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Abstract

Cross-modal retrieval is a fundamental vision-language
task with a broad range of practical applications. Text-to-
image matching is the most common form of cross-modal
retrieval where, given a large database of images and a
textual query, the task is to retrieve the most relevant set
of images. Existing methods utilize dual encoders with an
attention mechanism and a ranking loss for learning em-
beddings that can be used for retrieval based on cosine
similarity. Despite the fact that these methods attempt to
perform semantic alignment across visual regions and tex-
tual words using tailored attention mechanisms, there is
no explicit supervision from the training objective to en-
force such alignment. To address this, we propose NAPReg,
a novel regularization formulation that projects high-level
semantic entities i.e Nouns into the embedding space as
shared learnable proxies. We show that using such a for-
mulation allows the attention mechanism to learn better
word-region alignment while also utilizing region informa-
tion from other samples to build a more generalized latent
representation for semantic concepts. Experiments on three
benchmark datasets i.e. MS-COCO, Flickr30k and Flickr8k
demonstrate that our method achieves state-of-the-art re-
sults in cross-modal metric learning for text-image and
image-text retrieval tasks. Code: https://github.
com/bhavinjawade/NAPReq

1. Introduction
Learning robust embeddings for text-image matching

or cross-modality retrieval is an essential goal for vision-
language understanding. Cross-modal retrieval research is
motivated by the need for solutions for a variety of prac-
tical challenges, such as product retrieval, person search
[18], and compositional retrieval [30]. In contrast to uni-
modal tasks such as image-to-image search, cross-modal re-
trieval requires models to learn exhaustive correspondences

*Equal contribution authors in alphabetical order

Figure 1: An illustration depicting the interaction of text and im-
age features with the shared semantic entities to learn more ro-
bust visual representations while refining region-text alignment to
bring contextually relevant pairs closer in the embedding space.
(Best viewed in digital.)

between modalities to model intricate relationships among
entities.

Early works [8, 13] that project image and text represen-
tations into a shared embedding space for retrieval are un-
able to capture the fine-grained interactions between high-
level and coarse features over modalities. Capturing the
alignment between features across text and images is essen-
tial for determining similarity that could discriminate across
seemingly alike samples. Recent works have tried to cap-
ture these relationships between visual regions and textual
words using tailored attention mechanisms, feature align-
ment methods, and feature aggregation modules. Lee et al.
[15] proposed refinement of the region-to-word alignment
by utilizing stacked cross attention to compute aggregated
image-to-sentence similarity. Liu et al. [20] aimed to learn
the correspondence between textual and visual graphs by
modeling relationships among attributes and objects. Diao
et al. [7] improved upon [15] by modeling the local and the
global feature similarity as graph nodes connected through
directed edges to iteratively compute final similarity.
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Though these approaches have explored different rep-
resentation learning strategies with incremental boosts in
performance, ranking loss has remained a de-facto training
objective for cross-modal retrieval. While most previous
works have utilized triplet loss with a random sample min-
ing strategy, Chen et al.[6] proposed an offline hard negative
sampling method and Wei et al.[33] proposed a polynomial
function for weighting positive and negative informative
pairs. Although triplet based losses have worked well for
uni-modal/multi-modal retrieval in the past, an additional
supervision to improve image-to-text alignment that could
complement the newer cross-attention mechanisms is desir-
able.

In this work, we propose NAPReg, a regularization ob-
jective that provides direct supervision to improve the cross-
modal alignment by projecting the high-level semantic no-
tions that are captured by nouns in a sentence as shared
learnable proxies in the embedding space. This regulariza-
tion term aids the existing attention mechanisms to learn
a better region-to-word alignment. NAPReg can be easily
integrated into existing triplet based formulations and can
complement a variety of existing cross-attention and feature
alignment modules to learn more robust feature representa-
tions.
The main contributions of this paper are summarized as fol-
lows:

1. We identify the need for direct supervision from the
training objective to learn better region-to-word align-
ment for text-image retrieval.

2. We propose NAPReg, a proxy based formulation that
maximizes the similarity between the aggregated con-
text vector and the shared semantic proxies to achieve
better region-word alignment and learn more general-
ized visual latent representations.

3. We specifically design NAPReg to complement ex-
isting cross-attention techniques and provide them
with the required supervision to achieve robust fea-
ture alignment. We conduct extensive experiments
on three benchmark datasets: MS-COCO, Flickr30k,
and Flickr8k, and demonstrate the effectiveness of
NAPReg with multiple feature alignment methods.
NAPReg consistently achieves superior results over
the state-of-the-art. We also perform a rigorous empir-
ical study and qualitative analysis to evaluate the role
of different hyper-parameters involved in the regular-
ization term.

2. Related Works
Current methods for cross-modal retrieval have broadly

focused on two approaches: i) improving the backbone ar-
chitectures for feature extraction and alignment, and ii) im-
proving the training objective and loss function formula-

tion to learn more discriminative features. The latter, also
known as cross-modal metric learning, explores novel ap-
proaches in a) modality interaction and feature aggregation
using attention, and b) deep metric learning using sampling
and hard mining strategies, and custom loss formulations.

Cross-Modal Feature Extraction and Aggregation -
The representation learning backbone for cross-modality re-
trieval consists of two parts: the feature extractor and the
feature aggregator. Lu et al.[21] performed feature extrac-
tion using an additional supervision input from the Faster-
RCNN object detector to provide a vision transformer en-
coder with labeled image patches. Other methods [17, 3]
utilize pretrained visual representations from a bottom-up
attention network [1] and augment it with a novel feature
alignment module. Li et al.[17] proposed a region rela-
tionship model and a global semantic reasoning model built
upon a graph convolutional network and GRUs using image
features from bottom-up attention [1] which were jointly
optimized using a matching loss (hinge-based triplet rank-
ing loss) and a generation loss (log-likelihood captioning
loss). [26, 37] proposed different attention based fusion
architectures for multi-modality features. Chen et al. [4]
proposed a generalized pooling strategy which computes
weights for increasing orders of max pool operator using
a BiGRU for cross-modality retrieval on VSE++ features.
[32] proposed utilizing the object’s position information
along with an attention mechanism to learn a region posi-
tion feature vector for improving cross-modality retrieval.
[34] proposed a transformer based intra-modal and inter-
modal attention network to learn a multiple sample embed-
ding. The use of triplet loss formulation as a training objec-
tive is a key feature shared by all recent feature aggregation
methods.

Metric Learning Methods Lecun et al. [10] proposed
a contrastive loss formulation that tried to reduce the dis-
tance between the feature representations of images if they
belonged to the same class and increased it if they belonged
to a different class. Triplet loss [28], lifted structure loss
[25], and N-Pair loss [29] introduced the notion of neg-
ative samples and proposed sampling strategies in which
batches are constructed intelligently based on the relative
importance of different samples. Furthermore, techniques
such as pair weighting [35] and curriculum learning [2]
have been proposed to improve the sampling process. Even
though these methods were initially proposed for uni-modal
data retrieval, they have also been used in various cross-
modal data retrieval tasks. Wei et al. [33] proposed a self-
similarity and relative-similarity based polynomial formu-
lation of triplet similarities for cross-modal metric learning.
Mining for informative samples often becomes a computa-
tionally intensive task. Yair et al. [23] proposed a proxy-
based method to overcome this computational overhead.
Anchor proxy loss [14] further improved the formulation to
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incorporate the relative distance between samples in the fea-
ture space. These proxy-based methods use anchor points
(usually one per class) to act as a rallying point for all the
positive image features belonging to a specific class. Due to
the class-specific nature of these loss formulations and the
lack of global categorical information for text-image match-
ing tasks, proxy based methods are not directly applicable
to cross-modal retrieval.

Large Scale VL Pretraining Recently, transformer
based large scale vision language pretraining (also referred
to as foundational models) have gained interest. Primarily,
the goal in this domain is to train large transformer based
vision and text encoders on typically large data sets (mil-
lions of image-text pairs). The two avenues of research in
this domain are: (i) Contrastive Pretraining and (ii) Cross-
Attention based pre-training. [27], [24], [36] demostrate
that contrastively pre-training image and text embeddings
on a large number of image-text pairs shows robust general-
izability for zero-shot classification. [16], and [12], showed
that joint contrastive and cross-attention based pretraining
improves performance on language based downstream tasks
such as VQA and visual grounding.

Majority of the loss formulations used in existing cross-
modal retrieval methods are inspired from deep metric
learning. These methods lack an explicit objective to en-
force fine grained alignment across modalities. In this pa-
per, we present a novel regularization method that augments
the capability of existing cross-modal loss formulations.
Our regularization method overcomes the class dependency
of proxy based methods by synthesizing proxies from tan-
gible entities present in textual content and using them as
shared semantic notions.

3. Methodology
In this section, we will first revisit the formulation of a

cross-modal image-text retrieval problem and subsequently
provide the motivation and design for the proposed regular-
ization (NAPReg).

3.1. Problem Statement

Consider the visual features of an image V =
{v1,v2,....vn}, where vi ∈ Rdv is the feature representa-
tion corresponding to the ith region in the image. Here n
is the number of visual regions under consideration. Let T
= {t1,t2,...tm} be the text features corresponding to a sen-
tence, where ti ∈ Rdt is the encoded representation of each
word. m is the number of words in the sentence.

Given a query belonging to a specific modality, cross-
modal retrieval aims to find the best possible mated repre-
sentation from a gallery of samples belonging to the other
modality. The similarity of an image and text pair is given
by:

S(V, T ) = f(Φ(V ; θi),Ψ(T ; θj)) (1)

where Φ is an MLP or any other non-linear transforma-
tion and Ψ is a sequence model (ex. LSTM, BERT, etc.)
that projects the corresponding feature representations into
a shared embedding space. θi and θj are the parameters for
the corresponding modalities. f is the function to compute
similarity between the two representations.

Following [15], an optimal strategy to aggregate differ-
ent region level and word level features for cross-modal re-
trieval, is to use a stacked cross attention module. Consider-
ing the objective of image-to-text matching, for each visual
location, an attended combination of word representation a
(i.e. the attended sentence vector ati, with respect to the i-th
image region ait) is constructed as defined below:

sij =
vTi tj

||vi||.||tj ||
, i ∈ [1, n], j ∈ [1,m]

wij =
exp(τ.s̄ij)∑n
j=1 exp(τ.s̄ij)

ati =

m∑
j=1

wij ∗ tj

(2)

where sij is the cosine similarity of each individual L2
normalized word representation j with an image region i
and τ is the inverse temperature of the softmax. The overall
cosine similarity between the image-text pair is given by:

S(V, T ) =
1

n

n∑
i=1

v̂i · âit (3)

In general, given a training set X consisting of image-
text pairs, the objective can be stated as S(Vi, Ti) >
S(Vi, Tj)∀i ̸= j. One of the most widely used loss for-
mulations for such retrieval problems is the triplet loss. The
matching objective can be stated as:

L =
∑

(i,j∼X )

{S(Vj , Ti)− S(Vi, Ti) + α}+

+ {S(Vi, Tj)− S(Vi, Ti) + α}+
(4)

where, [x]+ = max(x, 0).

3.2. Nouns as Proxies

Our analysis of existing objective functions used for
cross-modal retrieval approaches reveal a shortcoming that
we intend to address by improving the optimization criteria.
We first motivate the need for such a regularization and then
present the formulation.

3.2.1 Motivation

In order to get a better understanding of the problem at
hand, let us first consider an example of an image which
has three salient regions and a text string that describes this
image. Following the discussion in the previous section,
we know the visual features that describe the image are
given by V = {v1,v2......vn}. Similarly, T = {t1,t2......tm}
is the set of word level features used to describe the image.
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Figure 2: Overview of the proposed loss function. For each positive sample (text-image pair) in the training mini-batch, we maximize its similarity to its
hard positives in another modality while minimizing similarity to hard negatives. Simultaneously, we compute a noun context vector NV by pooling the
visual and textual features. In the regularization term, we maximize similarity of this noun context vector with respect to relevant learnable semantic proxies
and minimize similarity with respect to irrelevant proxies. The resulting loss is the weighted combination of this pair loss and the regularization term. (Best
viewed in digital.)

Consider vi, vj ,vk, for i,j,k ∈ n, are the location/region
level representation associated with the three salient re-
gions(objects,actions,attributes etc.) and ta,tb,tc for a,b,c ∈
m are words in the sentence that are associated with these
regions. Given the presence of these three salient regions,
it seems logical that the similarity between salient regions
(vi, vj ,vk) and the corresponding attended textual vectors(
ati,a

t
j ,atk) should contribute significantly more to the global

similarity score than the non-salient visual regions. This
objective can be written as

{v̂i ·ati + v̂j ·atj + v̂k ·atk} > {
n∑

x=1

v̂x · âtx, r /∈ i, j, k} (5)

The right hand side of Eq. 5 represents the similarity be-
tween irrelevant/non salient visual regions. In order to fulfil
this additional constraint, ati should have more weightage
(wij) from the corresponding relevant word (tj) in the text.
Enforcing such a constraint is non trivial since the labels for
region level features are either unavailable or the feature ex-
tractors’ predictions are inaccurate. Hence the current loss
formulations fail to provide an explicit supervision to en-
force region word alignment for cross modal retrieval.

3.2.2 Defining Proxies

To provide additional supervision, we make use of the parts
of speech of the words in the sentence describing the image.
Let M = {m1,m2,....ml} be concepts extracted from a sen-
tence, using a standard part-of-speech (POS) tagger, then C
will be the set of all concepts aggregated from all the sen-
tences present in the dataset. Even though the concepts here
can be nouns, verbs, adjective etc, which can have possible
association with image regions, majority of the cross-modal

retrieval methods rely on visual feature extractors like [1]
which was trained to detect objects and attributes. Since we
also rely on these feature extractors, we restrict our concepts
to nouns. Given N as the total number of unique noun enti-
ties that occur more than K times in C, we define P as the
set of (N, d) dimensional learnable proxy embeddings, each
representing a unique noun entity. These proxy embeddings
can be used to provide a notion of shared semantics as ad-
ditional supervision required for the region level image-to-
text alignment. To enable these proxy embeddings to refine
the image-text alignment, we need an aggregated represen-
tation of relevant image and textual features. In order to
achieve this, we introduce the concept of a noun context
vector NV , which is an aggregated representation of visual
and textual regions. To compute the noun context vector,
we first use the individual region to text alignment scores.

S = {v̂i · âti}∀i ∈ n (6)

The relative importance of any visual region can be mea-
sured by how well it aligns with the corresponding attended
sentence vector compared to all the other visual regions.
Formally:

s = softmax(S) (7)

Given the relative importance weights s, the final noun
context vector is created by pooling the visual features and
textual features. This can be written as.

NV = (

n∑
i=1

si ∗ ati)⊙ (

n∑
i=1

si ∗ vi) (8)

Where ⊙ denotes the Hadamard product (Refer Fig. 2).
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Once the NV is computed, we explicitly force the noun
context vector to better align with noun proxies to enhance
the relationship with salient objects, using our proposed
regularization constraint which we call Nouns as Proxies
(NAPReg). Let D+ be the set of all positive image-text
pairs in the training set. If NS = {n1, n2....nl} represent
nouns in a Text T1 then P+ = {p1n, p2n, ...pln} corresponds
to the positive proxies of these nouns and all the other prox-
ies in N are regarded as negatives. If there are multiple
descriptions associated with the same image we aggregate
the noun entities for all text samples, given by:

Nbi = ∪c
j=1NSj (9)

Where Nbi denotes all the noun entities belonging to the
c other descriptions of the ith image. Subsequently, P+ will
also be augmented by adding the corresponding proxies to
the set of positives. This is done to prevent the noun context
vector NV being separated during optimization from prox-
ies associated with nouns that are synonyms of each other.
Following standard practice [31], we formulate the regular-
ization as a log sum of exponents term, which is defined
as:

Lnap =
∑
X

{
1

α1
log

(
1 +
∑
p∈P+

e−α1(Snp−λ1)

)
+

1

β1
log

(
1 +
∑
p/∈P+

eβ1(Snp−λ1)

)} (10)

Where Snp = P̂ · N̂V is the cosine similarity between
the noun context vector and the proxies. One can note that
in the second log-sum-exponent term in regularization, the
noun context vector is pushed away from negative noun
proxies. This is advantageous because some of the nega-
tive proxies would serve as hard negatives, enhancing the
positive region to noun association, and therefore, represen-
tation. Since the regularization is a secondary objective, we
combine this term with the primary objective of separating
positive and negative image-text pairs. We follow a similar
formulation which can be written as:

Lpair =
∑
X

{
1

α2
log

(
1 +

∑
(v,t)∈D+

e−α2(S̄−λ2)

)
+

1

β2
log

(
1 +

∑
(v,t)/∈D+

eβ2(S̄−λ2)

)} (11)

where (v, t) ∈ D+ denotes a positive image-text pair while
(v, t) /∈ D+ denotes an image-text pair that is unrelated. S̄
denotes the mean aggregated similarity score on S for each
image-text pair. The final loss formulation is defined by

L = Lpair + γLnap (12)

4. Experiments

4.1. Datasets

We perform several experiments and ablation studies on
three image-text benchmark datasets: Flickr8k, Flickr30k,
and MSCOCO following the standard protocol used in
[15, 32, 7]. Flickr8k dataset contains 6000 images in the
train, 1000 in the validation and 1000 in the test set. Each
of these images has 5 captions associated with it. Flickr30k
dataset contains 31000 images, with 5 captions per image,
out of which 1000 images are used for testing, 1000 for val-
idation and 29000 for training. We demonstrate the scala-
bility of our loss function on MSCOCO which is a large-
scale benchmark with 123,287 images with five captions
each. We utilize 5000 images for validation, 5000 for test-
ing and 113,287 for training. Results are reported on both
the full 5000 image test set, and the 1000 image test set av-
eraged over 5 folds. The performance is evaluated using
Recall@K metric where K ∈ {1, 5, 10}. We report results
on both text-to-image and image-to-text retrieval tasks.

4.2. Implementation details

For fair comparison, we follow the experimental setup
used by other methods [15, 7, 33]. Following the conven-
tional practice, we extract (36, 2048) dimensional visual
features from the bottom-up attention network pretrained on
the visual genome dataset. A set of word features which are
encoded by a bi-directional Gated Recurrent Unit (GRU)
are used as textual features. For all experiments, we fix the
embedding dimension of the proxies and the feature vec-
tors to 1024. For extracting noun entities from text cap-
tions, we use the nltk part-of-speech tagger before perform-
ing lemmatization and stemming on words. We extract N
proxies from the training dataset by thresholding on the fre-
quency of the particular word in the whole dataset. For
the results reported in the tables we use N = 1551 for
Flickr30k, N = 2275 for MSCOCO and N = 2444 for
Flickr8k as the number of proxies. We use a higher learn-
ing rate for the proxies than the features. The proxy learn-
ing rate for all experiments is 0.08 and the learning rate for
model parameters is 0.0002. For flickr8k, we use γ = 0.30
and for MSCOCO and Flickr30k we use γ = 0.15. For the
other parameters, we used the default settings mentioned
in the implementation of [31](refer supplementary mate-
rial for more details). In order to augment SCAN [15] at-
tention with our regularization, we compute the noun con-
text vector as described in Eq.8 to calculate Lnap, and uti-
lize pair wise image-to-text similarity score S(v, t) com-
puted by [15] to calculate Lpair. Similarly, for augmenting
SGRAF’s [7] similarity graph reasoning module, we utilize
pair wise image-to-text similarity score S(v, t) computed
by [7] to calculate Lpair and extract noun context vector
through Eq.8 that uses attention mechanism as described in
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Table 1: Recall@K(%) performance on Flickr30K dataset

Method Reference Loss Text-to-Image Image-to-Text
R@1 R@5 R@10 R@1 R@5 R@10

BFAN[19] MMM’19 Triplet 50.8 78.4 85.8 68.1 91.4 95.9
IMRAMFull[3] CVPR’20 Triplet 53.9 79.4 87.2 74.1 93 96.6
GSMNSparse[20] CVPR’20 Triplet 53.9 79.7 87.1 71.4 92 96.1
PFANi2t[32] IJCAI’21 Triplet 45.7 74.7 83.6 67.6 90.0 93.8
SCANi2t[15] ECCV’18 Triplet 43.9 74.2 82.8 67.9 89 94.4
SMFEA[9] MMM’21 Triplet 54.7 82.1 88.4 73.7 92.5 96.1
SHAN[11] IJCAI’21 Triplet 55.3 81.3 88.4 74.6 93.5 96.9
VSE∞[5] CVPR’21 Triplet 56.4 83.4 89.9 76.7 94.2 97.7
UWMLi2t[33] CVPR’21 Polyloss 47.5 75.5 83.1 69.4 89.4 95.4
NAAFBiGRU[38] CVPR’22 Polyloss 55.5 81.0 87.9 75.9 93.6 97.7
SGRAFSGR[7] AAAI’21 Triplet 56.2 81 86.5 75.2 93.3 96.6
SCANi2t Ours Ours 51.4 77.6 85.7 70.8 90.9 95.3
SGRAFSGR Ours Ours 58.3 83.1 89.2 79.2 95.3 97.7
SGRAFSGR+SAF[7] AAAI’21 Triplet 58.5 83.0 88.8 77.8 94.1 97.4
SCANi2t+t2i[15] ECCV’18 Triplet 48.6 77.7 85.2 67.4 90.3 95.8
SGRAFSGR+SAF Ours Ours 60.0 84.1 90.2 79.6 95.6 98.0

Methods highlighted in same color use exactly same backbone and aggregation method for comparison. For NAAF we report numbers for
Bi-GRU textual features for fair comparison with all other works. Best results are in bold.

Figure 3: Left Side - Our loss, Right Side - Polyloss. Qualitative results on the Flickr8k. For each query image the top 5 predictions are presented in sorted
order. The results with green boundary represent successful retrievals of a correct image, while images with red boundary are incorrect retrievals. Note -
there is only one correct retrieval per text query in the dataset.(Best viewed in digital)

Eq. 2.

4.3. Comparison with the state-of-the-art
We compare the performance of our proposed loss func-

tion Eq.12 , against the most representative works in the
domain of cross-modal metric learning based retrieval. Fur-
ther, we demonstrate the robustness of the proposed for-
mulation by using it alongside state-of-the-art text-image
matching architectures such as SCAN and SGRAF. In Table
1, we observe that SCANi2t trained with the NAPReg objec-
tive, outperforms all previous SCANi2t based approaches
by a large margin on Flickr30k. Moreover, we estab-
lish a new state-of-the-art result on Flickr30k by train-
ing SGRAFSGR with our regularization. We note that
SGRAFSGR trained with the proposed formulation sur-
passes the original SGRAFSGR trained using a triplet-based

loss by 2.1% R@1 for the text-to-image retrieval task and
4.0 % R@1 for image-to-text retrieval. Futhermore, the
averaging the performance of SGRAFSGR trained using
NAPReg with SGRAF SAF, has 2.0 % improvement in R@1
for text-to-image retrieval . This significant improvement
in the cross-modal retrieval task can be attributed to robust
alignment of the salient image region to the corresponding
text. Table 2 shows results on MSCOCO dataset for 5k
(full test set) and 1k (5 fold) evaluation protocols respec-
tively. Here, we again observe that the addition of NAPReg
improves performance over all existing methods for cross-
modality retrieval. Specifically, using the proposed loss
formulation with SGRAFSGR+SAF provides 1.1% improve-
ment on R@1 for text-to-image matching on the 5K test
set and likewise a 3.7% improvement on R@1 for text-to-
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Table 2: Recall@K(%) performance on MSCOCO dataset

Method Reference Loss Text-to-Image Image-to-Text
R@1 R@5 R@10 R@1 R@5 R@10

MSCOCO - 1K Evaluation
IMRAMFull[3] CVPR’20 Triplet 61.7 89.1 95 76.7 95.6 98.5
GSMNSparse[20] CVPR’20 Triplet 60.4 88.7 95 76.1 95.6 98.3
PFANi2t[32] IJCAI’21 Triplet 53.0 84.5 92.6 70.7 94.1 97.8
SCANi2t[15] ECCV’18 Triplet 54.4 86 93.6 69.2 93.2 97.5
SHAN [11] IJCAI’21 Triplet 62.6 89.6 95.8 76.8 96.3 98.7
VSE ∞ [5] CVPR’21 Triplet 61.7 90.3 95.6 78.5 96.0 98.7
UWMLi2t[33] CVPR’21 Polyloss 56.8 86.7 93 71.1 93.7 98.2
NAAFBiGRU[39] CVPR’22 Triplet 61.3 90.6 96.0 76.8 95.2 98.2
SGRAFSGR[7] AAAI’21 Triplet 61.4 89.3 95.4 78 95.8 98.2
SCANi2t Ours Ours 58.6 87.5 93.8 71.6 94.5 98.2
SGRAFSGR Ours Ours 63.3 90.0 95.6 78.7 96.2 98.8
SCANi2t+t2i ECCV’18 Triplet 58.8 88.4 94.8 72.7 94.8 98.4
SGRAFSGR+SAF AAAI’21 Triplet 63.2 90.7 96.1 79.6 96.2 98.5
SGRAFSGR+SAF Ours Ours 66.9 91.6 96.5 81.9 97.5 99.2

MSCOCO-5K Evaluation
IMRAMFull[3] CVPR’20 Triplet 39.7 69.1 79.8 53.7 83.2 91
SCANi2t[15] ECCV’18 Triplet 34.4 64.2 75.9 46.4 77.4 87.6
UWMLi2t[33] CVPR’21 Polyloss 34.4 64.2 75.9 46.9 77.7 87.6
SGRAFSGR[7] AAAI’21 Triplet 40.2 - 79.8 56.9 - 90.5
SCANi2t Ours Ours 36.5 66.0 77.6 48.0 78.6 88.3
SGRAFSGR Ours Ours 41.7 71.2 81.5 58.0 85.1 91.6
SCANi2t+t2i ECCV’18 Triplet 38.6 69.3 80.4 50.4 82.2 90.0
SGRAFSGR+SAF AAAI’21 Triplet 41.9 - 79.8 57.8 - 91.6
SGRAFSGR+SAF Ours Ours 43.0 72.1 82.4 59.8 86.0 92.6

Methods highlighted in same color use exactly same backbone and aggregation method for comparison. For NAAF we report numbers for
Bi-GRU textual features for fair comparison with all other works. Best results are in bold.

Table 3: Recall@K(%) performance on Flickr8K dataset

Method Reference Loss Text-to-Image Image-to-Text
R@1 R@5 R@10 R@1 R@5 R@10

DeViSE[8] NIPS’13 Hinge 5.9 20.1 29.6 4.8 16.5 27.3
DVSA[13] PAMI’16 Triplet 11.8 32.1 44.7 16.5 40.6 54.2
m-CNN [22] CVPR’15 Triplet 20.3 47.6 61.7 24.8 53.7 67.1
IMRAMImage[3] CVPR’20 Triplet 32 61.4 73.9 48.5 78.1 85.3
SCAN*i2t[15] ECCV’18 Triplet 32.3 62.3 74.3 51.2 77.6 87.2
UWML*i2t[33] CVPR’21 Polyloss 33.3 63.8 75.5 50.7 78.9 88.4
SCANi2t Ours Ours 39.2 69.1 79.7 56.2 82.8 90.7

{*} Papers did not report numbers on Flickr8k. We produce the experimental results using the code provided by the authors. Methods
highlighted in same color use exactly same backbone and aggregation method for comparison. Best results are in bold.

image matching on the 1K test set. Evaluation on the large
scale MSCOCO dataset establishes the scalability of our
loss function for bigger training sets.

4.4. Discussion

Effect of γ on Performance - To understand the be-
haviour of our final loss formulation with varying influence

from the regularization term, we conduct experiments on
Flickr8k for different values of γ. For the experiment, we
use the SCAN[15] architecture. As seen in table 4, we find
that the best performance is obtained when γ = 0.3. After γ
= 0.3, we observe that performance gradually declines be-
cause the regularization in loss begins to overpower the dis-
criminative term. Based on this analysis, we may conclude
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Table 4: Ablation to evaluate effect of Gamma γ on match-
ing performance on Flickr8k dataset.

Gamma γ
Text-to-Image Image-to-Text
R@1 Rsum R@1 Rsum

0.0 37.7 184.3 52.1 226.4
0.1 37.6 184.9 54.4 227.0
0.2 38.1 186.4 54.5 228.4
0.3 39.2 188.0 56.2 229.7
0.4 38.3 186.5 54.8 228.7

Rsum denotes aggregation of R@1, R@5 and R@10

Figure 4: Qualitative analysis of region to word alignment. (a) SCAN
without NAPReg - Shows the top 2 regions attended by each proxy word
in the image on Left and heatmap between the similarity of selected vi-
sually relevant regions and the word proxies on the right. (b) SCAN with
NAPReg. Here the similarity scores are min-max normalized for visual-
ization. 1.0 denotes highly similar and 0.0 denotes highly dissimilar. (Best
viewed in digital)

that for the current experimental setup, a positive value of γ
in the range of [0.1-0.3] produces the best results. Further,
from our experiments on other datasets we conclude that the
optimal value of γ is greater for smaller datasets compared
to the larger ones. This can be attributed to the fact that
in the smaller datasets, there are fewer image-text instances
available for the network to learn how to align the salient re-
gion to the noun text correctly, when compared with larger
datasets. A larger value of γ provides more weightage to
the above mentioned alignment process for each image-text
pair.

Qualitative results - Qualitative results for top-5 recall
on Flickr8k dataset can be seen in Figure 2. The exam-

ples shown demonstrate that our method produces better
retrieval results. In the first row, we can see that a better
alignment of the nouns to the salient regions helps to re-
trieve an image that best matches the query. Another in-
teresting observation (second row) is that the model trained
with our loss formulation can distinguish between a wind-
surf and a surfboard. Since both windsurf and surfboard
mostly occur in a similar image setting, the alignment of
corresponding region-text is challenging. However, when
utilizing NAPReg regularization, developing a robust rep-
resentation is easier because both windsurf and surfboard
have independent proxies that behave as negatives to each
other. This result provides qualitative validation of the the-
oretical analysis presented for the proposed method.

Figure 4a shows the attention map generated for each
salient object in the image, with and without our regular-
ization term. As one can see, the alignment between the
text and the image region is much more refined when us-
ing our regularization. Furthermore, it is able to distinguish
between the image regions corresponding to cat and dog,
even when there is only a subtle difference between the two.
Another interesting observation is that when using regular-
ization, the model is able to identify various relevant larger
regions that correlate to the term water. Figure 4b shows
the similarity score (min-max normalized) of selected visu-
ally relevant regions with semantically dominant words in
the description. It can be seen that the similarity score of
the visual region containing the cat and the dog is highest
for the corresponding word in the text. Furthermore, the
magnitude of the scores has also increased in comparison to
the model without the proposed regularization. This shows
that the alignment generated by our proposed loss function
is superior to that of prior loss formulations.

5. Conclusion

Cross-Modal image-text retrieval finds application in a
variety of challenging domains. Further, developing feature
representations for both modalities that can map semantic
relationships between visual and text elements is critical.
As can be seen from different attention methods, the ob-
jective function used for creating these representations also
plays a crucial role. In this work, we have identified an
inadequacy in existing loss formulations where they lack
the much needed emphasis on alignment of salient regions
in an image-text pair. To address this limitation, we have
proposed a novel regularization. We have provided a the-
oretical basis for the proposed proxy-based regularization
and show, using both qualitative and quantitative results,
that this novel formulation aids in the creation of more gen-
eralizable representations. The proposed method achieves
state-of-the-art results on all three standard image-text re-
trieval datasets.
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