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Abstract

The notion of self and cross-attention learning has
been found to substantially boost the performance of re-
mote sensing (RS) image fusion. However, while the self-
attention models fail to incorporate the global context due
to the limited size of the receptive fields, cross-attention
learning may generate ambiguous features as the feature
extractors for all the modalities are jointly trained. This re-
sults in the generation of redundant multi-modal features,
thus limiting the fusion performance. To address these is-
sues, we propose a novel fusion architecture called Global
Attention based Fusion Network (GAF-Net), equipped with
novel self and cross-attention learning techniques. We
introduce the within-modality feature refinement module
through global spectral-spatial attention learning using the
query-key-value processing where both the global spatial
and channel contexts are used to generate two channel at-
tention masks. Since it is non-trivial to generate the cross-
attention from within the fusion network, we propose to
leverage two auxiliary tasks of modality-specific classifica-
tion to produce highly discriminative cross-attention masks.
Finally, to ensure non-redundancy, we propose to penal-
ize the high correlation between attended modality-specific
features. Our extensive experiments on five benchmark
datasets, including optical, multispectral (MS), hyperspec-
tral (HSI), light detection and ranging (LiDAR), synthetic
aperture radar (SAR), and audio modalities establish the
superiority of GAF-Net concerning the literature.

1. Introduction
Recent times have witnessed the rapid development of

remote sensing (RS) imaging techniques for precisely mon-
itoring the Earth’s surface. These images have direct appli-
cations in urban planning, environmental monitoring, ge-
ology, etc. [42, 1]. Amongst different RS data modali-
ties, hyperspectral images (HSI) is characterized by prac-

*equal contribution

Figure 1. The evolution of fusion networks in RS. (a) standard feature
extraction cum pooling based network, (b) each feature extractor has self-
attention blocks before pooling is performed, (c), network with self and
cross attention, (d) ours GAF-Net.

tically continuous spectral properties, while the multispec-
tral images (MSI) can provide finer spatial information. On
the other hand, the SAR data or the elevation data gener-
ated from LiDAR are agnostic to atmospheric perturbations.
In parallel to these visual modalities, audio is regarded as
an important source of information for recognizing certain
phenomenon, particularly in defense applications like mili-
tary speech intelligence detection, military target detection,
and disaster management, where it may be difficult to rec-
ognize some phenomenon from low-quality image feeds but
can be identified using respective sound primitives. A few
endeavors have explored the possibilities of synergistically
fusing RS visual data with audio data [20, 16]. Multiple
data sources, if combined intelligently, are able to produce
discriminative and semantically rich features, something the
individual modalities may not be capable of achieving.

The multi-stream CNN-based deep learning models are
predominantly utilized for unifying the feature information
from multiple modalities into a combined representation
space [51, 12, 10, 19, 49, 45]. In order to highlight im-
portant modality-specific features while suppressing any ir-
relevant information, the notion of self-attention learning
while disentangling the spatial and spectral components
has subsequently been introduced within the CNN frame-
work [31, 48, 36, 22]. However, the CNN-based fusion net-
works coupled with self-attention do not interact with the
cross-modal feature extractors. This causes some impor-
tant shared high-level features from all the modalities to be
overlooked. In addition, such a paradigm may make dif-
ferent features significantly unbalanced where each of the
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modality-specific feature may not be equally discriminative
[33, 47]. The idea of cross-attention is envisioned as a rem-
edy where the feature extractors of different modalities can
influence each other (Figure 1).

One major problem of the existing self-attention learning
techniques is that they are based on localized convolution
operations. It suggests that the effects of only the neighbor-
ing pixels are counted while learning the attention mask for
a given pixel. This is valid for the existing spatial and spec-
tral attention learning modules. Notwithstanding the above,
the global contextual information is found to boost the per-
formance of the dense prediction tasks like land-cover clas-
sification (for example, the building the road pixels should
be cooccuring within a context), as suggested in the liter-
ature [34]. Global feature learning can deal with the frag-
mentation problem of local models [34]. In this regard, the
multi-head attention of transformers [43, 6, 29] implements
global spatial attention by assessing the pairwise similari-
ties among the image patches, though they are not designed
to take care of the channel attention explicitly. This leads
to the first research question we ask: how to learn disentan-
gled global spectral-spatial self-attention masks?

Similarly, we argue that many cross-attention learn-
ing techniques [33] are not well calibrated. This is be-
cause these masks are learned from the individual modality-
specific streams in parallel without being concerned about
their discriminative nature. As a result, such cross-attention
may limit the generalization ability of the fused features
by injecting redundancy or highlighting ambiguous cross-
modal features. This opens up the avenue for the impor-
tant research direction on how to learn discriminative and
high-level cross-attention masks without affecting the fea-
ture learning of the fusion network?

Finally, we must enforce the non-redundancy of the fea-
tures before fusing them to avoid overfitting. The appli-
cation of the attention modules ensures good modality-
specific feature learning but does not explicitly ensures non-
redundancy between them. This leads to our final research
agenda of how to penalize high correlation between the
modality-specific features for fusion?
Contributions: To solve the abovementioned issues, we
propose a generic feature fusion network called GAF-Net
for land-cover classification from bi-modal RS images.
GAF-Net considers a global attention learning strategy for
feature refinement by removing redundant and irrelevant in-
formation. We propose novel disentangled spectral-spatial
self-attention and cross-modal attention learning to aid in
better modality-specific feature learning. While we re-
engineer the spatial attention module of transformers by us-
ing the residual connection for better multi-scale informa-
tion propagation, we propose two novel channel attention
modules for capturing the local and global variations of the
spectral signatures for the classes.

For generating the cross-attention masks, we hypothe-
size that the discriminative and high-level feature embed-
dings of a given modality should be considered to gener-
ate the cross-attention masks. This is non-trivial to obtain
from the fusion network as all the modality-specific streams
are jointly trained. We propose supplementing the fusion
network with two auxiliary modality-specific classification
networks as a remedy. The cross-attention masks are gen-
erated from the deepest feature layers of these networks,
which are highly discriminative and semantically superior.
Such high-level cross-modal information helps express im-
portant hidden patterns from the modality features. Finally,
we introduce a novel non-redundancy regularizer on the at-
tended (application of the self followed by cross attention
masks) feature representations per modality which seeks to
decorrelate them. We highlight the significant contributions
as follows,
- We design a simple and generic bi-modal fusion network
for RS data called GAF-Net to learn discriminative and
compact features through novel attention learning-based
feature refinement in a principled manner.
- To our knowledge, we propose the first non-local spectral-
spatial self-attention learning module using key-value pro-
cessing. Besides, we introduce the novel paradigm of cross-
attention learning from auxiliary tasks. Finally, we propose
explicitly reducing redundancy between the modality fea-
tures through a novel regularizer.
- We compare our attention modules with existing coun-
terparts on a variety of datasets (visual, audio, and depth
modalities), showing that the proposed global self-attention
convincingly beats the models based on local operations
(see Figure 5 (c)). Similarly, we highlight the superior-
ity of proposed cross attention through extensive ablations.
We strongly feel that other multi-modal problems will also
likely benefit from the proposed attention modules.

2. Related works
Multimodal learning: In RS, the fusion of multiple modal-
ities plays an important role, especially for land-cover clas-
sification. Models traditionally based on approaches like
Cross-kernel [2], Markov relation [24], morphological [28]
and attribute [11] profiles, weighted median filter-based
gram Schmidt transform (WMFGS) [37] etc. have shown
initial success in exploiting cues from multimodal RS data
and provide better classification maps. Later, deep learning
methods replaced these ad-hoc approaches with their data-
driven feature learning capabilities. In this regard, several
works [51, 44, 45, 7] proposed CNN fusion architectures
by considering the effects of fusing information at different
representation levels: early, middle or late fusion, respec-
tively. In contrast, [12] used both feature-level and decision-
level fusion techniques simultaneously to combine the HSI
and LiDAR data in Co-CNN. A self-supervised learning-
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based HSI-MSI data fusion is proposed in [10]. Similarly,
X-ModalNet [19] jointly used self-adversarial, interactive
learning, and label propagation modules for cross-modal RS
classification. CCR-Net [49], a compact way to fuse hetero-
geneous RS features for better information exchange.

There are few existing works on RS audiovisual deep
learning. DVAN [32] learns the correspondence between
the audio and visual modalities in cross-modal retrieval of
RS images. The clustering-based aural atlas [40] has been
built on fusing the audiovisual information. The crowd
counting network was designed using joint audiovisual in-
formation in [21]. Besides, [16] proposed a self-supervised
learning-based approach to understand the key mapping be-
tween the RS audiovisual samples and extended it to other
transfer learning tasks such as scene classification [20], se-
mantic segmentation [8], cross-modal retrieval [5, 4], etc.
In [20], the authors enforced sound-image pairs to trans-
fer the sound event information for RS scene classification.
While the existing models are designed for specific pairs of
modalities, GAF-Net is generic and can be adapted to any
pair of modalities by restructuring the feature extractors.
Attention learning: The usage of attention learning within
the CNN frameworks has been proven advantageous in mul-
tiple scenarios. Researchers have proposed many easy-
to-plugin self-attention modules to highlight the impor-
tant and non-redundant spatial and spectral feature maps.
Generally speaking, there are two variants for the self-
attention based models: CNN coupled with self-attention
plugins [31, 36, 48], and the vision transformer-based mod-
els [9], respectively, and GAF-Net falls under the first cat-
egory. Squeeze-and-excitation (SE) block [22] provides
channel attention by re-calibrating the channel-wise fea-
tures. A non-local operation-based self-attention module
is proposed [46] to capture long-range dependencies in any
deep CNN models. Convolutional block attention module
(CBAM) [48] and the block attention module (BAM) [36]
merge the individually trained channel and spatial attention
maps. Residual-based spectral-spatial attention network
(RSSAN) [14] for classifying HSI data, where the spectral
and spatial attentions help select prominent bands and spa-
tial information, respectively. SSAtt [13] weightily fused
the spectral and spatial attention branches. CBAM [48]
learns spatial and channel properties from localized trans-
formations, whereas we adopt a non-local approach based
on pixel/channel correlation for learning attentive features.
GLAM [41] proposed spatial and channel attention based
modules to extract the local and global features. We further
extend Transformer’s [9, 3] spatial attention by incorporat-
ing the channel attention modules.

There are studies where cross-attention supports self-
attention in multimodal learning such as MCA-Net [27],
FusAtNet [33], MBT [35], self-attention based multimodal
fusion [54], etc. MCA-Net [27] proposed the optical-SAR-

based cross-attention module to generate the joint attention
maps. By generating self-attended feature maps and incor-
porating cross-attention features from LiDAR data in [33],
improves the land-cover classification for HSI data. We in-
troduce the novel notion of cross-modal attention learning
from single-modal classification networks as opposed to the
literature. The existing cross-attention learning model clos-
est to us is [30], which distills the motion attention from a
teacher network to a 3D-CNN for human activity network.
Clearly, [30] does not concern cross-modal information like
GAF-Net; hence, it cannot be directly adopted for the cross-
modal fusion task in any context.

3. Proposed methodology
Preliminaries: Let D = {X1, X2; Y} be the multimodal

dataset, where X1 and X2 represent a pair of modalities
(such as Audio-Visual, HSI-LiDAR, etc.) and Y is their
respective label space. Further, let xi

1 ∈ X1 and xi
2 ∈ X2

be the ith input sample point and yi is its associated la-
bel. Under this setup, our goal is to obtain a fused feature
representation zi = Fe(xi

1, x
i
2), z

i ∈ Z , for learning an
improved classifier: C: Z → Y . In the following, we detail
the model architecture for GAF-Net, where both Fe and C
are simultaneously learned.

3.1. Model architecture
As illustrated in Figure 2, the GAF-Net architecture con-

sists of two major sub-networks: i) two separate modality-
specific classification networks: T1 and T2 for X1 and X2,
and ii) the bi-stream fusion network S where each of the
streams is dedicated to extracting features from a specific
input modality. By design, T1 and T2 comprise of the deep
feature extractors (FeT1 , FeT2) followed by the classifiers
(CT1 , CT2), respectively. The main goal of T1 and T2 is
to learn high-level and discriminative modality-specific fea-
tures, which can subsequently be utilized to generate the
cross-attention masks. On the other hand, the modality-
specific feature extractors FeS1 and FeS2 of S concatenate
the feature-map outputs from each of the self-attended conv.
layers with the proposed self-attention block (SAB) and
pass them through the 1 × 1 conv. layer for reducing the
dimensions. Note that the feature-map outputs of the inter-
mediate conv. layers are resized via dimension matching
block (DM), a global average pooling (GAP) operator that
is used to downsample the spatial resolutions of the feature
maps to the spatial resolution of the feature maps, which are
the output of the final layer of the encoder backbone.

The different conv. layers produce features at differ-
ent complexities (low, mid, or high-level features), and
we feel that considering them together would capture
more discriminative aspects from the data. Two sepa-
rate modality-specific self-attention blocks (SAB) are ap-
plied on FeS1 (X1) and FeS2 (X2) and the final self-attended
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Figure 2. The proposed GAF-Net architecture for multimodal fusion for remote sensing image classification. Here, T1, T2 and S, represent modality-
specific and bi-stream fusion classification networks Incorporated with our proposed spectral-spatial self-attention block (SAB).

features are obtained as X̂1 = GAP (CNN(FeS1 (X1) ⊕
SAB(FeS1 (X1)))) and X̂2 = GAP (CNN(FeS2 (X2) ⊕
SAB(FeS2 (X2)))), respectively, where ⊕ is used to imple-
ment the residual connection, and GAP denotes the global
average pooling over the depth dimensions. In this way, X̂1

and X̂2 are constrained to learn important modality-specific
features representations of different complexity; however,
there is some latent information encoded in these features
which are not expressed naturally. For example, the ele-
vation information from LiDAR data can aid in dense pre-
diction tasks like semantic segmentation. However, a seg-
mentation network by itself overlooks this critical aspect.
Under this premise, we aim to refine X̂1 and X̂2 consider-
ing the cross-modal information. For the same, we generate
the cross-attention masks by applying the cross-attention
blocks (CAB) on the features obtained from FeT1(X1)
and FeT2(X2), respectively. Henceforth, the final modal-
ity specific-features in S are obtained as:

X̃1 = X̂1 ⊕ (X̂1 ⊙ CAB(FeT2(X2)),

X̃2 = X̂2 ⊕ (X̂2 ⊙ CAB(FeT1(X1))
(1)

While the sub-networks of S till the generation of X̃1

and X̃2 define F , the classification network CS defines f .
In the following, we detail the architectures of CAB and
SAB, respectively.

3.2. Proposed non-local spectral-spatial self-
attention block (SAB)

Our self-attention block uses single-head key-value-
based spatial attention (SA) and channel attention (CA)
modules. Furthermore, as shown in Figure 3 (d), channel
attention comprises global channel attention (GCA) and lo-
cal channel attention (LCA), which help in extracting im-
portant channel attributes for the pixels from two different

viewpoints, one using the global channel context while the
other exploiting different local channel-wise spatial infor-
mation effectively. CA and SA modules work on the same
input feature maps, and the obtained outputs are summed up
element-wise. Similarly, the outputs of both CA modules
are element-wise added. We apply the SAB after the indi-
vidual convolution blocks and on the combined multi-level
feature outputs from all the convolution layers separately
for each encoder. In a way, SAB performs a multi-level fea-
ture refinement (MSFRB) and aggregation, thus highlight-
ing the important feature hierarchy per domain.
Spatial attention (SA): This attention module is designed
to learn the insightful spatial features by taking both the
short-range and long-range pixel interactions from the in-
put feature maps (Figure 3 (a)). Here, the same input fea-
ture maps with dimensions RC×H×W (C,H,W define the
channel, height, and width of the feature maps) are provided
to the value (V), key (K), and query (Q) tensors and are first
fed to the 1 × 1 conv. layer for dimension reduction. This
is to compensate for the multiple heads which process the
non-overlapping set of features in the traditional multi-head
attention blocks [43]. Precisely, we first down-sample the
channels of K and Q by eight times, i.e., RC/8×H×W and
then flatten the height and width dimensions to form the ten-
sor of dimensions RC/8×HW . Subsequently, we create an
attention mask of size RHW×HW using matrix multiplica-
tion (⊗) between K and transposed Q features. We then fi-
nally pass the attention mask to the softmax activation layer
followed by matrix multiplication cum addition in a resid-
ual manner with V to obtain the spatially attended output
feature maps as defined V +V ⊗ softmax(K⊗QT ), with
dimensions RC×H×W (Figure 3a). In contrast to [43], we
induced the residual connection here to create stability dur-
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Figure 3. Our proposed self attention block, which consists of (a) spatial-attention (SA), (b) global channel attention (GCA), (c) local channel attention
(LCA) modules and (d) implementation of SAB.

ing gradient flow.
Global channel attention (GCA): From Figure 3 (b), it
is imperative that this attention module highly resembles
the spatial attention block in design except for the residual
path and down-sampling of channels of Q and K, which are
not considered here. Specifically, we propose to compute
the channel-wise attention mask with dimensions RC×C

by matrix multiplying the 1 × 1 convolved Q and K fea-
ture matrices over the RC×H×W dimensional input fea-
ture maps. We pass these attention masks through the soft-
max layer and then perform matrix multiplication (⊗) with
the reshaped V matrix of shape RC×HW to obtain the fi-
nal RC×H×W dimensional attended features. The primary
motivation of this channel attention is to assess the cross-
correlation between a given channel and all the other chan-
nels spectrally attending a given pixel, thus providing a
global context for the channel dimensions. To our knowl-
edge, such a paradigm has not been considered as the tra-
dition is to attend/weight the channel dimensions indepen-
dently. In gist, the attended feature maps are calculated as:

R((R(conv1×1(V ))⊗ softmax(R(

conv1×1(Q))⊗R(conv1×1(K))T ))T ) (2)

where R defines the reshape operation applied to tensors.
Local channel attention (LCA): This module locally at-
tends to the channel dimensions instead of global channel
attention. As per Figure 3 (c), the V, Q, and K feature
vectors are passed through the 1 × 1 convolution layer as
spatial attention and global channel attention, but Q and K
feature vectors are additionally passed with global average
pool (GAP) and global max pool (GMP) layers to get the
dimensions of RC×1×1, respectively, to highlight the spa-
tial contexts. This way, the high and low-frequency spatial
information over each channel dimension is encoded. We
concatenate Q and K and compress the fused features using
1 × 1 conv. layer. Finally, we pass the compressed fea-

tures with dimensions RC×1×1 through the softmax activa-
tion layer and use element-wise multiplication (⊙) with the
V feature vector to obtain the attended feature maps with
dimensions RC×H×W as follows,

conv1×1(V )⊙ softmax(conv1×1(CONCAT (

GAP (conv1×1(Q)), GMP (conv1×1(K))))) (3)

3.3. Across-modality cross-attention block (CAB)
The discriminative cross-modal information further re-

vives these self-attended features to highlight some infor-
mative hidden feature properties. Note that CAB works
on the vector-valued intermediate high-level semantic rep-
resentations X̂1 and X̂2, respectively. First, FeT1(X1) /
FeT2(X2) are designed to match the length of X̂1 / X̂2.
Henceforth, we pass FeT1(X1) through GAP and sigmoid
layers to generate the attention masks, which are then
element-wise multiplied (⊙) with X̂2 together with adding
a residual connection. A similar process is followed for the
other modality, and we obtain X̃1 and X̃2 (Eq. 1).

3.4. Objective function for training GAF-Net
This section defines the loss functions to train our pro-

posed GAF-Net in an end-to-end manner. T1 and T2 are
trained only for (X1,Y) and (X2,Y) using two cross entropy
(CE) losses L1 and L2 respectively. On the other hand, we
concatenate X̃1 and X̃2 to obtain Z and define another CE
loss L3 on CS . We would further ensure non-redundancy
between X̃1 and X̃2; we propose a non-redundancy regular-
izer LNRR which tends to minimize the cross-correlation
between the l2 normalized representations of X̃1 and X̃2,
X̃ ′

1 and X̃ ′

2, as follows,
LNRR = ||X̃

′T
1 X̃

′

2 − I||2 (4)
where I denotes the identity matrix. This loss constraint
the cross-correlation terms to take the value of zero, thus
making both the modality-specific features look into non-
overlapping aspects regarding the input data. The overall
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Table 1. Comparison of our proposed GAF-Net with SOTA methods on Houston 2013 HSI-LiDAR and HSI-MSI, Berlin HSI-SAR, and Augsburg HSI-SAR
hyperspectral datasets. $ represent multi inputs with End-Net [17]. ⋆ and ⋆⋆ are the performance of modality-specific networks T1 and T2 on HS modality
and other modalities, respectively. T1 + T2 denotes fusion of FeT1 and FeT2 . ± represents the standard deviation. The results in # uses Transformer as
the feature extractor, whereas we used CNN blocks for feature extraction, which is not a fair comparison. We highlighted the best results in bold.

Methods Houston2013 Houston2013 Berlin Augsburg
HSI-LiDAR HSI-MSI HSI-SAR HSI-SAR

OA AA κ OA AA κ OA AA κ OA AA κ
Hyper-Embedder [50] 82.64±0.45 83.15 0.8070 82.77±0.30 83.81 0.8134 59.98±0.38 60.12 0.4641 81.03±0.21 52.56 0.7243
Two-Branch CNN [51] 87.98±0.29 90.11 0.8698 86.56±0.23 89.21 0.8546 63.73±0.20 62.34 0.4904 83.57±0.33 62.10 0.7723

End-Net $[17] 88.52±0.24 89.85 0.8759 87.65±0.40 88.29 0.8610 64.01±0.32 61.88 0.5001 84.11±0.15 62.78 0.7758
Co-CNN [12] 88.96±0.41 89.21 0.8766 85.44±0.33 84.10 0.8237 64.08±0.26 62.83 0.5925 87.76±0.52 62.71 0.8040
CCR-Net [49] 89.66±0.27 91.53 0.8877 88.15±0.19 89.82 0.8719 69.85±0.46 66.99 0.5716 86.32±0.28 64.47 0.8003
FusAtNet [33] 89.98±0.34 94.65 0.8913 86.17±0.51 86.39 0.8408 63.45±0.29 63.19 0.5088 84.42±0.30 62.66 0.7782

S2FL [18] - - - 85.07±0.23 86.11 0.8378 62.23±0.19 62.48 0.4877 83.36±0.22 61.38 0.7626
AsyFFNet [26] - - - - - - 70.51±0.14 70.31 0.5824 89.14±0.27 69.16 0.8452

MFT #[39] 89.80 ±0.53 91.51 0.8893 89.15±0.96 90.56 0.8822 - - - 90.49±0.20 60.36 0.8626
T ⋆
1 86.02±0.32 88.56 0.8481 86.02±0.24 88.56 0.8481 68.11±0.47 54.61 0.5951 84.08±0.21 58.21 0.7759

T ⋆⋆
2 67.27±0.19 70.66 0.6693 75.00±0.40 78.84 0.7298 64.66±0.23 36.30 0.3694 84.07±0.33 50.46 0.7700

T1+T2 87.09±0.23 89.15 0.8511 87.99±0.34 89.43 0.8564 69.32±0.19 58.77 0.6003 85.75±0.25 60.89 0.7788
GAF-Net 91.39±0.21 94.92 0.9018 90.64±0.17 93.30 0.8938 78.57±0.23 70.92 0.6761 90.80±0.12 70.10 0.8683

Table 2. Comparison of our proposed GAF-Net with SOTA methods on the ADVANCE dataset. # TL represent Triplet Loss from [16]. ± represents the
standard deviation. We highlighted the best results in bold.

Method Audio Visual Audio-visual Batch TL # Audio T1 Visual T2 T1+T2 GAF-Net
Baseline [20] Baseline [20] Baseline [20] [16]

Precision 30.46±0.23 74.05±0.31 75.25±0.27 89.59±0.19 73.28±0.55 89.48±0.43 89.90±0.20 93.37±0.11
Recall 32.99±0.46 72.79 ±0.25 74.79±0.11 89.52±0.18 73.50±0.41 89.34±0.25 90.21±0.37 93.23±0.21

F1 28.99±0.39 72.85±0.27 74.58±0.40 89.50±0.33 73.38±0.21 89.40±0.45 90.05±0.30 93.31± 0.17

multi-task loss function is defined in Eq. 5.

LTotal =

3∑
i=1

Li + LNRR (5)

4. Experimental protocols
Houston 2013 HSI-LiDAR: The National Centre for Air-
borne Laser Mapping (NCALM) introduced this data in the
GRSS Data Fusion Contest 2013, covering Houston Univer-
sity and its nearby surroundings. It has 144 spectral bands
ranging from 0.38 µm to 1.05 µm. Each channel consists of
a 349 × 1905 pixel raster map with a spatial resolution of
2.5 m and one LiDAR band with the same raster size as the
HSI bands. Training and test sets of 2832 and 12197 pixels
are provided for this dataset [33].
Augsburg HSI-SAR: The original data [18] is composed
of three different modalities; HSI, SAR, and digital surface
model (DSM), out of which a pair is considered at a time to
define three fusion tasks: HSI-SAR, HSI-DSM, and SAR-
DSM, respectively. We concentrate only on HSI-SAR fu-
sion and compare it with different baselines for 7-classes.
The scenes have a spatial resolution of 30 m in dimension
332 × 485 with 180 spectral bands between 0.4 µm to 2.5
µm, DSM image with one band, and four features from
dual-Pol SAR image. It contains 78294 samples, of which
761 and 77533 are used for training and testing.
Berlin HSI-SAR: The dataset [18] consists of HSI and SAR
scenes with a resolution of 1723 × 476 pixels from eight
land-cover classes of the urban and rural areas surrounding
the city of Berlin. The total sample count of 464671 is di-
vided into 2820 for training and 461851 for testing. [18]
mentions image pre-preprocessing for HS and SAR.
Houston 2013 (HSI-MSI): From the original HSI and MSI
images, [18] created the multimodal data. It has the same
spectral and spatial resolutions as the Houston 2013 HSI-
LiDAR dataset and the same classes and samples.
ADVANCE: To better assess the generalization of our pro-
posed GAF-Net, we consider a different set of multimodal

data apart from HSI images. The dataset presented in [20]
consists of 5075 pairs of audio-visual samples, from which
4056 samples are used for training and the remaining for
testing, followed by a 5-fold cross-validation.

4.1. Model architecture and training protocols
In our GAF-Net architecture, the deep feature extractors

FeT1 and FeT2 consist of ResNet-50 [15] architecture and
provide the linear feature embeddings of dimension 512.
Whereas, the modality-specific feature extractors FeS1 and
FeS2 of S are made up of four pairs of residual-based conv.
blocks that compute feature maps with depths of 64, 128,
256, and 512, respectively. Furthermore, within each of
these conv. blocks, the outputs are self-attended by SAB
modules, and the application of a residual connection pro-
duces the output feature maps. To ensure stable training, we
employ ReLU non-linearity and Batch-normalization after
each conv. block of FeS1 and FeS2 . Finally, the classi-
fiers CT1 , CT2 , and CS take linear feature embeddings of
512, 512, and 1024, respectively.

Here, we mention the training strategies with standard
settings similar to [33, 12, 18] on the multimodal HSI data
and followed to use the cubical patches of size 17 × 17
around each pixel with the ground-truth label for all the
HSI, MSI, and SAR images. Subsequently, PCA [38] is
used to reduce the channel dimensionality of the HSI data
to the dimension of 30, and remove any redundant band in-
formation. Training is performed using ADAM optimizer
[25] with an initial learning rate of 10−2, and for every 40
epoch, the scheduler decreases the learning rate by a factor
of 10−1 and a total of 200 training epochs are performed
given a mini-batch size of 16. For the audio modality in the
ADVANCE dataset, following [20, 16], the spectrograms
are generated with dimensions 400 × 64, whereas the im-
ages from the visual modality are resized to 256 × 256. In
order to compensate for data and class imbalance in AD-
VANCE, we use augmentation techniques such as random
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Table 3. Ablation analysis of our proposed GAF-Net on Houston 2013 HSI-LiDAR and HSI-MSI, Berlin HSI-SAR, and Augsburg HSI-SAR hyperspectral
datasets. A and B are the defined baselines and analysis on SAB, respectively. † represents only the sub-network S and without CAB. SA, GCA, and
LCA represent spatial attention, global channel attention, and local channel attention, respectively. We highlighted the best results in bold.

Methods Houston2013 Houston2013 Berlin Augsburg
HSI-LiDAR HSI-MSI HSI-SAR HSI-SAR

A: Baselines OA AA κ OA AA κ OA AA κ OA AA κ
Layer-wise SAB CAB LNRR MSFRB

A1: ✗ ✗ ✗ ✗ 88.32 90.08 0.8731 84.51 87.21 0.8381 71.78 64.79 0.6421 82.64 61.80 0.7779
A2: ✗ ✗ ✓ ✗ 89.10 90.89 0.8791 85.11 87.97 0.8414 72.38 64.97 0.6432 82.99 62.20 0.7808
A3: ✓ ✗ ✗ ✗ 88.97 90.77 0.8779 84.91 87.56 0.8388 71.95 64.83 0.6422 82.78 61.99 0.7801
A4: ✓ ✗ ✓ ✗ 89.31 91.37 0.8811 85.35 88.85 0.8484 72.94 65.37 0.6482 83.03 62.59 0.7851
A5: ✗ ✓ ✗ ✗ 89.06 90.99 0.8800 84.95 88.37 0.8410 71.88 64.73 0.6399 83.17 62.22 0.7832
A6: ✗ ✗ ✗ ✓ 89.11 91.25 0.8826 84.95 87.86 0.8405 72.32 64.97 0.6455 83.17 62.39 0.7866
A7: ✗ ✓ ✓ ✗ 89.98 91.93 0.8879 89.02 90.67 0.8821 72.31 65.01 0.6449 85.50 64.80 0.8033
A8: ✗ ✓ ✓ ✓ 90.41 93.00 0.8918 89.08 90.45 0.8819 73.45 65.33 0.6574 85.95 65.11 0.8098
A9: ✓ ✓ ✗ ✓ 90.55 93.18 0.8937 89.13 90.66 0.8829 73.39 65.02 0.6512 85.59 64.99 0.8041

A10: ✓ ✓ ✓ ✗ 90.35 92.55 0.8902 89.74 91.80 0.8887 75.70 67.61 0.6604 86.21 65.17 0.8112
B: Ablation on SAB

B1: SA 90.11 93.02 0.8919 89.23 91.67 0.8823 76.88 67.81 0.6641 87.44 67.50 0.8323
B2: GCA 89.99 92.91 0.8895 89.05 91.04 0.8789 76.75 67.59 0.6606 87.51 67.70 0.8341
B3: LCA 89.37 91.45 0.8831 88.73 90.85 0.8759 75.98 66.94 0.6591 86.99 67.01 0.8291
B4: SA + GCA 90.66 93.77 0.8987 89.91 92.89 0.8878 77.44 68.17 0.6698 88.25 68.43 0.8410
B5: SA + LCA 90.32 93.11 0.8965 89.80 92.55 0.8833 77.03 67.85 0.6666 87.98 68.22 0.8399
B6: SA + GCA + LCA † 90.69 93.80 0.8975 89.73 92.60 0.8841 77.32 68.16 0.6671 88.33 68.28 0.8429

GAF-Net 91.39 94.92 0.9018 90.64 93.30 0.8938 78.57 70.92 0.6761 90.80 70.10 0.8683

Table 4. Ablation analysis on CAB for Houston 2013 HSI-LiDAR and HSI-MSI, Berlin HSI-SAR, and Augsburg HSI-SAR hyperspectral datasets. IL in
∗ and FL in ∗∗ denote Intermediate Layer and Final Layer, respectively. We highlighted the best results in bold.

Methods Houston2013 Houston2013 Berlin Augsburg
HSI-LiDAR HSI-MSI HSI-SAR HSI-SAR

CAB Ablation OA AA κ OA AA κ OA AA κ OA AA κ
No CAB 89.31 91.37 0.8811 85.35 88.85 0.8484 72.94 65.37 0.6482 83.03 62.59 0.7851

CAB from IL of T1 and T2∗ 89.55 91.65 0.8844 87.79 89.10 0.8611 73.99 66.89 0.6579 84.81 64.44 0.8008
CAB from FL of S ∗∗ 89.11 90.97 0.8798 86.18 89.46 0.8511 72.33 64.76 0.6419 83.12 62.48 0.7865

GAF-Net 91.39 94.92 0.9018 90.64 93.30 0.8938 78.57 70.92 0.6761 90.80 70.10 0.8683

90◦ rotation, random hue-saturation value shifting, and ran-
dom horizontal and vertical flips with random shifting with
+90◦ to −90◦ random rotation, with a probability of 0.5 for
each augmentation. We train our network with a batch size
of 16 in a scheduled way for 300 epochs, i.e., the Adam [25]
optimizer is set to a learning rate of 10−3 for the first 100
epochs, and the learning rate is sliced by 10 times for each
subsequent 100 epochs.

We adopt overall accuracy (OA), average accuracy (AA),
and kappa coefficient (κ) for reporting the mean accuracies
over three runs for all the datasets concerning only the vi-
sual modalities. For ADVANCE, we use f1-score (F1), pre-
cision, and recall as the evaluation metrics, following the
relevant literature.

4.2. Comparison to the literature
We evaluate the performance of GAF-Net with bench-

mark methods on multimodal learning from the RS com-
munity dealing with visual, DSM, and audio data, as illus-
trated in Tables 1 and 2. Specifically, we consider Hyper-
Embedder [50], Two-Branch CNN [51], multi-input End-
Net [17], Co-CNN [12], CCR-Net [49], FusAtNet [33],
S2FL [18], and AsyFFNet [26] where an HSI is involved.
It can be observed that GAF-Net consistently outperforms
the referred SOTA methods. On Houston2013 HSI-LiDAR
and HSI-MSI, Berlin HSI-SAR, and Augsburg HSI-SAR,
our GAF-Net is found to enhance the OA by at least 1.9%,
2.7%, 11%, and 1.7%, AA by 0.2%, 3.7%, 5.5%, and 7.5%,
and 1.7%, and κ by at least 1.2%, 3.7%, 12%, and 5%, re-
spectively, from the closest literature. Amongst these meth-
ods, note that FusAtNet [33] integrates both self-attention
and cross-attention modules using the conventional CNN-
based networks; however, the proposed SAB and CAB ar-
chitectures seem to be helpful in this regard. Finally, we

Figure 4. Classification maps for Berlin HSI-SAR dataset. (a) HSI’s true
colour composite (RGB Bands - 43, 22, 36), (b) SAR’s true color compos-
ite (RGB Bands- 2, 1, 4), and (c) Ground-truth. From (d) to (i) represent
classification maps for different methods, i.e., (d)End-Net [17], (e) Co-
CNN [12], (f) CCR-Net [49], (g) FusAtNet [33], (h) T1+T2, (i) GAF-Net

compare the performance of the fusion sub-network S with
the outputs of T1 and T2 from two perspectives: i) when they
are trained using two different classifiers, and ii) they are
trained with a single classifier (T1 + T2). The sub-network
S, although it is shallow as compared to T1 / T2, beats all
these baselines convincingly.

On the other hand, we record 4% increment from the
Batch TL [16] for the audio-visual ADVANCE dataset.
Here, we also compare our proposed architecture with T1,
T2 and T1 + T2 and our GAF-Net effectively improved the
precision by a margin of 4%. In Figure 4, we generate the
classification maps for the Berlin HSI-SAR dataset.

4.3. Architecture ablation and loss functions
We analyze the effects of each component of GAF-Net

in Table 3. We first consider the base model without CAB,
SAB, and LNRR, and then incrementally consider all the
model components and observe that applying these com-
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Figure 5. Analysis (a) % of used training data, (b) feature extractor backbones for S, and (c) different self-attention plugins in GAF-Net on the HSI datasets.

Figure 6. The generated class activation map from the fusion modality-specific network T1 and T2, i.e., T1 + T2, sub-network S (only S represents S with
SAB no CAB) and GAF-Net on the ADVANCE dataset.

ponents progressively improves the performance. An en-
hancement of at least 4 − 5% can be observed in the OA
values from the naive baseline to the full GAF-Net. Further-
more, we ablate the spatial attention (SA) and channel atten-
tion blocks (GCA and LCA) of our SAB module. Similar
to the previous case, we consider their individual effects fol-
lowed by combined effects and confirm that all of the SAB
modules are important in GAF-Net.

4.4. Critical analysis
Analysis of CAB: In order to showcase the importance of
cross-attention generation from the deepest layers of FeT1

and FeT2 , we perform the following experiments, i) GAF-
Net without CAB, ii) cross-attention generated from the in-
termediate layers of FeT1 and FeT2 , and iii) cross-attention
generated from the intermediate self-attended outputs X̃1

and X̃2, respectively. We observe from Table 4 that the
proposed CAB outperforms the remaining baselines sig-
nificantly, at least by 2% (Houston2013 HSI-LiDAR), 3.1%
(Houston2013 HSI-MSI), 5.8% (Berlin HSI-SAR) and 5%
(Augsburg HSI-SAR) in OA values.
Sensitivity to the amount of training samples: In Figure
5 (a), we varied the training size for all multimodal hyper-
spectral datasets from 5% to 100% of the available training
samples. It can be observed that the performance is not sig-
nificantly degraded even in the low-data regimes.
Analysis of FeS1 and FeS2 : For S , we ablate the fea-
ture extractors’ backbones and compare FeS1 and FeS2
against DenseNet-121 [23] and ResNet-18 [15] in Figure
5 (b). The motive is to see the effects of combining fea-
tures from all the layers as done in GAF-Net and to see
whether the shallow FeS1 and FeS2 of S can provide compa-
rable performance measures against deeper and more com-
plex backbones with the applications of CAB and SAB.
Numerically, our GAF-Net outperforms the referred back-
bone architectures minimum by 1.5%, 1.8%, 8%, and 4.3%
in the OA values for Houston2013 HSI-LiDAR, Hous-
ton2013 HSI-MSI, Berlin HSI-SAR, and Augsburg HSI-
SAR datasets, respectively. 1

1Supplementary paper contains ablations on the ADVANCE dataset.

Comparison on the attention modules: Finally, Figure
5 (c) shows the performance comparisons when different
benchmark attention plugins are used in place of our pro-
posed self-attention block (SAB): CBAM [48], BAM [36],
SE-Net [22], MTAN [31], GLAM [41], and SAGAN [52],
respectively. Many of them use only spatial attention, while
others use spectral-spatial attention learning. We also con-
sider the Cross-ViT [3] attention given the superior perfor-
mance in different vision tasks. The attention in GAF-Net is
found to outperform all of these attention plugins convinc-
ingly by 3 − 5%. In supplementary, we provide the effect
of agnostic nature of our proposed attention modules with
backbones like DenseNet-121 [23] and ResNet-18 [15].
Class Activation Map (CAM) Visualization: In Figure 6,
we present the CAM [53] on scenes from the ADVANCE
dataset. The CAM clearly suggests that the full GAF-Net
can explain the classes intuitively by focusing on the rele-
vant image parts.

5. Conclusions

This paper presents a novel multimodal fusion architec-
ture (GAF-Net) for RS data that uses a novel attention-
distillation-based cross-attention between the cross-modal
features while novel single-head spectral-spatial self-
attention-based feature learning for the individual modali-
ties. The proposed spectral attention considers both the lo-
cal and global channel contexts, thus extracting better chan-
nel features, which is essential for RS data. Though shal-
lower than the individual modality-specific classifiers, our
fusion network is found to beat them by a large margin.
We show extensive experiments on five multimodal remote
sensing benchmark datasets consisting of HSI, MSI, SAR,
LiDAR, and audio data and confirm the efficacy of GAF-
Net all through. The future scope may consider extending
GAF-Net to support more than two modalities. One possi-
bility could be to follow a sequential approach where two
modalities are fused first, and the obtained representations
are fused with a new modality and so on.
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