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Abstract

State-of-the-art frameworks in self-supervised learning
have recently shown that fully utilizing transformer-based
models can lead to performance boost compared to conven-
tional CNN models. Striving to maximize the mutual infor-
mation of two views of an image, existing works apply a
contrastive loss to the final representations. Motivated by
self-distillation in the supervised regime, we further exploit
this by allowing the intermediate representations to learn
from the final layer via the contrastive loss. Through self-
distillation, the intermediate layers are better suited for in-
stance discrimination, making the performance of an early-
exited sub-network not much degraded from that of the full
network. This renders the pretext task easier also for the fi-
nal layer, leading to better representations. Our method,
Self-Distilled Self-Supervised Learning (SDSSL), outper-
forms competitive baselines (SimCLR, BYOL and MoCo v3)
using ViT on various tasks and datasets. In the linear eval-
uation and k-NN protocol, SDSSL not only leads to supe-
rior performance in the final layers, but also in most of
the lower layers. Furthermore, qualitative and quantitative
analyses show how representations are formed more effec-
tively along the transformer layers. Code is available at
https://github.com/hagiss/SDSSL.

1. Introduction

GPT [49] and BERT [15] are two representative works
in self-supervised learning (SSL) that use transformers [57]
for natural language processing (NLP) tasks. Motivated by
these successes, various efforts on self-supervised represen-
tation learning [41, 26, 3, 29, 18] have been made in the
vision domain as well, many of which follow the recent
paradigm of instance discrimination that matches the rep-
resentations of different views of the same image generated
by separate augmentations [9, 22, 21, 7, 10]. Recent self-
supervised frameworks have focused on using transformer-
based models such as ViT [16], which has demonstrated su-
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perior performance over the conventional ResNet [23] ar-
chitectures. MoCo v3 [11] and DINO [8] achieved state-of-
the-art performances using ViT in self-supervised learning.
MoCo v3 investigated the learning instability of ViT and
tackled this to enhance performance, while DINO exploited
the characteristics of ViT and proposed a unique MLP head
to improve representation learning.

Meanwhile, in the supervised regime, knowledge distil-
lation via self-distillation [61], which encourages the low
layer outputs to follow the outputs of the final or higher lay-
ers, have shown to be effective with attempts to explain its
performance boost by the mechanisms of ensemble [39] and
regularization [1]. Despite its effectiveness, self-distillation
(SD) has not been utilized in the self-supervised frame-
work with works focusing only on distillation between the
final outputs of a student and a teacher network (composed
of exponential moving averages of students).1 Motivated
by this, we propose Self-Distilled Self-Supervised Learn-
ing (SDSSL), a natural application of SD to self-supervised
learning. When applied to SSL methods such as SimCLR
and MoCo, self-distillation has an intuitive explanation:
aligning representations of the lower layers to the final one
can enhance linear separability of the lower layer represen-
tations as illustrated in Fig. 1. This in turn renders the in-
stance discrimination task easier for the subsequent layers.

Consequently, by solving the instance discrimination
pretext task better than its counterpart, we empirically
demonstrate SDSSL increases the performance for multi-
ple downstream tasks. In addition, we quantitatively and
qualitatively show that SDSSL generates better intermedi-
ate representations.

Because our method operates in an orthogonal manner
to other SSL methods, we can simply apply our method on
top of existing works. In this work, we apply our method to
three representative SSL frameworks, namely SimCLR [9],
BYOL [21], and MoCo v3 [11], using ViT [16] as the back-
bone and show that our method improves upon the already
competitive baselines. We demonstrate the effectiveness of

1DINO uses the term “self-distillation” to refer to distillation between
a student network and a teacher network.
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Figure 1: Representations in hypersphere. An illustration of represen-
tations of the student’s low layer and the teacher’s output on a hypersphere.
Intermediate self-distillation loss explicitly shifts the representations of the
low layer to the output representations.

SDSSL on ImageNet via k-nearest neighbor (k-NN) and lin-
ear evaluation. The superiority of SDSSL is also shown on
various practical tasks such as copy detection, video seg-
mentation and image retrieval. We further investigate the
representations learned by SDSSL using recently proposed
metrics [58] and discover that SDSSL makes a more lin-
early separable representation space compared to the base-
lines. Finally, similar to [44, 61], by encouraging the inter-
mediate layers to explicitly learn the pretext task, we show
that even the intermediate features can be successfully used
for the downstream tasks, outperforming the baseline coun-
terparts.

Overall, we propose a self-distillation method that lets
the intermediate layers explicitly learn to discriminate in-
stances. We show that our method improves upon the con-
ventional SSL frameworks such as SimCLR, BYOL, and
MoCo v3 on various benchmarks. Through thorough ab-
lation studies, we demonstrate that naively applying our
method leads to performance degradation and show how our
approach overcomes these potential pitfalls.

2. Related Work

Self supervised learning Despite their impressive progress
across multiple domains, deep neural networks (DNN) are
extremely data-hungry, requiring a large scale dataset for
training. As larger models demand even larger datasets, the
annotation cost easily becomes unaffordable. For this rea-
son, many works have explored the field of self-supervised
learning, which is a family of unsupervised learning frame-
works where the model is guided to learn representations
useful for potential downstream tasks from a set of pretext
tasks. DIM [26] maximizes the mutual information between
input and output. AMDIM [3] makes multiple views of an
input and tries to maximize the mutual information between
input and output using different views. The key difference

between AMDIM and our SDSSL is that while AMDIM
encourages the final representation to mimic intermediate
features from a particular layer using convolutional neural
networks, SDSSL enforces every intermediate representa-
tion to mimic the final feature, which is best suited for the
pretext task, i.e., instance discrimination. CPC [41] trains
the representation in a sequential model by using a con-
trastive method and shows that InfoNCE loss maximizes
the lower bound of mutual information between the inputs
and the representations. SimCLR [9] and MoCo [22] have
shown impressive performance on various benchmarks by
combining strong augmentations with contrastive learning
objective, but they are yet limited in that they either require
huge batch size or a separate memory bank. BYOL [21] has
successfully overcome this limitation by only using posi-
tive samples while boosting the performance at the same
time. Meanwhile, as transformers [57, 16] gain increas-
ing popularity in the vision domain, self-supervised learn-
ing using transformer has been studied as well [11, 8, 19],
pushing the previous state-of-the-art further and introduc-
ing several beneficial properties absent in traditional CNN
models. Despite steady improvements in quantitative eval-
uations, little has been said about how and why these meth-
ods work. ReLIC [38] introduces the causal mechanism to
explain SSL and [58] introduces alignment and uniformity
for quantitative analysis. We provide alignment-uniformity
analysis in Secs. 4.4 to shed light on the underlying factors
that motivate the success of SDSSL.
Knowledge distillation Knowledge distillation (KD) is one
of the regularization methods widely used to improve model
performance [25, 31, 24]. The conventional offline KD
framework utilizes a pre-trained teacher network to provide
additional learning signals to the student network that is pri-
marily trained with labels. In contrast, online KD methods
adopt concurrent training scheme, where the teacher and
the student are trained simultaneously, distilling informa-
tion from each other. Recently, several works have explored
the concept of self-distillation, where the knowledge from
previous snapshot of the model is distilled to the current
one [50, 52]. Multi-exit [44], among others, enforces the
prediction from lower layers to match that of higher lay-
ers, which has similarities with our SDSSL in the high level
idea. However, unlike the aforementioned methods, SDSSL
is fully self-supervised, not requiring any labels in the train-
ing process. We also note that our method differs from oth-
ers in the formulation of distillation, as ours is driven by
instance-discrimination-based SSL objective.

3. Method

3.1. Baselines

SimCLR makes two views, X1 and X2, of an input image
X (positive sample), by performing separate random aug-
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mentations. The representations of X1 and X2 from the
backbone network are first projected, and the contrastive
objective enforces the cosine similarity between positive
samples to be maximized while minimizing it between neg-
ative samples (other images in the batch) [6].
MoCo v3 learns from the contrastive loss like SimCLR,
but instead of using an identical network to generate fea-
tures for X1 and X2, a teacher network with exponential
moving average (EMA) parameters is used. Randomly aug-
mented views X1 and X2 are forwarded to the student net-
work and the teacher network respectively, and then pro-
jected. The projected output of the student network is fur-
ther processed through an additional MLP head to perform
contrastive learning.
BYOL also has an EMA teacher and a predictor like MoCo
v3, but learns simply by increasing the cosine similarity of
positive samples without using the contrastive loss. There-
fore, unlike the aforementioned SSL frameworks that utilize
negative samples, the performance is robust to the choice of
batch size.
SSL objective functions Lssl differ for different baselines.
Following common practice, let q denote the output of the
student’s last MLP head (projector or predictor) and z de-
note the output of the teacher’s (student in SimCLR) pro-
jector. Then the objective for BYOL is

Lssl(q, z) = 2− 2 · ⟨q, z⟩
∥q∥2 · ∥z∥2

(1)

while for the two contrasitive methods,

Lssl(q, z) = − log
e⟨q,z

+⟩/τ

e⟨q,z+⟩/τ +
∑

z− e⟨q,z−⟩/τ (2)

where ⟨·, ·⟩ denotes the inner product, τ is a temperature
parameter and z+/z− are for the positive/negative samples.
We note that the q and z are L2-normalized in Eq. (2)

3.2. SDSSL

We propose Self-Distilled Self-Supervised Representa-
tion Learning (SDSSL) which provides explicit signal to the
intermediate representation by inducing intermediate repre-
sentation to mimic the output representation as illustrated
in Fig. 2. Our method can be applied to any existing SSL
frameworks that aligns representations from multi-views.

Self-Distilled SSL We define our intermediate self-
distillation loss Lisd, which tries to maximize the mutual
information of the output of an intermediate layer l and the
final layer L (I(f1

l ; f
2
L)), as the following

Lisd =
1

L− 1

L−1∑
l=1

Lssl(ql, sg(zL)), (3)

Figure 2: Illustration of SDSSL in MoCo v3 and BYOL. For SimCLR,
predictors don’t exist and teacher network is identical to student network.
Solid line is updated by Lssl while dotted line is for Lisd and Lpred.

where ql is the representation of the lth layer of the student
encoder passed through the MLP heads corresponding to
each layer, and zL is the output of the teacher MLP head.
The stop-gradient operator, sg(zL) implies that the gradient
is not propagated through zL so that only ql learns to predict
zL without affecting zL. The objective of SDSSL consists
of Lssl and Lisd, resulting in Lsdssl:

Lsdssl = Lssl(qL, zL) + αLisd, (4)

where the choice of α, which controls the weight of the self-
distillation loss, is detailed in Secs. 4.1.

We observe that for frameworks where predictors exist,
simply using Eq. (4) leads to some performance improve-
ment, but can be further enhanced. This is because the
predictors of the intermediate layers are only updated us-
ing gradients from Lisd as opposed to the encoder, which is
able to utilize both Lisd and Lssl. Consequently, the opti-
mality of the predictors at intermediate layers are not guar-
anteed, which is a key component of SSL training as dis-
cussed by [21]. Simply enlarging α causes the last layer of
the encoder to be sub-optimal, because this updates the in-
termediate backbone layers as well. To alleviate this issue,
we employ another loss Lpred:

Lpred =

L∑
l=1

Lssl(pred(sg(hl)), sg(zL)), (5)

where hl is the representation of the lth layer of the student
after passing through the projector. To only update the pre-
dictors, the sg(·) operator is used to hl. By doing so, we
attain better predictors for distillation and hence the final
objective for SSL frameworks with predictors is

L̃sdssl = Lssl(qL, zL) + αLisd + βLpred. (6)

We use β = 1 in Eq. (6). Alg. 1 provides the pseudocode
for SD-MoCo v3 which applies SDSSL to MoCo v3.

2831



Algorithm 1 SD-MoCo v3: PyTorch-like Pseudocode

# f_s: student: ViT + projectors
# f_t: momentum teacher: ViT + projector
# p: predictors
# alpha: intermediate self-distillation ratio
# tau: temperature
# L: number of layers in ViT

for x in loader: # load a minibatch x with N samples
x1, x2 = aug(x), aug(x) # random augmentation
q1, q2 = f_s(x1), f_s(x2) # shape: [L*N, dim]
z1, z2 = f_t(x1), f_t(x2) # shape: [N, dim]

loss_pred = ctr(p(q1.detach()), z2, L)
loss_pred += ctr(p(q2.detach()), z1, L)

q1, q2 = p(q1), p(q2)

q1_isd, q1 = split(q1, [(L-1)*N, N])
q2_isd, q2 = split(q2, [(L-1)*N, N])

loss_isd = ctr(q1_isd, z2, L-1)
loss_isd += ctr(q2_isd, z1, L-1)

loss = ctr(q1, z2) + ctr(q2, z1)
loss += alpha * loss_isd + L * loss_pred

loss.backward()
optimizer.update(f_s, p)
momentum_update()

# contrastive loss
def ctr(q, z, num_layers=1):

logits = mm(q, z.t()) # [num_layers*N, N] pairs
labels = repeat(arange(N), num_layers)
loss = CrossEntropyLoss(logits/tau, labels)
return 2 * tau * loss

4. Experiments

In this section we describe details of our implementation.
We follow the convention of MoCo v3 [11] unless other-
wise noted. We show that SDSSL outperforms the baselines
in various downstream tasks including ImageNet. More-
over, we employ t-SNE [55], Centered Kernel Alignment
(CKA) [13, 32] and uniformity-alignment framework [58]
to analyze the representations of SDSSL in an attempt to
demystify its success. As we later show, the key is learning
better representations in the lower layers, pushing the over-
all performance curve upwards. Thorough ablations show
the effectiveness of individual components of SDSSL and
the comparison of SDSSL with ResNet backbones recon-
firms the effectiveness of our method.

4.1. Implementation Details

ViT Architecture We adopt the sine-cosine variant [57] in
2-D for positional embedding and freeze the random initial-
ized patch projector. We concatenate patch embedding with
a learnable [CLS] token and add its positional embedding.
The representations are outputs of [CLS] token after passing
through each transformer block and the layer normalization
layer [2].

MLP Heads Following [9, 21], projectors and predictors
are set as 3-layer MLPs and 2-layer MLPs, respectively.

Framework ViT-S/32 ViT-S/16 ViT-B/16
k-NN Linear k-NN Linear k-NN Linear

SimCLR 51.5 52.8 57.8 62.1 62.1 70.5
SD-SimCLR 53.4 55.3 59.1 65.0 64.4 72.1
BYOL 56.4 59.8 66.0 70.3 68.1 73.7
SD-BYOL 57.9 61.8 67.2 71.5 70.3 74.5
MoCo v3 57.1 60.7 66.5 70.0 69.7 75.1
SD-MoCo v3 59.0 63.7 68.0 71.5 72.0 76.0

Table 1: ImageNet Evaluation. Comparison with three competitive
baselines and SDSSL. ViT-S/32, ViT-S/16 and ViT-B/16 are trained on
ImageNet for 300 epochs. For each framework, ViT-S/32, ViT-S/16 and
ViT-B/16 share the same set of hyper-parameters except batch size.

Batch normalization [27] is applied to all output layers ex-
cept BYOL and the hidden layers for all methods. The
dimension of the hidden layer is 4096 for the last projec-
tor and all predictors, but 2048 for intermediate projectors.
All outputs have 256 dimension. For frameworks using an
exponential moving average (EMA) teacher, the teacher’s
projector is updated using the student’s projector via EMA.
This is done in SDSSL as well using only the last projector.
In ablation study, we show that the effects of intermediate
projector according to the number of layers.
Hyper-parameter We use AdamW [36] as the optimizer
and batch size of 4096 for ViT-S/32 and 1024 for ViT-S/16
[54] and ViT-B/16. Learning rate is 1.5e-4 for MoCo v3
and BYOL, 1.3e-4 for SimCLR. We also adopt learning rate
warmup for 40 epochs and cosine decay after warmup [20].
Weight decay is 0.1. For α, cosine scheduling [35] is per-
formed from 0∼1.0.

4.2. Main Results

ImageNet Pretraining We experiment with ViT-S/32, ViT-
S/16 and ViT-B/16 on three self-supervised learning frame-
works. In Table 1 we validate the representations found
in ImageNet [14] pretrained encoder through using k-NN
[60] and linear evaluation. We follow the protocol of MoCo
v3 for the linear evaluation and DINO for k-NN. Across
all frameworks, models, and evaluations, applying SDSSL
increases performance. The baseline accuracies are lower
than those reported in MoCo v3 paper [11], because of us-
ing 1024 batch size instead of 4096 due to computation con-
straint. Contrastive frameworks are particularly affected by
the batch size. Nevertheless, our method significantly im-
proves upon our reproduced baselines. In ViT-S models,
linear evaluation performance improved more than or equal
to it did on k-NN, whereas in ViT-B/16 model, k-NN per-
formances improved more. We used 8 and 4 NVIDIA A100
for five days to train our ViT-B/16 and ViT-S/16 models
respectively, and 4 NVIDIA A6000 for three days to train
ViT-S/32 models.
Multi-exit Since self-distillation enables lower layers to
learn from the higher layers, we expect that the lower lay-
ers of SDSSL learned more meaningful representations than
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Figure 3: Multi-exit. Linear evaluations on Imagenet for baselines
and SDSSL on each layer using pretrained ViT-S/16 on ImageNet for 300
epochs. SDSSL methods outperform the corresponding baselines at all
layers and shows less degradation for earlier layers.

Figure 4: Copy Detection and Video Segmentation. (Left) Results
of copy detection and video segmentation tasks on MoCo v3 and SD-
MoCo v3 for each layer. With the exception of the some layers, SD-MoCo
v3 outperforms MoCo v3. The best performing layers are 7th for SD-
MoCo v3 and 10th for MoCo v3 in copy detection and video segmenta-
tion. The trends are almost the same for BYOL/SD-BYOL (middle) and
SimCLR/SD-SimCLR (right).

those of the baselines. This is verified in Figure 3, which
shows that the representations of lower layers for SDSSL
are much more suitable as features than the counterparts.
We performed linear evaluation on ImageNet using the
frozen representations of each layer. In the last layer, the
accuracy increased by 1.2%p, and the 6th layer showed the
largest performance gap of 34.3%p in MoCo v3. Similar
phenomena occur in BYOL and SimCLR.

4.3. Transferability

In this subsection, we evaluate the transferability of our
method on various downstream tasks. Following DINO [8],
we evaluate on the image retrieval task. In addition, we
also evaluate on the copy-detection task and the video seg-
mentation task, which uses features of patches rather than
the [CLS] token. The three evaluation protocol do not re-
quire additional training of the encoder. Then, we evalu-
ate on other image classification datasets such as CIFAR-
10, CIFAR-100 [34], Oxford Flowers-102 [40], Oxford-IIT-
Pets [42], CUB [59], AirCraft [37], Cars [33], Dogs [30],
NABirds [56] and ImageNet by k-NN, linear evaluation and
end-to-end fine-tuning [16]. Experiments are performed us-
ing all the three frameworks with ViT-S/16.

Image Retrieval Revisited [46] Oxford and Paris image
retrieval datasets [43] contain 3 splits of various difficulty
with query and database pairs. We evaluate all baselines
and SDSSL on the Medium and Hard splits. We directly ap-
ply k-NN for image retrieval. As shown in Table 2, SDSSL
outperform baselines.

Framework ROx RPar
M H M H

SimCLR 20.1 3.9 42.8 15.3
SD-SimCLR 22.0 5.0 42.3 15.1
BYOL 27.7 6.9 51.7 22.2
SD-BYOL 28.5 7.7 52.0 22.5
MoCo v3 26.3 6.4 51.0 21.9
SD-MoCo v3 26.7 6.4 52.4 22.7

Table 2: Image Retrieval. Comparison of performance between base-
line and SDSSL on image retrieval task. ViT-S/16 are pre-trained using
each framework on ImageNet for 300 epochs. We evaluate image retrieval
task using k-NN.

Framework Copy D. Video S.
mAP (J&F)m Jm Fm

SimCLR 74.7 61.8 59.9 63.6
SD-SimCLR 75.5 62.1 60.3 64.0
BYOL 74.5 60.2 58.1 62.3
SD-BYOL 74.2 60.9 59.0 62.7
MoCo v3 74.8 62.0 60.2 63.8
SD-MoCo v3 76.3 62.1 60.4 63.9

Table 3: Copy detection and video segmentation. For all scores, higher
means better. The reported scores are the performance of the best layer in
each method. ImageNet pretrained ViT-S/16 models are used to evaluate.

Copy-detection We report the mean average precision
(mAP) of copy-detection on the strong subset of INRIA
Copydays dataset [17]. The goal of Copy-detection is to
recognize the original image when given a distorted (e.g.
blur, insertion, print, scan) version of it. Following [4],
we use the 10K samples of the YFCC100M dataset [53]
as distractors, while 20K samples are used for whitening
[4] the features. The features of [CLS] token and patch
token are pooled using GeM [47] and concatenated. We
use features of all layers to verify whether similar trend oc-
curs as in the multi-exit experiment. We observe in Fig-
ure 4 that most SD-MoCo v3 intermediate features surpass
those of MoCo v3 and have better performance on the re-
spective best-performing features. For SD-MoCo v3 and
MoCo v3, this is the 7th and 10th layer, respectively. We
believe that the best-performing features are not formed in
the final layer for some tasks that utilizes the features of the
patch rather than using only the [CLS] token. Moreover,
for SDSSL the best-performing layer is formed in the lower
layers than the baseline. For SD-SimCLR and SimCLR,
the best-performing layers are 9th and 10th, respectively;
for SD-BYOL and BYOL, 6th and 10th layer, respectively.
This may be explained by our knowledge distilling method
which intends to extract more information in the lower lay-
ers. By providing an explicit loss, our method forms a suit-
able feature for copy detection earlier in the lower layers
than the baseline.

Video segmentation We perform video instance segmenta-
tion on the DAVIS-2017 dataset [45]. We follow the experi-
mental protocol in Jabri et al. [28] and segment scenes with
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Framework CI-10 CI-100 Flower Pets CUB ACraft Cars Dogs NABirds INet Avg.

SimCLR-knn 87.2 65.7 77.8 71.8 28.5 22.9 15.6 50.1 17.3 57.8 49.5
86.9 66.0 79.1 73.9 29.2 22.8 15.7 52.8 18.2 59.1 50.4

linear 81.9 58.4 80.4 71.4 39.8 24.3 17.5 58.9 31.4 62.1 52.6
82.8 59.0 81.6 74.2 41.9 22.6 16.9 62.2 32.5 65.0 53.9

fine 97.8 86.1 95.8 88.0 73.6 75.9 85.1 72.5 68.7 78.6 82.2
98.5 88.6 96.8 89.9 74.2 81.2 87.0 80.0 69.3 78.7 84.4

BYOL-knn 90.0 70.6 85.2 83.4 52.8 31.1 19.9 67.0 38.2 66.5 60.4
91.5 72.5 85.0 85.3 54.5 32.4 21.5 69.0 40.7 68.0 62.0

linear 89.9 73.4 92.7 87.5 70.7 46.4 42.3 76.8 61.6 70.3 71.2
92.4 75.2 92.6 88.0 73.4 46.6 43.8 78.5 63.2 71.5 72.5

fine 98.6 89.3 97.4 91.1 78.9 80.4 88.7 80.9 74.9 79.3 86.0
98.9 89.4 97.2 91.4 79.9 80.4 88.9 81.1 75.7 79.5 86.2

MoCo v3-knn 91.8 73.8 85.4 83.6 51.2 30.4 21.3 67.7 36.0 66.0 60.7
91.2 73.4 85.5 84.4 53.1 32.5 22.6 69.4 38.5 67.2 61.8

linear 90.1 73.9 92.6 87.6 70.6 47.3 41.2 77.7 59.6 70.0 71.1
90.2 74.4 92.6 87.5 71.7 47.2 43.8 78.3 61.6 71.5 71.9

fine 98.7 89.5 97.2 90.9 78.5 81.6 86.8 78.8 74.1 79.4 85.6
98.7 89.2 97.3 91.4 79.3 81.3 87.8 79.7 75.8 79.6 86.0

Table 4: Classification. We report k-NN, linear and fine-tuning performances for 10 classification datasets. The upper row is the baseline accuracy, and
the lower row is the SDSSL accuracy.

a nearest neighbor between consecutive frames in DINO.
When all representations of all layers are tested as done in
copy detection, a similar trend is observed in the video seg-
mentation task as well. The best performing layer is 7th
and 10th for SD-MoCo v3 and MoCo v3, respectively, and
SD-MoCo v3 outperforms MoCo v3 as shown in Table 3.
For SD-SimCLR and SimCLR, the best-performing layers
are 8th and 9th, respectively; for SD-BYOL and BYOL, 8th
and 10th layer, respectively.
Classification In this section, we demonstrate the results
for image classification on CIFAR-10, CIFAR-100, Oxford
Flowers-102, Oxford-IIT-Pets, CUB, AirCraft, Cars, Dogs,
NABirds and ImageNet. Since end-to-end fine-tuning could
lead to over-fitting on the specific dataset, this may obscure
the evaluation of representation quality of the pre-trained
encoder [48]. To address this issue, we also report scores
from k-NN and linear evaluation. In Tab. 4, we witness
improvements from SDSSL on most of the datasets for all
three baselines. Performance gains in k-NN and linear eval-
uation are especially noticeable, which implies that repre-
sentations from SDSSL are more separable in the feature
space. Further analysis on the representations will be pre-
sented in Secs. 4.4. Results from end-to-end fine-tuning
displays the typical diminishing gains as the overall base-
line performance has been greatly boosted.

4.4. Analysis

Qualitative analysis Fig. 5 displays t-SNE visualization of
representations from 10 randomly selected classes of Im-
ageNet validation set, where SDSSL on MoCo v3 (right)
shows clearly more separable representations compared to
the MoCo v3 baseline (left). As one of the basic assump-
tions of contrastive learning framework is to obtain rep-
resentations useful for downstream tasks through instance

discrimination, this implies that self-distillation encourages
the model to form better representations from lower layers,
making the overall self-supervised learning task easier. Re-
sults in Fig. 3 and Fig. 4 support this claim.

CKA [13, 32] in Fig. 6 illustrates the representation sim-
ilarities between layers. For the MoCo v3 baseline, repre-
sentations from neighboring layers display high similarity
(black box, left) while the scores are largely reduced for
distant layers (red box, left). SDSSL, on the other hand,
shows more uniform similarity structure (right) with lower
local similarity and higher global similarity. As previous
work [51] points at the uniform representation similarities
across layers as a key property that distinguishes vision
transformers from convolutional networks, we conjecture
this can be one of the drivers for the success of SDSSL re-
inforcing the characteristics of ViTs.
Quantative analysis Wang et al. [58] demonstrated that
contrastive learning optimizes two distinct metrics: (1)
alignment, which quantifies compactness of representations
of positive samples

Lali(f ; γ) ≜ E
(x,y)∼ppos

[∥f(x)− f(y)∥γ2 ], γ > 0, (7)

for some γ, and (2) uniformity, which measures how dis-
persed the entire representations are in a hypersphere using
the Gaussian potential kernel [12, 5]

Luni(f ; t) ≜ log E
(x,y)∼pdata

[e−t∥f(x)−f(y)∥2
2 ], t > 0. (8)

Here, ppos is the distribution of positive pairs generated
by random augmentation from the input data, and pdata is
the overall data distribution. They asserted that low align-
ment signifies that the positive samples are close to each
other while low uniformity signifies that the negative sam-
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Figure 5: Representation Visualization. The representations of each layer of MoCo v3 and SD-MoCo v3 are visualized using t-SNE. The left side of
each layer is MoCo v3, and the right side is SD-MoCo v3. 10 random classes of ImageNet validation set are drawn. We observe that the representations of
the lower layers are aggregated better by class when SDSSL is applied.

Figure 6: Representation Similarity. We compute CKA heatmap for
all pairs of layers for MoCo v3 (left) and SD-MoCo v3 (right). Black box
demonstrates SDSSL’s reduced similarity between neighboring layers and
red box shows that lower layers faithfully mirrors upper layers.

ples are further apart. Thus, low alignment and low unifor-
mity lead to a better representation with high linearly sepa-
rability, although the two metrics are inherently in a trade-
off relationship.

Empirically, we observed that SD-MoCo v3 has lower
alignment in lower layer, but higher uniformity than vanilla
MoCo v3. In the higher layer, the pattern is reversed. In
other words, while distances of the positive and negative
samples are both close in lower layer, in the higher layer,
both are further away. Considering their conflicting char-
acteristics, it is difficult to ascertain which representation is
better. To answer this question, we propose a new metric,
uniformity-alignment ratio, that divides the uniformity by
alignment. For formulational simplicity, we compute nega-
tive alignment, i.e., the distance between negative samples,
as following and divide it by the original alignment, i.e.,
the distance between positive samples. This successfully
removes potential scale ambiguities and indicates the rela-
tive distance between negative samples compared to posi-
tive samples in an intuitive manner.

Figure 7: Alignment and Uniformity measured at each layer of MoCo
v3 and SD-MoCo v3 on ImageNet validation set. Because uniformity and
alignment have different signs due to the logarithm of uniformity, we re-
port −Luni for consistency. Additionally, we compute −Luni / Lali to
estimate efficiency of representation space.

Figure 8: Negative Alignment. We plot negative alignment and align-
ment ratio R using Imagenet pretrained MoCo v3 and SD-MoCo v3. Neg-
ative alignment and alignment ratio show similar pattern with uniformity
and uniformity alignment ratio, respectively.

Ln
ali(f ; γ) ≜ E

(x,y)∼pdata

[∥f(x)− f(y)∥γ2 ], γ > 0. (9)

Higher Ln
ali means that the negative samples are further

apart from each other similar to uniformity.
The ratio of negative alignment divided by positive align-

ment R ≜ Ln
ali/Lali then quantifies how far apart the mean

distance between positive and negative samples are. As
shown in Figure 8, SD-MoCo v3 has higher alignment ratio
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than MoCo v3 in all layers like uniformity alignment ratio
shown in the third column of Fig. 7. Intuitively, learning a
representation space where negative samples are placed fur-
ther apart from each other compared to positive samples is
one of the key desiderata of contrastive learning, and we
believe this explains the effectiveness of SDSSL at least
partially. Qualitative analyses such as Fig. 5 also support
this view, delivering a consistent message as to how self-
distillation helps self-supervised learning.

4.5. Ablation Study

In this subsection, we show the efficacy of ratio schedul-
ing and the predictor loss through ablation and verify
these are necessary factors for optimal performance. Fur-
thermore, we experiment how the performance of SDSSL
changes according to the values of α and β.

Tab. 5 shows that the performance of ablating the predic-
tor loss results in a performance degradation. As discussed,
this is consistent with the results in [21], which states that
optimality of the predictor is crucial. Additionally, when
only the predictor loss is used without the intermediate dis-
tillation loss Lpred, the performance gain with respect to
MoCo v3 is minimal (+0.3%p). This verifies that the inter-
mediate distillation loss is a key component. During train-
ing, we used ratio annealing in Eq. (4) and Eq. (6), i.e., α
is set very low at initial iterations and gradually increased
afterward rather than using a fixed α for the entire training.
Without ratio annealing the performance decreases signifi-
cantly, which shows that self-distilling once some training
has been done is important.

Fig. 9 shows the performance change across ranges of
α and β. For both parameters, the performances generally
increase until reaching 1. As discussed, α, which controls
Lisd, has a larger impact on the performance than β. In Tab.
6 we discuss the effects of some of the design choices of the
projector and Lisd. Distilling the [CLS] token directly with-
out using a projector (w/o MLP) does not lead to any perfor-
mance gain, while using a smaller MLP (2-layer) leads to a
smaller performance gain. In addition, when Lisd is applied
every n layer (MLP/n) the performance gain is smaller than
applying it every layer as done in SDSSL (MLP/1).

4.6. SDSSL on ResNet

We further apply SD-Moco v3 framework on top
of ResNet-50 backbone and present evaluations for 200
epochs of training. For our proposed self-distillation, we
apply the average pooling to the output activation of each
residual block and forward it through an MLP head to com-
pute Lsdssl. Visible from Tab. 7, we observe significant
performance gains on ResNet backbone as well, which is
consistent with findings of prior works that incorporate self-
distillation in supervised learning [61, 44]. Also, we note
that for simplicity, we optimize the self-distillation objec-

Figure 9: Hyperparameter
sweeping. We vary α and β to
see their effect on the ImageNet
k-NN accuracy on MoCo v3.
When sweeping for a parameter,
the other parameter is fixed to 1.0.

k-NN

MoCo v3 60.5
+pred. loss 60.8 (+0.3)

SD-MoCo v3 62.6
-ratio anneal 60.2 (-2.4)
-pred. loss 61.9 (-0.7)

Table 5: Ablation. This shows
that ratio scheduling is indis-
pensable for SDSSL and pred.
loss is also beneficial to the fi-
nal performance.

k-NN

MoCo v3 60.5
W/o MLP 60.3 (-2.3)
2L-MLP 61.3 (-1.3)
MLP/4 61.3 (-1.3)
MLP/3 61.5 (-1.1)
MLP/2 61.5 (-1.1)
MLP/1 62.6

Table 6: Ablation on de-
sign choices. We explore
the effect of MLP design.

k-NN Linear
1st 2nd 3rd last

MoCo v3 60.5 10.5 23.7 45.3 60.3
SD-MoCo v3 61.2 24.7 43.5 59.2 62.2

Table 7: SDSSL on ResNet. We train
ResNet-50 on ImageNet for 200 epochs us-
ing MoCo v3.

tive only for the output activations of each residual block,
resulting in fewer distillation terms per batch. We expect
further performance gains from applying self-distillation to
more intermediate activations as in Tab. 6, but leave it for
future work.

5. Discussion
As SDSSL computes the self-distillation loss through ad-

ditional MLP heads, there are increase in the memory foot-
print and computational cost for model training. Upon naive
implementations with ViT-B/16, the memory footprint rises
by less than 6% and training time by about 16.9%. However
with parallel computing, the increase in wall clock time can
be reduced to 8.6%, which we believe to be moderate. As
this additional cost is independent of the model size, the
relative burden becomes smaller as we use larger backbone
models with smaller patch size, which is often the case in
recent practices.

6. Conclusion
In this work, we proposed a self-distillation method gen-

erally applicable to existing self-supervised learning frame-
works. Our method is motivated by the hypothesis that
self-distillation between lower representations and output
representation may be favorable for separable representa-
tion learning, and through experiments, we empirically val-
idated the effectiveness of our method. We showed SDSSL
leads to superior performance not only in the final layers,
but also in lower layers through the multi-exit experiment.
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