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Abstract

In active visual exploration, an agent with a limited field
of view needs to sample the most informative local obser-
vations of an environment in order to model the global con-
text. Current works train this selection strategy by defining
a complex architecture built upon features learned through
convolutional encoders. In this paper, we first discuss why
vision transformers are better suited than CNNs for such an
agent. Next, we propose a simple transformer-based active
visual sampling model, called “SimGlim”, which utilises
transformer’s inherent self-attention architecture to sequen-
tially predict the best next location based on the current ob-
servable environment. We show the efficacy of our proposed
method on the task of image reconstruction in the partial
observable setting and compare our model against existing
state-of-the-art active visual reconstruction methods. Fi-
nally, we provide ablations for the parameters of our design
choice to understand their importance in the overall archi-
tecture.

1. Introduction
Over the course of the last decade, the improvement

in our understanding of the working mechanisms of data-
driven and gradient-based learning techniques have led to
unprecedented success in various vision tasks. Much of
this success can be attributed to deep learning models which
process the entire scene as a single image. This assumption
of availability of the entire scene for a single feedforward
step may not be met in most of the “in-the-wild” situations,
as a visual agent with limited field of view (FoV) can only
sample a part of the scene (or a glimpse). Such an agent,
along with a limited number of glimpses, needs to optimise
its sampling strategy to learn and reason about the whole en-
vironment. Hence, learning an intelligent sampling strategy
is critical and can be applicable to a host of sub-domains of
active vision [1], visual [8] (and language [2]) navigation.

This active agent [21, 26] optimises two objectives: 1)
understand the input sample and minimize the loss cor-
responding to the end task, and 2) decide the next best
possible location to sample, in order to improve the over-
all task loss. The existing work [16, 21, 25, 26, 27] ad-
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Figure 1: Results of SimGlim: Each column shows the re-
sult of our proposed approach, where the top row contains
the original image, the bottom most row is the seen region
actively sampled by the proposed model’s Glimpse mod-
ule, the second-last row shows the output of SimGlim’s task
module, and second row shows reconstruction appended by
the seen regions.

dresses these objectives using a (pre-trained) encoder to ex-
tract the semantics and a recurrent decoder to reason about
the relationship of different input samples based on the fi-
nal task. These methods often rely on complex architec-
tures with multi-stream [26, 27] student-teacher [25] for-
mulations or reinforcement learning techniques with sparse
rewards [16, 21]. We aim to simplify this by reformulating
the problem with a simpler transformer-based architecture
[12]. In particular, we model the local and global interac-
tions of the image regions with multi-headed attention to
mitigate the need for previous architectural complexities.
Our contributions are:

• We explore and ablate a simple transformer-based ar-
chitecture, SimGlim, to model the glimpse selection
strategy while solving the challenging task of image
reconstruction under the partial observable constraint.

• We improve the existing state-of-the-art benchmark
for image reconstruction task on SUN360 [28] and
ADE20K [37] and a more ‘in-the-wild’ MS COCO
[18] dataset.

• We investigate a set of heuristics for glimpse selection
strategy based on a pre-trained transformer’s inherent
multi-headed self-attention (MHSA) that is implicitly
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learned by optimizing a mask-image-model objective
for image reconstruction task.

2. Related work
Active vision: Partial observability constraints in an en-

vironment provide an apt setting for active vision; an active
agent is required to sample the most informative observa-
tion from the environment within its sampling budget. Most
initial work in this domain comes from visual automation
and control of cameras. Aloimonos et al. [1] and Bajcsy
[4] provide a general framework to this problem where an
agent can move its sensors in different directions to make
useful observations. Modeling such an agent is a major
challenge in robotics, embodied machine learning [2, 10],
and a more closer domain of active vision and language
navigation [31]. In this work, we restrict our discussion to
cases where the agent does not change its physical location
in space but rather controls its camera orientation to observe
different parts of the same scene, for example, a panoramic
image.

Under a similar setting, recent work uses active vision
for image recognition [3, 19], pose estimation [13] and ob-
ject detection/segmentation in video streams [7]. Closest
to our work is a setting coined as active visual exploration
where an agent gradually learns the representation of the
environment to solve a given task. In the next section we
briefly discuss the most recent works in this setting.

Active Visual Exploration: For an active agent with
a limited field-of-view (FoV), scanning all regions in the
environment is not an option due to large processing time
overhead. Therefore, the agent has to gather as much in-
formation as possible from the environment by processing
a limited number of regions. Most of the previous work on
active visual exploration [16, 21, 26] train and evaluate the
exploration strategy of the agent using an image reconstruc-
tion task. This way, the agent would learn a representation
of the environment which is general enough to be later on
transfered to any downstream task. Besides, this enables the
method to be trained in an unsupervised manner without the
burden of labeling the data for training,

Seifi et al. [27] optimizes the model with a semantic seg-
mentation objective to learn a more contextual represen-
tation while [25] proposes a method that can directly be
trained for any dense/sparse prediction tasks.

The agent proposed in any of these methods is required
to learn a glimpse sampling mechanism which locates the
next observable area conditioned on previously seen re-
gions. In particular, [16, 21] train their sampling mecha-
nism using reinforcement learning and the negative recon-
struction loss as the reward function. Seifi et al. [26] trains
a sub-network to predict the area with the highest recon-
struction loss arguing that observing such area would have
the highest information gain for the agent. Seifi et al. [27]

adapts the formulation in [17] to derive a pixel-wise uncer-
tainty for the predicted segmentation map of the environ-
ment and selects the region with highest cumulative uncer-
tainty as the next glimpse. Glimpse attend and explore [25]
utilizes an additional self-attention channel per convolution
layer that resembles the multiplicative attention proposed
in [12, 30]. The method samples the area with the high-
est channel activation in the bottleneck layer as the next
glimpse location hypothesizing that such an area has the
highest contribution to the final task’s loss.

In this work, taking inspiration from [26], we propose a
transformer-based glimpse sampling mechanism, where the
sampling is done based on the value of the error incurred
by the reconstruction pipeline. While [26] uses a single
(and expensive) fully connected memory layer, over all the
spatial locations in the image, after their encoder to learn a
global context and inter-location relationship, we improve
this by introducing an unexplored yet well apt architecture
for this problem. We utilize the transformer’s inherent self-
attention modules at each layer of our encoder and decoder,
instead of just one layer [26], thereby learning the inter-
location relationship better, while being significantly less
expensive than a fully connected layer over all patches.

Architectural complexity: Apart from the glimpse se-
lection mechanism, all the above mentioned methods solve
a downstream task which is typically image reconstruction.
To achieve this the method should be able to correlate the
observation at different steps and solve an image outpaint-
ing task [24, 34]. [16, 21] propose an RNN-based encoder-
decoder CNN network where an LSTM’s state gets updated
with each new glimpse to represent the environment. This
state gets upsampled to produce a reconstruction of the en-
vironment. [26, 27] replace the LSTM layer with spatial
memory maps to explicitly maintain the spatial relationship
of the glimpses. These works employ a two stream CNN
decoder with one stream focusing on the local reconstruc-
tion around the visited areas and the other stream predicting
a rough reconstruction for the entire environment. [25] also
employs a two stream CNN decoder on top of spatial mem-
ory maps where one stream is trained with a contrastive loss
to predict the full scene on a feature level while the other
stream predicts a reconstruction using self-attention layers.
Instead, we use a transformer-based architecture to simplify
the architectural complexity, we discuss more about this in
section 3.

Vision Transformers: Certain characteristics of trans-
former networks originally developed for language model-
ing [30] have been found to be beneficial for vision applica-
tions. In particular, individual embedding of each word in
a sentence while having a global view over the sentence at
all times intrigued researchers to divide an image to smaller
patches that would resemble words in a sentence [12]. The
patches can then be processed at a constant (i.e full) reso-
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Figure 2: SimGlim: Overall pipeline for our proposed method. (Yellow-highlighted region) shows the context extractor
module, (orange region) shows the task module, (pink-highlighted region) shows the learnable glimpse module. The green
dashed arrows show gradient pathways during training. We explain these modules in sections 3.1, 3.2, and 3.3 respectively.

lution at all times and while looking for a global patterns
using the multi-head attention layers.

The adaptation of transformer models to visual input
has been successfully implemented on image recognition
[5, 38], image super-resolution [35], video representation
learning [14, 29], scene generation [33] and many other vi-
sual perception and reasoning applications. Besides, the
ability of transformers to process inputs in full (i.e con-
stant) resolution has resulted in state-of-the-art results beat-
ing CNNs in dense prediction tasks such as semantic seg-
mentation and depth prediction [22].

In this work, we tackle an active visual exploration prob-
lem using a vision transformer model [15] as the archi-
tectural backbone. Given its limited FoV, an active agent
looks at a small part of the environment at each time-step
and hallucinates the unvisited areas based on the previously
seen glimpses. This is analogous to mask-language models
[11, 30] that assign different weights to the visible words
in an incomplete sentence to understand the global context
and fill-in the missing words.

3. Method
Problem definition: Given is an image I , and an agent

A, that can only sample a limited number (K) of partial
observations ( ik|k∈[1,K] ) out of the total (M > K) number
of possible observations that exclusively and exhaustively
form I , i.e. ( I = {ik}Mk=1 ). Our goal is to reconstruct
I with only K sampled observations ( Ireconst = A(IK),
where IK = {ik}Kk=1 )

The error incurred in this reconstruction is Lreconst =
∥I − Ireconst∥. To minimize this error the agent is required
to sample K optimal location in the image I , while learn-
ing to reconstruct the image with those K samples. In this

paper we propose such an agent A, that learns to sample
an optimal set of K observations to reconstruct the original
image.

Our model can be divided into three different modules:
(a) a context extractor module, to learn the overall con-
text while observing only a subset of the full scene; (b)
a task module that processes the output of the context ex-
tractor module and reasons about the output prediction; and
finally (c) a glimpse selection module, that uses an inter-
mediate representation from the task module to provide an
error map, which we use to predict the location of the next
glimpse.

3.1. Context extractor module
Previous works typically use a CNN architecture pre-

trained on a supervised classification task for understanding
the semantics of glimpses and their spatial relationship with
each other. We instead opt for a transformer architecture
pre-trained with self-supervision, as motivated below.

Towards architectural simplicity: We hypothesize that
vision transformers are well suited for the active exploration
task due to their specific advantages over CNN architec-
tures. First, they divide the image into small patches and
embed them separately from each other. This is in line with
the setting in active visual exploration where there is a need
to attend and process a glimpse separately from the rest of
the environment. Besides, unlike most common CNN ar-
chitectures which look for global context with spatial pool-
ing, transformers process all glimpses at a constant reso-
lution throughout the network. This is particularly benefi-
cial in an active visual exploration setting where the agent
should not lose any information given its limited number
of glimpses and FoV. Besides, the multi-head self attention
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(MHSA) layers in vision transformers can exploit both local
and global pixel dependencies in the environment and ex-
trapolate the glimpses to hallucinate the unattended regions.
Finally, the positional embedding in vision transformers can
maintain the spatial correlation of glimpses. In this sense,
the vision transformers can completely replace the spatial
memory maps, local, global and self-attention modules in
previous works.

Self-supervised learning techniques provide more con-
textual features by learning to be invariant to visual aug-
mentations in the absence of class labels [9]. These features
are further used to solve a downstream task, implying they
capture a large magnitude of feature attributes and not only
most discriminative ones.

Moreover, the constrained receptive field of convolution
kernels does not allow uncovering global patterns in the im-
age. CNNs rely on pooling and fully connected layers to ex-
tract meaningful global patterns from an image [25, 26, 27].
However, fully connected layers are prone to overfitting and
have large memory requirements while pooling layers lose
high frequency information in the encoder path which the
decoder typically fails to restore for a dense prediction task.
There have been many workarounds proposed to either pre-
vent loss of details in the encoder path [32, 36] or to re-
store them in the decoder path of a CNN [23]. Transform-
ers have shown superior performance in preserving the de-
tails by processing each image patch with a constant embed-
ding size throughout the network. Besides, they have been
demonstrated to capture the global image context without a
need for an expensive fully connected layer.

Hence we use a self-supervised transformer model to
overcome the limitations of CNNs in this context. We build
our context encoder on the mask-auto-encoder (MAE) [15]
model, pre-trained as a masked-image-model for the image
reconstruction pretext task. The resulting image features
have been shown to be semantically meaningful, attaining
a top-1 accuracy of 84.9% on Imagenet 1000 class clas-
sification [15]. Since the pretext task for training MAE,
i.e. random masking and pixel value prediction for masked
regions, resembles the partial observability constraint that
we are trying to solve, we find MAE encoder to be best
suited for our context extractor module and the pre-trained
weights to be transferable for our use case.

Our context extractor is a ViT [12] initialized with
MAE’s encoder weights. Each partially observable input
image is resized to 224 × 224 and divided into patches
of size 16 × 16 pixels, hence a total of 14 × 14 = 196
patches. In each step a new glimpse (i.e an image patch)
is observed. This context extractor, only provided with the
visible patches along with their positional embedding, en-
codes these patches to represent the context of the observ-
able part of the image, Figure 2. These features and the
positional embedding of the invisible patches are forwarded
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Figure 3: Learnable glimpse selection module: Pipeline
for SimGlim’s glimpse selection module. Green dashed ar-
rows represent the gradient pathways.

to the task module to reason about the full image.
3.2. Task module

As mentioned earlier, previous CNN-based methods,
like Pathak et al. [20] and Seifi et al. [27], employ a large
fully connected layer on top of the context encoder to pro-
vide information flow between different regions of the im-
age. This allows the task specific decoder to reason about
any unseen patch based on other seen patches.

A vision transformer models this information flow be-
tween different patches using MHSA, where each patch can
weight and influence the output of other patches to mini-
mize the task specific loss. This allows us to mitigate the
requirement of a large fully-connected layer. We therefore
use MAE’s decoder as our task module. As the MAE’s pre-
text task is image reconstruction, it provides a good initial-
ization for the task module’s decoder.

The input to the task module is a full set of tokens (for
196 patches), i.e. output of the context extractor module and
the positional embedding of the masked tokens. The inter-
mediate features of the task module provide a task-based
encoding for each of the 196 patches. This is fed to a re-
construction head, as shown in Figure 2. This intermediate
representation also serves as the input to our glimpse selec-
tion module as discussed next.
3.3. Glimpse selection module

A glimpse step consists of selecting a new location in
the image to visit, processing it along with the set of previ-
ously observed glimpses, and reconstructing the full scene.
The procedure is repeated until a predefined budget on the
number of observable glimpses. To formulate this selec-
tion mechanism we train a separate glimpse selection head,
which we define next.

Learnable Glimpse selection module:
Our glimpse selection module consists of a fully-

connected layer, that inputs the intermediate features from
the penultimate layer of the task module, Figure 2 and 3.
The output of this module is a single channel activation map
of the same size as that of the input image, and represents
the error of the predicted RGB pixel value by the task mod-
ule at that location. Similar to Seifi et al. [26], we formulate
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this error map as the spatial loss between the predicted full
scene and the ground truth after each feedforward glimpse
processing step. This glimpse selection module is trained
to predict this spatial loss. To select the next glimpse lo-
cation we choose the maximum value location in the pre-
dicted error-map (or learned glimpse-map) by this module,
as shown in Figure 3. The motivation behind this formu-
lation is to train the glimpse selection module to select the
regions which are difficult to reconstruct by the task module

4. Experiments
4.1. Experimental Settings

Datasets: We evaluate our work on SUN360 [28],
ADE20k [37] and MS COCO [18] datasets. SUN360 con-
sists of spherical images of 26 different scene categories
(e.g church, field etc.) in equirectangular projection. This
is one of the main datasets used to evaluate the previous lit-
erature’s performance. However, due to the equirectangular
projection of the 360 scene, many parts of the image are
highly distorted. While this can be a good measure to eval-
uate the model’s performance in learning the scene layout,
certain parts of the scene like ‘poles’ are dedicated a higher
pixel-share in the image. This imply that the reconstruction
of uniform parts of the image (such as sky, ground) might
have a greater impact on the method’s performance com-
pared to selecting the salient objects lying on the horizon.
Therefore, additionally we evaluate our work on ADE20k
where over 27k images of more than 300 scenes are cap-
tured using a camera with a normal FoV. This is one of the
datasets that some of the previous works [25, 27] evaluate
their method for the task of semantic segmentation. How-
ever, since the purpose of this paper is solving a reconstruc-
tion task we suffice to report the reconstruction results.

To evaluate our model on a more ‘in-the-wild’ scenario,
we use MS COCO [18]. This dataset contains 83K train,
40K val and 81K natural images, corresponding to 80 object
classes and 91 stuff classes.

Pixel budget: We compare our method with the previ-
ous work using the same pixel budget equal to 18.75% of
the total pixels in an image (37 patches of size 16× 16 pix-
els). Some of the previous methods [25, 26, 27] save on this
pixel budget by employing ‘Retina’ like glimpses where the
outer regions of the glimpse are incrementally blurred. This
way, given a fixed pixel budget, retina glimpses would cover
larger image regions compared to glimpses sampled in full
resolution. However, in this work, by sampling patches of
16 × 16 in full resolution, we tackle an even harder task
where the amount of context available to the method is less
compared to the previous works.

Loss and evaluation metric: We train both of the task
and the trainable glimpse selection modules with the L2 loss
corresponding to the ground truth scene and reconstruction
loss. To be consistent with previous works [25], we re-

port our method’s performance using root of squared errors,
more details in supplementary.

Finally, many of the previous works [25, 26, 27] could
only train their model with a batch size of 6 using a 16GB
GPU memory. Our model can be trained with a batch size
of 50 with the same GPU requirements, thus being much
less complex and memory intensive.

4.2. Image Reconstruction
The glimpse module predicts a spatial error map that is

trained against the spatial loss incurred by the task module.
Such a formulation can be adapted for any dense prediction
tasks. In this work, we evaluate our method on the widely
studied task of image reconstruction,

We first compare against a baseline where the base
MAE model with random glimpse selection is finetuned on
the SUN360 and ADE20K datasets, denoted by ‘Random
glimpse’ in Table 1. This experiment allows us to under-
stand the importance of intelligent glimpse sampling.

Method finetune
base
model

train
glimpse
mod-
ule

glimpse’s
grad. to
base-
model

SUN360
[28]

ADE20k
[37]

Random glimpse ✓ x - 28.5 31.1
Ours (end-to-end) ✓ ✓ ✓ 28.0 28.8
Ours (detach-attention) ✓ ✓ x 26.2 27.2

Table 1: Evaluation of different modules: We compare
the effect of different modules and training setting of our
proposed model on the reconstruction error (lower is better).

Next, in addition to finetuning the task module and the
context extractor, initialized with MAE weights, we train
the glimpse selection module to predict the loss of the task
module (i.e reconstruction loss). In this setting, we allow
the gradients from the glimpse module to be backpropa-
gated through the task and the context extractor modules.
As shown in Table 1, this improves the random baseline,
showing that the learnable glimpse module provides better
exploration to the end task.

Finally, we evaluate another derivative of our model
where the gradients from the glimpse module cannot up-
date the task module and the context extractor’s parameters,
as indicated by ‘ours (detach-attention)’ in Table 1. This
way the glimpse selection module is forced to rely on the
features optimized for only the reconstruction task to pre-
dict the reconstruction loss. This prevents the task mod-
ule’s intermediate features to overfit on the loss prediction
task, resulting in a better exploration of the environment;
and thereby leading to an improvement in reconstruction
performance.

4.3. Comparison against state-of-the-art
We compare the performance of our method against re-

cent state-of-the-art (SOTA) baselines like Attend and Seg-
ment [27] and Glimpse attend and explore [25]. While all
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Method/Dataset SUN360
[28]

ADE20k
[37]

MS
COCO
[18]

Pixel Budget (No. Glimpses×Glimpse size) Image Resolution Pixel Budget (%)

Attend and segment [27] 37.6 36.6 - 8× 48× 48 (3 scales retina) 128× 256 18.75
Glimpse, attend and explore [25] 33.8 41.9 40.3 8× 48× 48 (3 scales retina) 128× 256 18.75
Ours (detach-attention) 26.2 27.2 29.8 37× 16× 16 (no retina) 224× 224 18.75
Ours (end-to-end) 28.0 28.8 31.3 37× 16× 16 (no retina) 224× 224 18.75
SSL-GlAtEx 35.9 - - 8× 48× 48 (3 scale retina) 128× 128 18.75

Table 2: Comparison with state-of-the-art: Comparison of our models against SOTA models, for the reconstruction task,
measured in root of squared error (lower is better). For reference, we also provide the pixel budget used by each of the
baselines methods.

Ground truth GlAtEx AttSegOurs

a)

b)

c)

Figure 4: Qualitative comparison with state-of-the-
art: Reconstruction result of our proposed on SUN360
[28] dataset, compared with Glimpse, attend and ex-
plore(GlAtEx) [25], and Attend and segment (AttSeg) [27].

of these methods use a CNN architecture, they deploy dif-
ferent glimpse selection strategies.

From Table 2, it can be observed that even when
glimpses are selected randomly the transformer model per-
forms better than all previous CNN-based methods. This
can be attributed to better performance of the MHSA com-
pared to fully connected layers in capturing the global con-
text, as well as the better quality of features learned by
the base ViT-based transformer model trained on a large
amount of unlabeled data. Besides, our model with train-
able glimpse selection module improves all the baselines
and SOTA by a significant margin, validating our hypothesis
of the efficacy of selecting the visible patches intelligently
rather than randomly. The qualitative comparison, as shown
in Figure 4, suggests this improvement can be attributed to
a better visual information retention, while maintaining the
true color tone, when compared against previous methods.

Analysis for the importance of self-supervised fea-
ture: Our encoder and decoder are initialized with pre-
trained self-supervised weights [15]. To understand if the
improvement in the performance is not just a side-effect
of better initialization, we modify the SOTA GlAtEx [25],
a convolutional architecture, with a self-supervised SWAV
resnet50 backbone. We show the reconstruction result for
this model (SSL-GlAtEx) in Table 2. We observe that de-
spite being trained with self-supervised features the model

has a significant lower performance compared to SimGlim
models. This success of SimGlim can be attributed to better
information flow between patches using MHSA layers.

4.4. Attention heuristics for glimpse selection
As shown by Caron et al. [6] in DINO, a vision trans-

former trained using a self-supervised objective learns at-
tention maps which can segment the salient object in the
scene. Motivated by this idea, we investigate if a set of
heuristics using the pre-trained task module’s MHSA layers
can be used as a proxy for the proposed learned glimpse-
map, eliminating the requirement of training an additional
glimpse module. We consider the attention weights of the
CLS attention in the last layer of the task module as our
glimpse heatmap and use three heuristics to select the next
glimpse location: max value, min value and Median value
in the CLS attention map. While max value has been
shown to correlate with the saliency [6], and should steer
the model to look at salient regions in the image; select-
ing min value steer the exploration towards the less salient
and larger background areas to potentially improve the re-
construction results. Finally, selecting median Value over-
come limitations of the first two heuristics by looking for
both salient and background objects in the scene.

As we intend to evaluate the use of base MAE for ac-
tive vision, we do not finetune it on SUN360 dataset. We
observe, in Table 3, that the random selection of glimpse
performs better than location corresponding to max, min or
median values in the CLS attention map. As the CLS at-
tention learns to assign a high value to salient regions, for
max this salient region exists around the seen glimpses as
they are the only source of information to the network for
reconstruction task. For min value selection, the glimpses
are selected from non-salient regions, which generally do
not contain informative patches for reconstruction. Both of
these heuristics do not allow a good exploration of the en-
vironment. Median is a way in-between, and yields a better
performance than the former two. While the random selec-
tion outperforms other heuristics for base MAE, we see that
random selection of glimpse performs inferior to a learned
glimpse selection policy, Table 1. Hence, this provides a
strong argument towards the importance of learning to se-
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Dataset/Method Max Min Median Random Glimpse
SUN360 [28] 38.9 54.1 37.4 34.9

Table 3: MAE Attention as glimpse: We use CLS atten-
tion of pre-trained MAE[15] as the glimpse map and use
locations corresponding to the max value, min value, me-
dian value, and random value as the next glimpse location.

lect glimpses, suggesting the importance of intelligent sam-
pling for active visual exploration despite a well pre-trained
reconstruction pipeline.

4.5. Effect of glimpse initialization

With the assumption that an active agent is dropped in
an environment with a random orientation of its camera, we
randomly sample the first glimpse location. However, the
successive glimpse locations are selected based on the end
task, i.e. visual reconstruction of the environment for our
use case.

It is important for an agent to look at critical image re-
gions to reconstruct the whole scene. These critical regions
are properties of the scene and do not change with respect
to the first observable location. Hence, irrespective of first
glimpse location, the set of locations that the agent observes
should not change. To evaluate this property for our pro-
posed model, we randomly initialize the first glimpse loca-
tion for 5 different runs and observe the glimpse configu-
ration when the glimpse budget is exhausted, as shown in
Figure 5. We observe that for all the five runs for both out-
door and indoor scenes, the model selects similar sets of
locations. This confirms that our proposed model learns to
reason about the important regions of the full scene, while
performing the sequential glimpse selection process.

4.6. Effect of change in glimpse budget

We use the same pixel budget as other SOTA baselines
(see Table 2), which is equivalent to 37 glimpses of size
16 × 16 pixels each. A smaller glimpse budget will result
in insufficient number of observations to complete the end
task resulting in a sub optimal image reconstruction. On
the other hand, a larger pixel budget will cover a larger im-
age region, which may not be feasible for the agent given
resource constraints. Therefore, it is critical to study the
effect of different glimpse budget while modeling an ac-
tive visual exploration model. We use four different val-
ues for the glimpse budget to study its effect on the per-
formance. We use glimpse budget of 13, 25, 37, 49 which
corresponds to approximately 6.25%, 12.5%, 18.75% and
25% of the total pixels in the scene. We provide these re-
sults in Figure 6. For ADE20k our proposed model con-
sistently outperforms random glimpse selection for all set-
tings. For SUN360 data, our method performs better for
glimpse budget >= 25, while random selection, shown in
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Figure 5: Random glimpse initialization: Figure shows
the effect of first glimpse initialization. The first row shows
the ground truth scene, row 2-5 shows 4 randomly chosen
first glimpse location and the final set of glimpses selected
by the learnable glimpse module.
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Figure 6: Effect of number of glimpses: we show re-
construction error values (y-axis) for SimGlim trained on
SUN360 [28] (left) and ADE20K [37] (right) datasets. x-
axis shows different number of glimpses chosen to train and
validate the proposed SimGlim.

dotted-blue line, performs better for a glimpse budget of
13. As SUN360 dataset consists of panoptic images of in-
door and outdoor scenes with equirectangular projection,
for smaller number of glimpses, the random selection pro-
vides a better coverage of the scene than learned glimpses.
For both datasets, we observe that our (detach-attention)
variant of the model, shown by solid-green line, performs
better than our (end-to-end) variant, shown by solid-red
line. This shows training the glimpse module as a stand-
alone layer provides a more robust model.

4.7. Sequential glimpse selection
Here, we present the working mechanism of our pro-

posed method, the step-by-step glimpse selection and scene
reconstruction sequence performed by the SimGlim. The
agent selects a glimpse and reconstruct the full scene in
what we call a ‘glimpse-step’. Each glimpse step starts
with a new region being observed, as shown by the last
row in Figure 7. We process the new glimpse through
the context extractor module, and then through the task
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Figure 7: Active visual exploration by SimGlim: Step-by-step active visual exploration and generation of scene. Please
refer to supplementary for additional results on SUN360 [28] and ADE20k [37] datasets.

module to predict the full scene, as shown by ‘Pred’ row
(Note: ‘Pred+seen’ in the second-row is the predicted out-
put reconstruction appended by the seen regions). During
training, this task module’s prediction is compared with the
ground truth full scene, as shown in first row, and a loss is
computed, as shown by ‘Actual loss’ row. The latent repre-
sentation of the task module is also fed to the glimpse mod-
ule which outputs the predicted loss which we use as our
glimpse error map, as shown by the heatmaps in ‘Pred loss’
row. During training, this predicted loss is compared against
actual loss. During inference the maximum value location
in the error map which represents the region that the model
is the most uncertain about, in the purview of the end-task,
is selected as our next glimpse location. When the model
observes the new glimpse location, the error at that loca-
tion decreases, as shown by the lowering of the value in the
predicted heatmap after glimpse location is observed. With
each new glimpse observation, new information is added to
the context extractor’s representation, which in turn assists
the task module to improve the full scene reconstruction.
This concludes one glimpse-step.

Each glimpse-step consumes one glimpse from the total
budget. We stop this sequential glimpse-selection and re-
construction process when the glimpse budget is exhausted.
In Figure 7, we show a selected set of glimpse-steps for a
glimpse budget of 37, on a randomly selected scene from
SUN360 dataset. We extend these results in supplemen-
tary, showing all the glimpse-steps for the glimpse budget
∈ {13, 25, 37, 49} on scenes from SUN360 [28] dataset.

5. Conclusion
We proposed SimGlim, a transformer-based active visual

exploration model. We show that vision transformer mod-

els, and in particular MAE, trained on large unlabelled data
can replace contemporary CNN-based counterparts. We uti-
lize a self-supervised ViT model trained with random mask-
ing of the input image, into an active agent which learns to
sample the environment while optimizing the end-task of
image reconstruction. We evaluate our model on SUN360
[28], ADE20k [37], and MS COCO [18] datasets, while
improving the existing SOTA, as discussed in section 4.3.
We validate our design choice for the proposed SimGlim
model, with learnable glimpse module in section 4.2. We
study the use of CLS attention map as an alternative for
the learned glimpse map through a set of heuristics to use
the base MAE model for active visual exploration. As the
CLS attention learns to attend the most salient regions in the
scene, this restricts exploration to the neighborhood of the
seen glimpses, and hence performs inferior to our learnable
solution. In section 4.5, we observe that our model learns
to consistently sample important regions of the full scene
irrespective of the location of the first glimpse. We also
train and evaluate our model for different glimpse budgets,
in section 4.6; where we observe our model to be robust
to the effect of change in total number of glimpses. Fi-
nally, to understand the working mechanism of SimGlim,
we provide a step-by-step sequential reconstruction of full
scene and next glimpse location prediction for a randomly
selected scene from SUN360 dataset, in section 4.7. We
show that in each glimpse-step, our network attends a new
glimpse location and minimizes the error in its glimpse map
from the last step, while improving the overall reconstruc-
tion of the full scene.
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