that (1) we
compute the affine parameters without point matching (see
Sec. 3.1), and that (2) we tune {&}/ | keeping the crop
ratio in mind. On the other hand, the work in [6] puts up-
per/lower bounds on the values of 3;(k), which are less in-
tuitive to specify. The method in [15, Eqn. 5] penalizes a
weighted combination of the smoothness of {3; iT;ll and
its similarity to {cv;}._,", without considering C'g.

3.2. Stage 2: Residual Motion Stabilization

Consider frame I; at time instant ¢ in the unstable
video. Let us define Q(i;Wg) 2 [i — Wg,i + WEg]
to be a temporal neighborhood of radius Wpg around
frame I;. Let the estimates of the global motion from
I; to all frames in {I;};cq@;wy) as produced by GLOB-
ALFLOWNET be denoted by {fs(i’j)}jeﬂ(i;WR). The lo-
cal sequence { Fsi) }ieq(i;wr) Will be temporally smooth
in a stable video, since by design it contains no contri-
bution from independently moving objects (see Sec. 2.3).
Therefore, in order to stabilize the given video, we do
the following: (1) We extract the global motion from I;
to {1} jcq(i;wy) using GLOBALFLOWNET from Sec. 2.3,
and (2) Apply temporal smoothing filters to smooth the low-
frequency DCT coefficients {67 }ieq(i;wr) representing
the global motion sequence {fs(i’j)}jeg(i;WR).

For (2), we could have followed the quadratic program-
ming strategy from Sec. 3.1. However we observed that

a bilateral filter [28] of the following form with temporal
smoothing parameter o; = Wg/3 and range smoothing pa-
rameter o, £ 0.1 (for intensity values in [0,1]) yielded us
good results:

0~(i) _ ZjEQ(i;WR)

o—(i=3)%/207 o= 11:(¥8I)~1;|12 /2N oy, 0(i.)

e—(i—3)2/20% o= II1:;(¥0))~I;||2 /2N o2
- “)
where I;(®6"7)) denotes the image I; warped by the mo-

tion vector field 0" towards image I;. Given the se-

T-1
=1

ZjEQ(i;WR)

quence of smoothed DCT coefficients {é{ g the corre-

sponding smoothed global motion estimates {\Ilé{ g 3:11,

where W represents the 2D-DCT, are used to warp the
frames {I;}]_," to generate the stabilized video frame with
suitable cropping/resizing. In practice, better results were
observed by not smoothing the sequence of zero-frequency
DCT coefficients (i.e. DC), but performing smoothing on
DCT coefficients of other frequencies. This is because the
DC coefficients represent translational motion, and hence
that sequence is already smooth due to the procedure in
Sec. 3.1.

Our strategy here is a generalization of the affine MPS
smoothing technique from [19] to smoothing DCT coeffi-
cient sequences. However, it is easy to compose differ-
ent frame-to-frame affine transformations by iterated matrix
multiplication (or parameter addition) to compute the affine
motion from frame I; to its neighbor I;. This is not pos-
sible using the DCT coefficient representation. Hence we
separately estimate the motion from I; to every member of
{I}jea@;wy) using GLOBALFLOWNET.

3.3. Summary of Approach and Discussion

The exact sequence of steps for implementing our video
stabilization approach are summarized in Alg. 1.

We note that the smoothness of warp fields has been ear-
lier exploited in [35] based on piece-wise linear approxi-
mations, and in [36] using the Discrete Fourier Transform
(DFT). However, we have observed better compactness us-
ing the DCT, which is in line with basic principles of im-
age and signal processing [5, Fig. 8.25, Sec. 8.2.8] — see
also Fig.1 of [27]. More importantly, our approach does
not require elaborate pre-processing based on pre-trained
segmentation masks to identify the foreground, any inpaint-
ing of the optical flow in occluded regions or any additional
post-processing step on the output of the algorithm, unlike
the approaches in [35, 36]. Therefore, our approach is sim-
pler to implement.

Our paper presents a novel approach to global motion es-
timation, including affine transformation estimation, which
does not use point tracking. The affine transformation es-
timates in steps 2—4 of Alg. 1, bring about a fair degree
of stabilization to the original video. However as will be
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Figure 2: An illustration of affine MPS smoothing using the quadratic programming approach from Eqn. 3 for k = 0.8 on a

video from the ‘quick rotation’ category in [16].

shown later in Sec. 4 and in the accompanying video out-
puts in [27], they still retain a lot of wobble artifacts as
well as geometric distortion. Due to this, the subsequent
steps 5-7 for residual motion smoothing via DCT coeffi-
cients are also very important. The main reason for this is
that the DCT-based global motion estimates form a compact
but more general motion model than just 2D affine transfor-
mations. The approach in [17] also attempts to find global
motion that is more general than 2D affine or homography
transformations. However it adopts an iterative approach to
detect moving objects and inpaint the flow in those regions,
in conjunction with smoothing of the motion representation.
Besides being iterative, their approach requires the selection
of many parameters that may vary across iterations. Our
approach here is much simpler to implement and does not
require iterated feedback from the intermediate stabilized
video.

4. Experiments

Training Details: For global motion estimation, GLOB-
ALFLOWNET was trained on randomly chosen consecutive
frame pairs from 10K videos in the RealEstate1 0K dataset
[38]. The pre-trained PWC-Net model from [25] was used
for the teacher network. To train the student, we chose a
batch-size of 16 and 200K iterations with the Adam op-
timizer. The training time was two days with NVIDIA
Quadro RTX 5000 16GB GDDR6 Graphics Card and Intel
Xeon E5-2620 CPU. Unlike [36], we do not perform stabi-
lization, but only motion estimation, via a neural network.
Hence no synthetic distortions need to be introduced in the
dataset for training.

Dataset, Parameters and Comparisons: We now present
experimental results to validate our approach on a total of
202 videos, i.e., on all(142) videos belonging to the follow-
ing categories from the dataset [16]: regular, large paral-
lax, quick rotation, crowd, running, zooming, as well all 60
videos from the Deepstab dataset [29]. For our algorithm,

ALGORITHM 1: Video Stabilization Algorithm

Input: Input unstable video {I;}7_;; desirable crop ratio

limit x; smoothing window radius Wg.

Output: Output stabilized video {J; }7_,.

Obtain the global motion estimates Fs®*Y from frame
I; to I;11 for each i € [T — 1] using the pre-trained
GLOBALFLOWNET from Sec. 2.3.

2 Forevery i € [T — 1], use a robust method to fit affine

[

transformation parameters o; to fs(i”"”) (Sec. 3.1).

3 Smooth the sequence {c; }.—," to obtain the sequence
{Bi}1,! using the method in Sec. 3.1.

4 Foreach ¢ € [T — 1], warp the frame I; with suitable
cropping to obtain an intermediate stabilized frame I..

s Forevery i € [T — 1],j € Q(i; Wg), determine estimates
Fs'7) of the global motion from I to fj

6 Foreveryi € [T —1],j € Q(i; Wr), determine the DCT
coefficients {8(*7)} of the global motion estimates from
the earlier step. Smooth the temporal sequence of DCT
coefficients using a window width Wg in the method in
Sec. 3.2 yielding {8 }7!

7 Obtain the stabilized video by warping the frames
{I;}7-! using the flow reconstructed from the smoothed
DCT coefficients (with suitable cropping).

we set Wgr £ 16 in Sec. 3.2. Our algorithm was compared
against the following recent state-of-the-art techniques: (1)
the ‘bundled camera paths’ (BCP) approach from [15], (2)
the ‘learning video stabilization” (LVS) approach from [36]
(which is shown to be faster and superior to the earlier ap-
proach in [35]), (3) the deep multi-grid warping (DMGW)
approach from [30], (4) the neural network approach called
PWStableNet from [37], and (5) the frame interpolation
approach (DIFRNT) from [2]. For our approach, we com-
pare the outputs from the affine-only stage (steps 1-4 from
Alg. 1) to those from the complete algorithm. We term
these as GlobalFlowNet-Affine and GlobalFlowNet-Full
respectively. For all competing methods, we used the imple-

5083



Dataset  Category | Original | 07 (VS | DYGW | DEENT | PUSIabieNet | giopaiFiownet-aftine | GlobalFiowNet-Full
Stability
Regular 0781 | 0948 | 0847 | 0877 | 0.195 0845 0942 0924
Parallax 0886 | 0942 | 0917 | 0914 | 0870 0.887 0945 0945
QuickRotation | 0.949 | 0.96 | 0.945 | 0927 | 0898 0.948 0937 0.963
Crowd 0857 | 0.933 | 0.899 | 0.898 | 0835 0569 0943 0944
Running 0754 | 0894 | 0845 | 095 | 057 0.801 0.900 0.907
NUS [ Zooming 0910 | 0950 | 093 | 0903 | 0912 0.855 0919 0919
DeepStab NA 0757 | 0965 0878 | 0823 | 0SII 0819 0926 0928
IST T
Regular 0617 | 0892 [ 0870 | 0812 | 0971 0.766 0.880 0914
Parallax 0680 | 0797 | 0802 | 0702 | 0975 0742 03816 0837
QuickRottion | 0.602 | 0.821 | 0.841 | 0.715 | 0976 0.769 0.785 0.306
Crowd 0710 | 0852 | 0848 | 0674 | 0972 0.790 0.849 0.364
Running 0580 | 0.781 | 0809 | 065 | 0974 0.69 0.775 0.302
NUS [ Zooming 065 | 0819 | 0818 | 0715 | 0973 0.736 0.793 0822
DeepStab A 0681 | 0942 0887 | 0858 | 0776 0.800 0.880 0897
TTF 1
Regular 1889 | 28.07 | 2695 | 2473 | 2253 2077 2735 2982
Parallax 1867 | 22.16 | 2231 | 2042 | 2055 2038 22,66 pEET]
QuickRotation 19.60 24.08 23.20 21.20 21.64 21.54 22.46 23.27
Crowd 1940 | 2354 | 2347 | 1934 | 2130 2130 2365 203
Running 1706 | 22.17 | 2328 | 1953 | 19.70 1597 227 pER]]
NUS | Zooming 1904 | 2384 | 2386 | 2134 | 2142 20.80 313 2425
DeepStab NA 20175 | 25362 26.885 | 26.171 | 22.608 21,951 27.099 28.193
Crop Ratio 1
Regular 1000 | 0.834 | 0.865 | 0567 | 0969 - 0843 0827
Parallax T000 | 0.867 | 0.780 | 0438 | 0970 - 0838 0314
QuickRotation | 1.000 | 0.845 | 0555 | 0453 | 0658 - 0835 0.508
Crowd 1000 | 0.853 | 0.825 | 0483 | 0962 - 0831 0.302
Running [000 | 0826 | 0701 | 0476 | 094 - 0.799 0.767
NUS [ Zooming 1000 | 0.768 | 0711 | 0513 | 0903 - 0854 0.791
DeepStab A 1000 | - 0791 | 0471 | 0972 . 0821 0.790
AGDMR 1
Regular 0000 | 0812 | 0592 | 0384 | 0305 0411 0.735 0821
Parallax 0000 | 0439 | 0312 | 3354 | 0234 0.171 0573 0.635
QuickRotation | 0.000 | 0.087 | 2360 | -6.685 | -2.069 0,398 0297 0.29
Crowd 0000 | 0402 | 0283 | 3518 | 0265 0232 0567 0632
Running 0.000 | 0687 | 0598 | -0.709 | 046 0235 0.684 0.742
NUS [ Zooming 0.000 | 0680 | 0338 | -1.165 | 0.160 0.178 0625 0.636
DecpStab A 0.000 | 0647 | 0554 | -0019 | 0278 0.436 0.756 0815
Distortion 1
Regular 1000 | 0.970 | 0947 | 0.797 | 0.980 0979 0997 0978
Parallax 1000 | 0.908 | 0817 | 0395 | 088 0.566 0997 0078
QuickRotation | _1.000 | 0.549 | 0482 | 0.040 | 0889 0.3 0.3 0587
Crowd 1000 | 0.902 | 0931 | 0.019 | 0975 0976 0997 0972
Running 1000 | 0.886 | 0908 | 0057 | 0.968 0967 0997 0961
NUS [ Zooming 1000 | 0.891 | 0834 | 0343 | 0971 0.969 0.993 0.598
DeepStab A 0 | 0647 0554 | 0019 | 0966 0486 0.786 081

Table 1: Numerical performance comparison for different video stabilization methods. All measures are averaged across 142

videos from [16] and 60 videos from [

]. Higher values are better for all measures. Note that the entries for Crop Ratios are

left blank for methods without publicly available video results or the source code did not implement cropping invalid region

mentations provided by the authors with their recommended
parameters. For BCP, no code was available, but we com-
pared with the sample results provided by the authors.

Visual comparison: Visual results for global motion esti-
mation can be found in Fig. | and Figs. 2 and 3 of [27].
The visual outputs of the different methods can be observed
in the supplemental material [27] on different videos from
each of the six aforementioned categories. These results

reveal the visual stability of GlobalFlowNet-Affine and
GlobalFlowNet-Full, as compared to competing methods.

Numerical comparison: Subjective visual quality apart,
we objectively compared the competing algorithms in terms
of the following quality measures, results for which are pre-
sented in Table 1. 1. Stability [15]: This measure
is computed by determining the frame-to-frame translation
and rotation parameters in the stabilized videos. These pa-
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rameter sequences (across time) are then reconstructed us-
ing only the first K = 6 DFT coefficients (other than
DC). The stability measure is equal to the minimum (over
the four parameters) of the ratios of the /5 norm of the
reconstructed sequence to that of the original sequence.
The intuition is based on the smoothness (dominant low
frequency content) of these parameter sequences in sta-
ble videos. 2. Distortion [15]: This measure is
computed from the average (across the frames) ratio of the
smaller to the larger eigenvalue of the affine transformation
matrix between the corresponding frames of the unstable
and stabilized videos. A larger value (closer to 1) is de-
sirable. This measure has some limitations as it will falsely
yield an optimal value when the supposedly stabilized video
is just a copy of the original unstable video (as the affine
transformation between two identical frames is identity).
We argue that other measures such as ISI, ITF and our
new measure AGMDR introduced in the main paper, are more
appropriate quality measures. But we are including compar-
isons using Distortion here, owing to its wide usage in
video stabilization. 3. Inter-frame Similarity Index (IST)
[7]: This is the average inter-frame SSIM [31],
expressed as i ZT 'SSIM(I;, I;+1).  The intu-
ition is that consecutive frames of a stabilized video
would have higher pairwise SSIM than in an unsta-
ble one. 4. Inter-frame Transformation Fidelity (ITF)
[7]: This is the average PSNR between consecutive
frames and is expressed as = ZT "PSNR(I;, I;41).
5. Crop ratio[l5] defined earller in Sec. 3.1.
6. Average Global Motion Difference Ratio (AGMDR): This
is a new measure which we propose here. It is equal to one
minus the ratio of the total magnitude of the difference in
the global motion between consecutive pairs of frames in
the stabilized v1deo to that in the unstable video. It is com-
Z ||fs (i,i+1) ;(1 12)”2 . "

:2 ||fs 1,i41) o fg(iflyi) ||2 . Here _fsv fS
denote the inter-frame global motion in the stabilized and
unstable videos respectively (unaffected by moving objects)
and are computed using GLOBALFLOWNET from Sec. 2.2.

puted as 1 —

The values of all these measures except ITF lie between
0 to 1. Higher values for all these measures indicate better
performance. The first three measures, though widely used
in video stabilization [35, 36, 15, 14, 37], are based entirely
on affine motion approximation, which as argued earlier, is
an inaccurate motion model. On the other hand, AGMDR
is based on a more general motion model. The intuition
behind it is that the global motion across consecutive frames
in a stable video should vary smoothly. Also, AGMDR is
computationally very efficient, and by construction resilient
against moving objects.

Discussion on results: Due to the absence of a single uni-
versally accepted evaluation measure for video stabiliza-
tion, a holistic view of different needs/measures is required

to draw a conclusion from numerical scores. On scores
such as Stability, ISI, ITF and AGMDR, our tech-
niques outperform the competing techniques LVS, BCP,
DMGW and PWStableNet in most of the video cate-
gories, as can be seen in Table 1. Our methods outper-
form DIFRNT on all measures except IST. However, we
would like to note that, DIFRNT being based on iterative
frame interpolation, would by design repeatedly reinforce
similarity between adjacent frames over iterations, thus pro-
ducing higher ISI. For AGMDR, some stabilization tech-
niques produced jerkier optical flow in a few frames as
compared to the original unstable video, leading to neg-
ative values of this measure. Our method produces less
geometric/visual distortion than other methods as also evi-
denced by better ISI, ITF and Distortion scores (also
see [27]). Also, the video ‘Ablation.mp4’ in [27] clearly
shows the advantages of GLOBALFLOWNET-FULL over
GLOBALFLOWNET-AFFINE.

5. Conclusion

We have presented a novel and intuitive video stabiliza-
tion technique which uses a teacher-student network to ob-
tain frame-to-frame global motion expressed by a small set
of transform coefficients. We present novel ways to smooth
the MPS in order to generate a stabilized video. Our method
is quite general in nature and can potentially be extended
using alternative architectures for optical flow (other than
PWC-Net) and alternative transforms for motion represen-
tation (other than DCT). Our technique also inspired us
to propose a novel quality measure to evaluate video sta-
bilization. Moreover, the presented algorithm is compu-
tationally efficient and typically requires only ~0.06 sec-
onds and ~0.5 seconds per frame (of size 480 x 640) for
GlobalFlowNet-Affine and GlobalFlowNet-Full respec-
tively.

The second stage GlobalFlowNet-Full of our algorithm
will produce sub-optimal results if the area of a single domi-
nant foreground object is large and comparable to that of the
background. Note that in general, multiple independently
moving small foregrounds do not pose a problem as their
motion will generally be very different from each other and
their combined motion will not dominate background) — see
[27, Sec. 6]. In case of a single large foreground, the motion
estimates will be biased towards either the foreground or
the background, producing motion artifacts. The first stage
GlobalFlowNet-Affine is more resilient to such situations.
However a principled method to handle this in the second
stage is left to future work. The cropping ratio can be fur-
ther improved by adding [34]. The motion estimation can
be improved using [9]. These are avenues for future work,
as also extending our algorithm on rolling shutter videos
and videos with significant motion blur.
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