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Abstract
Visual question answering is a vision-and-language mul-

timodal task, that aims at predicting answers given sam-
ples from the question and image modalities. Most recent
methods focus on learning a good joint embedding space of
images and questions, either by improving the interaction
between these two modalities, or by making it a more dis-
criminant space. However, how informative this joint space
is, has not been well explored. In this paper, we propose
a novel regularization for VQA models, Constrained Opti-
mization using Barlow’s theory (COB), that improves the
information content of the joint space by minimizing the re-
dundancy. It reduces the correlation between the learned
feature components and thereby disentangles semantic con-
cepts. Our model also aligns the joint space with the answer
embedding space, where we consider the answer and im-
age+question as two different ‘views’ of what in essence is
the same semantic information. We propose a constrained
optimization policy to balance the categorical and redun-
dancy minimization forces. When built on the state-of-the-
art GGE model, the resulting model improves VQA accu-
racy by 1.4% and 4% on the VQA-CP v2 and VQA v2
datasets respectively. The model also exhibits better inter-
pretability. Code is made available: https://github.

com/abskjha/Barlow-constrained-VQA

1. Introduction
Visual question answering (VQA) [4] is a challenging

vision-and-language task. It involves reasoning about a vi-
sual scene based on a free-form natural language question.
Answering the question requires learning semantic associa-
tions between concepts across the two modalities. As differ-
ent questions and images referring to the same kind of query
and scene should yield a similar answer, learning semantics
in the individual modalities and their cross-modal interac-
tions is essential for solving VQA. Many recent works ap-
proach this by learning a joint embedding space [37, 30, 14]
or by modeling an attention mechanism [43, 13, 25, 44] in
one modality conditioned upon the other. Another line of
work tries to improve the discriminant power [24] of the
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Figure 1: COB: we propose a set of redundancy minimiza-
tion constraints C (green region) which are applied along
with a cross-entropy loss LCE (yellow region). The final
COB loss LCOB is the weighted sum of constraint loss
with cross-entropy loss, where the weight is dynamically
updated using a loss balancing module.

joint embedding space to improve the answering perfor-
mance. These have been important contributions.

However, high discriminant power of a feature space
does not imply high information content [23]. While a
highly discriminant space may yield better performance on
a loss-specific task by modelling the most discriminant fea-
tures for a given data distribution, it may be more sus-
ceptible to changes in that data distribution. A discrimi-
nant space subjected to an additional information preserv-
ing constraint, on the other hand, may yield a richer feature
space that can generalize better to previously unseen data.

In this paper, we propose a redundancy reduction con-
straint, inspired by Barlow’s third hypothesis [5] on sen-
sory message transformations, to incorporate more infor-
mation in the joint feature space. This third hypothesis
(Redundancy-reducing hypothesis), states “that sensory re-
lays recode sensory messages so that their redundancy is
reduced but comparatively little information is lost.”

Redundancy in a feature space arises when multiple fea-
ture components cover the same semantic concept. Taking
into account the fixed dimensionality of the feature space,
this causes the overall information content of the feature
space to be suboptimal. A less redundant feature space can
model the same information with fewer feature dimensions,
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or more information with the same number of feature di-
mensions. This results in a more informative embedding
space that model multimodal concepts better and thereby
provide a superior VQA performance.

To address this challenge for VQA, we propose an
additional decorrelation loss term besides the categorical
loss for predicting the answers. This additional loss term
encourages decorrelation across feature components and
thereby improves the information content of the embed-
ding space. Recently for the self-supervised representa-
tion learning task, Zbontar et al. [46], with their Barlow
twins model, have shown that a decorrelation loss, mod-
elled according to Barlow’s Redundancy reduction hypoth-
esis, when applied to two views of the same data encoded
by the twins model, can act as a good supervisory signal to
learn visual features. Here, we use a similar decorrelation
formulation as Barlow twins [46], but reformulated for two
multimodal views of the data. We pose that the informa-
tion to be extracted from the image+question input ideally
corresponds to the information present in the answer. In
other words, image+question and answer can be considered
as two different ‘views’ of the same content. When comput-
ing the correlation, we therefore not only consider the auto-
correlation in the joint image+question space, but also the
cross-correlation between answer and joint space, as well as
the auto-correlation in answer space. As an additional ad-
vantage, this brings in information about the semantic simi-
larity between answers via the word embedding used for the
answer space. Our full pipeline, combining categorical loss
with redundancy reduction is shown in Figure 1.

We also found that directly applying the decorrelation
minimization loss (Barlow loss) to a randomly initialized
embedding space yields a very high loss. As a result,
naively adding a Barlow loss, next to the cross-entropy loss,
results in inferior VQA results. On the other hand, when ap-
plying the Barlow loss to the already aligned (pre-trained by
cross-entropy) embedding space, this issue does not occur
(see Section 4.2). Based on this empirical evidence, we for-
malize a parametric constrained optimization policy to bal-
ance the two forces. This results in a more informative and
discriminant embedding space, leading to an improvement
in the answering accuracy. In summary, our contributions
are as follows:

(i) We propose the COB regularization which focuses on
redundancy reduction between the joint embedding space
of questions and images and the answer embedding space,
to improve the information content of a VQA model.

(ii) We propose a policy to balance the categorical and
redundancy reduction forces to train the model.

(iii) We improve the state-of-the-art performance on the
challenging VQA v2 [15] and VQA-CP v2 [2] datasets.

(iv) Our proposed method improves the interpretability
of the VQA model it builds on.

2. Related work
Visual question answering: VQA has taken up mo-

mentum after the introduction of a standard dataset VQA
[4] and early multimodal techniques to solve this problem
[31, 4, 20]. Initial approaches [37, 30, 14] jointly analyze
visual and question feature embeddings by concatenating or
correlating both features. In later works [43, 13, 25, 44], it
was observed that attending to specific parts in the images
and questions helps to better reason and answer. The sub-
sequent discovery of language bias in the standard VQA
dataset led towards less biased datasets and more robust
models. Agrawal et al. [2] proposed VQA-CP v1 and VQA-
CP v2 to overcome the language and distributional bias of
the VQA v1 [4] and v2 [15] datasets. A critical reasoning-
based method proposed by Wu et al. [42] ensured the cor-
rect answers match the most influential visual regions to
overcome the dataset bias. Various authors such as Ramakr-
ishnan et al. [36] proposed an adversarial-based method,
and Jing et al. [22] decomposed a linguistic representation
technique to overcome language prior in VQA. Clark et
al. [9] proposed an ensemble based method to avoid known
dataset bias, while Han et al. [16] proposed a gradient en-
semble method to overcome both shortcut bias and distri-
butional bias in the dataset. Hence, most methods focus
on regularisation techniques to overcome language bias. In
this paper, we focus on a regularisation technique to reduce
redundancy in the VQA model, and show this further im-
proves its performance.

Redundancy reduction: Dimensionality reduction is
one way of reducing redundancy of a feature space, i.e.
by minimizing the number of feature components required
to model the data. Linear dimensionality reduction tech-
niques like Principal Component Analysis (PCA) [35] for
a single modality provide a mapping between the original
feature space and the space spanned by principal compo-
nents. In this new space low energy principal components
can be dropped with a minimal loss of information. Simi-
larly for multiple modalities, Canonical Correlation Analy-
sis (CCA)-like techniques [19, 17] provide a linear mapping
between individual modalities and a smaller joint embed-
ding space. After CCA, the projections of the modalities
are highly correlated, but they are decorrelated across the re-
sulting feature dimensions. Our proposed method promotes
the learning of decorrelated feature components similar to
PCA and CCA. However, unlike PCA and CCA, the learned
projection between the original features and the decorre-
lated component space is non-linear.

Recently, Kalantidis et al. [23] proposed a twin-loss sim-
ilar to the Barlow twin loss of Zbontar et al. [46] to learn
a non-linear dimensionality reduction, as an alternative to
PCA. They train a twin encoder-decoder architecture with
a decorrelation optimization between the output projections
of the nearest neighbors in the input space. Our method is
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similar to [23] in the way our constraint is motivated, how-
ever it is not the primary objective function in our model.
We optimize cross-entropy to maximize the answering ac-
curacy, with the decorrelation as an optimization constraint.

Decorrelation loss: Decorrelation losses are often used
in recent representation learning methods [46, 6, 23] by
using a shared twin encoder-decoder architecture on two
views of the same samples coming from a unimodal space,
while minimizing the distance between an identity matrix
and the correlation matrix of the output representations.
This forces the feature components in the output embed-
ding space to be orthogonal. In our case, the inputs come
from two different modalities, and hence it differs from the
twins formulation. The hypothesis behind the use of our
proposed constraint on two different modalities is motivated
by the assumption that image-question pairs and their an-
swers should be related to the same underlying concept.

Stabilizing losses: Optimizing networks for differ-
ent objectives requires balancing or weighting the loss
gradients, especially for the objectives that are non-
complementary [45, 1, 27, 18], as they force the feature
space to sway in two different directions [27, 18]. Improper
balancing of such objectives can lead to trivial solutions
[18, 38], and hence the loss weighting factor is an important
hyperparameter. Rezende and Viola [38] propose a gener-
alized ELBO loss with constrained optimization (GECO),
a learnable weighting scheme for balancing KL divergence
and the reconstruction loss in the context of training varia-
tional auto-encoders [27]. We propose a similar constrained
optimization formulation for the cross-entropy loss in our
approach, that assigns a dynamic weight to the constraint.
Unlike GECO, our objective function and constraint do not
have similar scales, with the initial constraint loss being or-
ders of magnitude larger than the main objective function.

3. Method
3.1. Preliminaries

VQA formulation: The VQA task with cross-entropy
loss can be defined as modelling the categorical distribution
over a fixed answer vocabulary given a set of image and
question pairs. For a data distribution D for this problem
with an instance dk = {vk, qk, ak} ∈ DV QA, the task is
to predict an answer ak ∈ DA, given an image vk ∈ DV

based on a question qk ∈ DQ. Contemporary methods
[4, 37, 30, 14] solve this task by first encoding each of the
two modalities using pre-trained encoders ev, eq , and then
learning a joint representation over them. Each instance pair
(vk, qk) can then be represented by a point mf

k ∈ DM in this
joint representation space:

mf
k = fθJ

(
ev(vk), eq(qk)

)
(1)

ml
k = lθL(m

f
k) (2)

where fθJ is the joint network with parameters θJ , and lθL
with parameters θL is the logistic projection, which along

with the softmax non-linearity, is used to predict the prob-
ability distribution over the answer space DA. A cross-
entropy loss (LCE) between the resulting probability scores
and the ground truth answer ak is then computed. For a
batch: (V,Q,A,Mf ,M l) consisting of nb number of sam-
ples (vk, qk, ak,m

f
k ,m

l
k), the cross-entropy loss can be de-

fined as:
LCE(M

l, A) = − 1

nb

∑
k

log

(
exp(ml

k[ak])∑
a′∈DA exp(ml

k[a
′])

)
(3)

where ml
k[ak] is the logit corresponding to the answer ak.

The resulting gradient is then used to train the parameters
of the VQA network.

Barlow twins formulation: In order to reduce redun-
dancy among the feature components, Zbontar et al. [46]
propose a distance minimization loss between an identity
matrix (I → RNB×NB ) and the correlation matrix (C ∈
DB × DB) computed between the non-linear projections
bθB (.) of the encoded representation es(.) of the two aug-
mented views (sk|1, sk|2) of the same input sk ∈ DS . For
a batch S = {sk}nb

k=1 of nb such samples, and its two aug-
mented views S1 and S2, the Barlow projections are:

Sb
1 = bθB (es(S1));S

b
2 = bθB (es(S2)) (4)

C(Sb
1, S

b
2) = Norm(Sb

1)⊗Norm(Sb
2) (5)

where es is the modality specific feature encoder, bθB is
the non-linear projector from the encoded feature space to
a NB dimensional Barlow optimization space DB , while
Norm(.) is a normalization function along the batch [21].
Each element of the correlation matrix CS = C(Sb

1, S
b
2)

can be indexed by (i, j), as CS
ij :

CS
ij =

∑
k s

b
k|1[i]s

b
k|2[j]√∑

k(s
b
k|1[i])

2
√∑

k(s
b
k|2[j])

2
(6)

LS
B =

∑
i

(1− CS
ii)

2 + γ
∑
i

∑
j

(CS
ij)

2 (7)

where 1 ≤ i, j ≤ NB indexes the feature components
of the kth sample (sbk|1, s

b
k|2 ∈ DB) in the projected batch

(Sb
1, S

b
2). The first term in equation 7, minimizes the dis-

tance between the two projected representations while the
second term promotes decorrelation across the feature com-
ponents, with γ a positive hyperparameter to weight the two
loss terms. Our goal is to learn a discriminant space DM ,
that minimizes LCE while reducing the redundancy, by re-
formulating the unimodal barlow decorrelation loss LS

B for
a multimodal input space (DM ,DA).

3.2. Objective function formulation
A typical classification based VQA task can be modelled

with equations 1 to 3. Different methodological improve-
ments have emerged either in the base encoders (ev, eq), the
multimodal interaction between vision and language (fθJ ),
or the reasoning network (lθL ) over the joint embedding.
Here, we use Greedy Gradient Ensemble (GGE) [16] as our
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Figure 2: Overall model: We present the overall COB model, with both classification loss and Barlow redundancy reduction
constraint. We explain notations and corresponding components in detail, in section 3. We also provide a glossary of all the
used notations in the supplementary. All the θ parameters are learned, while the encoders {ev, eq, ea} are pre-trained models.
During evaluation we only use the classification stream (in yellow) and drop the joint and answer projectors.

baseline and use it as our backbone VQA model. The GGE-
DQ method optimizes both distribution bias and question
short-cut bias. It first optimizes a loss between the logit
value of a question-only model with the gradient of distri-
butional bias, and then in a second stage, it obtains a loss
between the answer logit of the VQA model with a gradi-
ent of both distribution bias and question short-cut bias, as
discussed in eq. 16 in [16]. The joint network of the GGE
model can be approximated as fθJ . Hence, our objective
function to optimize is the cross-entropy (LCE) in eq. 3.

3.3. Baseline model with Barlow loss
First, we combine the cross-entropy objective function

LCE with a decorrelation loss, see Fig. 2. For a set of
encoded question and image representations, eq(Q) and
ev(V ), we obtain a joint representation Mf using eq. 1.
This joint representation Mf becomes one of the two
modalities which we want to decorrelate. The second
modality is the answer space encoded by Aa = ea(A). We
then compute three decorrelation losses: unimodal joint em-
bedding loss LM

B , unimodal answer embedding loss LA
B and

a multimodal embedding loss LMA
B :

CM = C(bθBM
(Mf ), bθBM

(Mf )) (8)

CA = C(bθBA
(Aa), bθBA

(Aa)) (9)

CMA = C(bθBM
(Mf ), bθBA

(Aa)) (10)

LO
B =

{∑
i

(1− CO
ii )

2 + γ
∑
i

∑
j

(CO
ij )

2

}
O∈{M,A,MA}

(11)

LB = LM
B + LA

B + LMA
B (12)

where C(.) is defined in eq. 5. Hence, the overall loss
Lallbase

for our baseline model becomes:

Lallbase = LCE + LB (13)

Here, the first loss term is to enforce the discriminative
property on the joint features mf

k , while the second term re-
duces correlation between the feature components in both

projected answer space and the joint image-and-question
space. The gradient of the loss term LB in eq. 13, is back-
propagated to update fθJ , which optimizes its parameters to
learn the joint representations mf

k to become less redundant.
This results in a joint embedding space that is discriminant
and informative.
3.4. Balancing the two losses

Contrary to our initial expectations, we observed that,
when optimizing the overall loss defined in equation 13,
the classification performance actually decreases, (see Sec-
tion 4.2). We conjecture that this decrease in performance
occurs because of the difference in the dynamic range of
the two loss terms. These losses are non-complementary
and promote different properties in the embedding space.
While cross-entropy makes the joint embedding space more
discriminative, decorrelation tries to make the feature com-
ponents orthogonal. An optimal weighing of the two loss
terms is needed to ensure a rich representation that is dis-
criminative while being informative. We propose two dif-
ferent approaches to achieve this:

a) Align then Barlow (ATB): This is our intermediate
model, given to better understand the dynamics between the
cross-entropy loss and the decorrelation constraints. In this
setup, the VQA network is first pre-trained with the cross-
entropy loss for n number of epochs and then fine-tuned
with both loss terms, equation 13, till the loss converges.
The resulting loss LallATB

can be written as:

LallATB =

{
LCE , if epoch ≤ n
1
2

(
LCE + LB

)
, otherwise

(14)

On analysing the Barlow twins [46] evaluation loss
curve, we observe that the Barlow loss requires a large num-
ber of epochs to converge (∼ 1000). This suggests that the
Barlow twins loss surface is flatter requiring more gradient
cycles to converge. Therefore a pre-training step to learn a
meaningful representation can expedite the convergence as
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orthogonalization of learned features can be viewed as ro-
tating them in the representation space. In contrast, for a
randomly initialized feature space, the network has to learn
meaningful features and perform rotation simultaneously.

b) Constrained optimization using Barlow’s theory
(COB): The Barlow decorrelation loss on a randomly ini-
tialized joint embedding space is orders of magnitude larger
than the cross-entropy, as shown in Figure 3. This high
imbalance in the losses forces the network to move to-
wards decorrelation optimization, and as discussed before,
the decorrelation loss surface is flatter and hence the net-
work does not converge when having a high loss imbalance.
However, if the network is pre-trained with cross-entropy
loss for certain number of epochs, the Barlow decorrelation
loss decreases swiftly. This calls for a dynamic weighing
scheme which changes based on the degree of imbalance
between the two losses. Inspired by [38], we propose a con-
strained optimization formulation of equation 13 to dynam-
ically control the weights assignment to the two loss terms:

LallCOB = LCE ; subject to Ct ≤ 0 (15)

Ct = αCt−1 + (1− α)(LB − κ) (16)

where Ct captures the momentum of Barlow constraint
LB per epoch with α being the momentum factor and κ is a
tolerance hyperparameter [38]. The above equation 15 can
be rewritten as a non-constrained optimization problem:

Lall
COBλ = LCE + λtCt (17)

λt ← λt−1 exp(Ct) (18)

where λt is the Lagrange multiplier (λ) at iteration t. The
change in λ is directly proportional to the exponential of the
magnitude of the Barlow constraint. Here, λt is initialized
with a small value to bring both the loss terms in a similar
range. While LB itself consists of three loss terms, equa-
tion 12, we use a single value of λt to weight all of them,
as their values vary in a similar range. This simplifies the
overall formulation and reduces the number of non-gradient
parameters (λ) to update.

4. Experiments
Evaluation Metric: We use the answering accuracy, the

standard evaluation metric for VQA [4], to evaluate all our
models. We use another metric Correctly Grounding Dif-
ference (CGD) [16], which is the difference of CGR[41]
(Correct Grounding for Right prediction) and CGW (Cor-
rect Grounding but Wrong prediction) to evaluate the visual
grounding of a method. To evaluate our proposed model
we conduct experiments on the standard VQA v2 [15] and
language-bias sensitive VQA-CP v2 [2] datasets. We dis-
cuss more about the datasets in the supplementary.

4.1. Training details
We train our COB model using the classification loss and

the Barlow loss in an end-to-end manner. We use GGE-DQ-
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Figure 3: We plot the loss functions for our COB model
during training along with Lagrange multiplier λ.
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Figure 4: Ablation analysis: Applying Barlow loss after cer-
tain epoch. Individual scores for Y/N, Number and “Other”
scores are present in supplementary. (In this figure, An

stands for ATBn, n is the number of pre-trained epochs)

iter [16] as our base model. To update model parameters,
we use the AdaMax [26] optimizer with configured hyper-
parameter values as follows: {learning rate = 0.001, batch
size = 512, beta = 0.95, alpha = 0.99 and epsilon = 1e-8}.
To train this COB model, we configure the hyperparameters
of the constraint formulation as follows: λ is a learnable
parameter, and it updates based on the moving average of
the constraint loss as discussed in Section 3.4. We initialize
with λinit = 0.0001. The value of λ updates after every 100
iterations (called step size), based on the Barlow constraint
loss value. The constraint loss depends on the previous con-
straint value and current value with a factor of α = 0.99
and (1 − α) as shown in equation 16. Initially, the λ value
starts increasing, and after the Barlow loss (LB) reaches the
threshold value (κ = 2.63), it starts decreasing as shown
in Figure 3. More details about the model architecture are
provided in the supplementary.

4.2. Ablation: Epoch analysis for ATB
In this section, we discuss the effect of the pre-training

epochs for the ATB model on the final VQA performance.
This analysis is critical as it demonstrates that naive ad-
dition of the two loss terms, as in equation 13, is not the
best training policy. Figure 4 shows the performance of
our ATB model at convergence for different pre-training
epochs. Without pre-training, a drop in performance of
more than 2% can be observed. When the model is fine-
tuned on lesser amount of pre-training (n < 11), the per-
formance is inferior at convergence. As the initial loss of
Barlow decorrelation is orders of magnitude higher, and the
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Table 1: SOTA: VQA-CP v2 accuracy on test-set and VQA v2 accuracy on val set. Methods with * use extra annota-
tions (e.g., human attention (HAT) [10], explanations (VQA-X) [34], or object label information). GGE-iter (impl.) is our
implementation of GGE-DQ-iter[16] model. We sort Table-1 based on VQA-CP v2 scores.

VQA-CP v2 [2] test VQA v2 [15] val
Models All Y/N Number Other CGD All Y/N Number Other
CSS(UpDn)* [8] 41.16 43.96 12.78 47.48 8.23 59.21 72.97 40.00 55.13
AdvReg.[36] 41.17 65.49 15.48 35.48 - 62.75 79.84 42.35 55.16
RUBi [7] 45.42 63.03 11.91 44.33 6.27 58.19 63.04 41.00 54.43
Hint*[40] 47.50 67.21 10.67 46.80 10.34 63.38 81.18 42.14 55.66
GVQE*[28] 48.75 - - - - 64.04 - - -
LM [9] 48.78 70.37 14.24 46.42 11.33 63.26 81.16 42.22 55.22
DLP [22] 48.87 70.99 18.72 45.57 - 57.96 76.82 39.33 48.54
SCR* [42] 49.45 72.36 10.93 48.02 - 62.20 78.8 41.6 54.4
LMH[9] 52.73 72.95 31.90 47.79 10.60 56.35 65.06 37.63 54.69
CF-VQA[33] 53.69 91.25 12.80 45.23 - 63.65 82.63 44.01 54.38
GGE-iter[16] 57.12 87.35 26.16 49.77 16.44 59.30 73.63 40.30 54.29
GGE-iter (impl.) 56.08 86.64 22.15 49.38 15.92 58.92 72.00 40.13 53.95
COB(ours) 57.53 88.36 28.81 49.27 16.89 63.80 81.36 43.30 55.86
CSS(LMH)*[8] 58.21 83.65 40.73 48.14 8.81 53.15 61.20 37.65 53.36

two loss terms are non-complementary, the resulting gradi-
ent for cross-entropy loss is relatively weaker to learn good
discriminative features. We also observe that the accuracy
increases with increase in pre-training epochs, this happens
as the loss for Barlow decorrelation for a pre-trained feature
space converges faster. Since for a pre-trained feature space,
decorrelation is analogous to rotating the feature compo-
nents towards their orthogonal principal axis, the Barlow
decorrelation loss finds it easier to converge. This results in
gradients for both cross-entropy loss and Barlow decorrela-
tion to be comparable, and hence results in learning a richer
feature space. Finally, we see a drop in performance, for a
larger pre-training epoch (n > 12). For a larger number of
pre-training epochs, the validation cross-entropy loss starts
to overfit and the non-complementary Barlow decorrelation
loss no longer improves the performance.

Table 2: Ablation analysis of our approach

Method LCE LM
B LMA

B LA
B All Y/N Number Other

GGE ✓ 56.08 86.64 22.15 49.38
COBM ✓ ✓ 57.03 87.17 26.67 49.57
COBMA ✓ ✓ 56.77 86.84 24.83 49.75
COBM,MA ✓ ✓ ✓ 57.49 86.57 30.12 49.77
COB ✓ ✓ ✓ ✓ 57.53 88.36 28.81 49.27

4.3. Ablation of the proposed approach
Our constraint formulation LB consists of three loss

terms LM
B , LA

B and LMA
B , equation 12. To understand the

importance of each of these loss terms, we ablate them in-
dividually in the constraint and re-train the COB model.
For the model with only LM

B loss, i.e. COBM, the an-
swering accuracy is 57.03%, better than the baseline GGE
model, as shown in Table 2. This shows that increasing
information content (or minimizing the redundancy) of the
joint features helps VQA performance. COBMA, that con-
tains the constraint term LMA

B , forces the model to learn
an alignment between the answer and the joint features in
the projected Barlow space while maintaining the decorre-

lation between the feature components. The gradients from
LMA
B provide an additional supervision along with LCE to

help the underlying joint embedding space mf
k to learn fea-

tures relevant to the answer, resulting in an answering per-
formance of 56.77%, Table 2. Combining the these two
constraint terms, LM

B and LMA
B , in COBM,MA results in

an increased performance of 57.49%. Finally, COB model
contains all three loss terms, the additional LA

B improves the
information content of the answer embedding. This further
assists the LMA

B loss to learn a better alignment between
the less redundant joint and the answer embedding spaces,
outperforming the other three ablated baselines. This abla-
tion analysis shows that each of the three loss terms in our
constraint provides a different supervision to the model and
thereby improves the underlying joint representations.

4.4. Comparison with state-of-the-art
We provide performance results on two datasets, chal-

lenging VQA-CP v2[2] that has a less language bias and a
standard VQA v2[15] dataset in Table 1. CSS[8] & CF-
VQA[33] use counterfactual examples to overcome bias,
AdvReg[36] uses regularisation techniques, HINT[40] &
SCR[42] use grounding techniques, RUBi[7], LM[9] and
GGE[16] use ensemble methods, GVQE [28] & DLP[22]
use new encoder based method to overcome language and
dataset bias. Some methods use extra annotations to im-
prove debiasing performance, but our method does not use
any extra annotations and performs better than most current
state-of-the-art (SOTA) methods with better explainability
in the results (see Section 5.1). Our implementation of
GGE model performance is 56.08% and 58.92% on VQA-
CP v2 and VQA v2 datasets respectively. In comparison,
our COB model, built upon the base GGE model, obtains a
performance of 57.53% and 63.80%, which is an improve-
ment of 1.4% and 4.9% respectively. We also outperform
the official GGE [16] performance. Our COB model out-
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Figure 5: Qualitative results: Each set of images show the input image-question pair and top-5 predictions for our proposed
COB model compared against the baseline GGE-DQ-iter model. Red bounding box shows the maximal attention region in
each image. Answers within the green boxes are the ground truths. We see that COB performs better with higher prediction
score to the ground truth answer in comparison to the baseline method (a)-(e). For negative results (d)-(f) as well, the
predicted classes are semantically relevant. This is further analyzed in the context of the explainability in section 5.1. We
provide more qualitative results in supplementary.
Ques: What color are the chairs      Ans (GT): green Ques: Does the plane have propellers?           Ans (GT): Yes

GGE-DQ-ITER COB (our)Image GGE-DQ-ITER COB (our)Image

Ques: How many horses?      Ans (GT): 1

GGE-DQ-ITER COB (our)Image

Ques: What is the man carrying?            Ans (GT): kite

GGE-DQ-ITER COB (our)Image

Figure 6: Explainability of the models: Given an image and a question, we show the
class activation maps for the samples in the joint embedding space mj

k correspond-
ing to the answer. We observe that the COB model’s Grad-CAM outputs are better
localized in the salient regions for answering the question. More examples are shown
in supplementary.

(a) COB-GGE vs Baseline GGE

(b) COB-UpDn vs Baseline UpDn
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Figure 7: PCA analysis COB vs
baselines

performs other SOTA methods, that do not use extra anno-
tations, for overall answer prediction task on both VQA-
CP v2 and VQA v2 datasets, as presented in Table 1. We
also improve overall CGD score by 0.45 units, which shows
that our model is able to learn a better grounding between
vision-and-language modalities.

4.5. Qualitative results
Figure 5 illustrates top-5 answers and probability scores

for a few examples. We compare our qualitative results with
the most recent state-of-the-art method GGE-DQ [16]. In
the first and third examples (part a and c of Figure 5), our
COB model attends a more precise salient region leading to
a correct answer as compared to GGE-DQ model whose at-
tention region extends over a larger non-salient region, thus
answering incorrectly. For the second image, both the mod-
els focus on the same region, however COB assigns a higher

probability score to the correct answer. These results indi-
cate that the more informative latent features provide bet-
ter reasoning, improving the localization and the probabil-
ity scores for the correct answers compared to the baseline
method. Similarly, we show results for various combina-
tions of attention and answer prediction results.

5. Analysis and Discussion
5.1. Explainability: Grad-Class activation maps

Reasoning is an essential part of question answering, and
is directly influenced by the quality of the joint represen-
tation space. Hence it is crucial to study what the model
has learned and how it processes the input data. This in-
terpretability of a model is even more important for failure
cases, in order to understand the cause of failure and model
shortcomings. We use Grad-CAM[39] as an indicative of
model interpretability by computing the saliency for an im-
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Cumulative energy for top-k PCA components (in%)

NB k=512 k=256 k=128 k=64
512 100 99.8 99.3 94.1
1024 99.9 99.5 98.1 80.4
2048 99.7 98.5 91.1 65.0
4096 98.8 95.7 85.2 59.9

Table 3: Projector dimensionality (NB) selection: PCA
energy for top-k components for different Barlow projection
(bθB ) dimensions.

age given the question and the ground truth answer. We an-
alyze our COB and the SOTA baseline model [16], trained
on VQA-CP v2, in the context of model interpretability in
Figure 6. We observe that our model produces more in-
terpretable regions compared to the baseline GGE model,
which also indicates the reason for a higher CGD score in
Table 1. For both examples, our model focuses on correct
regions that are salient for the answer prediction.

5.2. Redundancy, information and VQA:
COB aims to reduce redundancy in the Barlow space,

and in turn makes the joint representation (i.e. the output
of the joint projection layer on top of the fixed encoders)
less redundant. A less redundant joint projector would cap-
ture the least redundant information from the output space
of fixed encoders and project them into the joint representa-
tion space. We perform PCA analysis in this joint projection
space for GGE and COB-GGE models. We observe that for
COB-GGE, top-350 eigenvectors amounts to 99% energy,
against top-440 for GGE, Figure 7. For another base model,
UpDn [3], that uses top-556 eigenvectors to capture 99%
energy, our COB-UpDn variant uses top-349 eigenvector.
This shows COB forces the joint space to capture least re-
dundant information from the fixed encoder spaces. Hence,
only most informative features are captured. It also means
the effective remaining capacity of the joint space is in-
creased. In other words, more information (additional data;
a possible future research direction) can be modelled in the
same number of feature dimensions or the same amount of
information (fixed encoder output space; i.e. our case) can
be modelled in a lesser number of feature dimensions.

5.3. Projector dimensionality selection
Zbontar et al. [46] show that increase in the projec-

tor’s (bθB ) output dimensions (NB) improves the input self-
supervised feature space. However, for our Barlow decor-
relation constraint we found that larger projection spaces,
DB → RNB for NB ∈ {1024, 2048, 4096}, have more
redundant components. To analyse this, we compute the
PCA eigenvalues for the representations for higher projec-
tion spaces, as shown in Table 3. We observe that top-
512 components can preserve ∼ 99% of total energy of
the embedding space and hence we choose NB = 512
as the projection dimension for the Barlow projectors (i.e.
bθBM

, bθBA
). In supplementary, we provide more ablation

analysis and pseudo-code for our methods.

Methods (test)
MAML[12] 59.6
MEVF[32] 62.7
MMQ[11] 67.7
QCR[47] 71.6
COB-QCR 71.9

Table 4: VQA-Rad dataset

Methods GQA(testdev)
MAC 41.2
COB-MAC 42.1

Table 5: GQA dataset.
(Base repository, MAC:
https://github.com/ronilp/mac-
network-pytorch-gqa)

5.4. Generalizability
Here, we evaluate our COB method on two more

datasets: a real world visual reasoning dataset (GQA[20])
and a dataset of clinically generated VQA about radiology
images (VQA-Rad[29]). We compare the COB method on
QCR model on VQA-Rad dataset and on MAC model for
GQA dataset as shown in the Table 4 and 5 respectively.
COB works well in both. In sections 4.2 and 4.5, we show
that ATB and COB models built upon the base GGE outper-
forms it by learning a more informative latent space, Figure
6. GGE [16] model is the SOTA for VQA, and hence while
improving it validates our proposed models, it also raises
the question if the improvement in the results only comes
due to the better latent features of the base GGE model;
i.e. does the improvement in results is dependent on the
better quality of the base model. To study this we apply
ATB and COB constraints on the UpDn [3] model, which
itself is the base of GGE model. The resulting ATB-UpDn
and COB-UpDn models outperform (answering accuracy:
47.36% and 48.24% respectively) the base UpDn model
(39.38%) by a significant margin on VQA-CP v2. This
shows that our constraint formulation, despite being limited
by the quality of the base model, imposes a regularization
on the latent features to be more informative, resulting in an
improved performance over the corresponding baseline.

6. Conclusion
We propose a new VQA regularization scheme called

COB that optimizes cross-entropy loss while subjected to
a redundancy minimization constraint. Cross-modal Bar-
low decorrelation loss as the constraint formulation pro-
motes the alignment of the answer with image-and-question
modalities while improving the information content of the
underlying feature space. We propose two training policies,
ATB and COB, to balance these two losses. We show that
both ATB and COB outperform the most recent SOTA base-
line (GGE), Table 2, on VQA-CP v2 and VQA v2 datasets
for the answer prediction task. COB model also either out-
performs or provides comparative results against other com-
peting baselines, Table 1 without using additional annota-
tions. Finally, Figure 6 shows that our model focuses more
on the salient regions while answering the questions, hence
being more interpretable.
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