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Abstract

Using deep neural networks for active learning (AL)
poses significant challenges for the stability and the repro-
ducibility of experimental results. Inconsistent settings con-
tinue to be the root causes for contradictory conclusions
and in worst cases, for incorrect appraisal of methods. Our
community is in search of a unified framework for exhaustive
and fair evaluation of deep active learning. In this paper,
we provide just such a framework, one which is built upon
systematically fixing, containing and interpreting sources
of randomness. We isolate different influence factors, such
as neural-network initialization or hardware specifics, to
assess their impact on the learning performance. We then
use our framework to analyze the effects of basic AL settings,
such as the query-batch size and the use of subset selection,
and different datasets on AL performance. Our findings en-
able us to derive specific recommendations for the reliable
evaluation of deep active learning, thus helping advance the
community toward a more normative evaluation of results.

1. Introduction
The availability of labeled data is crucial for effec-

tively training deep learning methods. However, obtain-
ing good labels is often more expensive than mere compu-
tational power, such that the research community has in-
vested large efforts in active learning (AL) [29]. By se-
lecting the most informative samples, the number of re-
quired labeled data points to train a classifier can effec-
tively be reduced. Most commonly one selects an initial set
of samples for bootstrapping the classifier (“init set”) and
queries samples in batches (“query batch”) to retrieve ad-
ditional labels. At each iteration, the classifier is trained
using all labeled data, either based on the random ini-
tialization of the model’s weights (“cold start”) or build-
ing upon the learned weights from the previous round
(“warm start”). Selection strategies can be roughly cate-
gorized in (a) uncertainty-based sampling [e.g., 9, 14, 24,
35, 39, 42], (b) diversity-based sampling [e.g., 34, 37], and
(c) combined approaches [e.g., 3, 4, 8, 15, 18].

Despite recent advances, reproducibility and rigorous
comparative evaluation remain major challenges in prac-
tice [19]. For instance, the random initialization of “init sets”
and weights of the backbone model can have a large im-
pact on the performance of an AL strategy. Recent research
sets out to address the difficulty in evaluating deep active
learning [5, 22, 25] but puts focus on individual aspects
only rather than on providing an overall picture, as indicated
in Table 1. In some rare cases, analyses even bring forward
contradictory conclusions. As an example, Munjal et al. [25]
show that AL performance is inconsistent under different
sizes of query batches, whereas Beck et al. [5] conclude that
the query-batch size only has a negligible effect.

Although we as a community have managed to identify
the problem, we still struggle to address it adequately since
the experimental setup in (deep) active learning is influenced
by so many subtle yet decisive factors. Therefore, it is crucial
that we establish a community-wide and consistent evalua-
tion framework, reaching a common understanding of how
to control and contain the influence factors.

In this paper, we identify factors that influence the perfor-
mance of different active learning strategies in three cat-
egories: (1) the underlying learning setup, (2) different
sources of randomness, and (3) specifics of the execution
environment. For each of these factors, we systematically
evaluate the sensitivity on a strategy’s overall performance
using tests for statistic significance inspired by Ash et al.
[3, 4] and explore the underlying reasons. We discuss means
to control these influence factors as part of the model’s train-
ing process and provide specific recommendations on how
each aspect can be handled in practice to yield more re-
producible results. Finally, we then resume to additionally
analyze different parameters of active learning based on our
framework and substantiate crucial influence on performance
under strictly controlled experimental settings.

We want to stress that this paper is not intended as a finger-
pointing exercise, but as an attempt to push active learning
research forward to more rigorous evaluations. Our frame-
work provides the urgently needed tools for comprehensive
and reliable comparison in this thorny and complex domain.
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Aspect Beck et al. [5] Lang et al. [22] Munjal et al. [25] Ours

L
E
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G

Data Augmentation � � � �
Optimizer � � � �
Hyper-parameter Opt. – � � �
Backbone Architecture – � – �
Regularization � – � –
Validation Set – – � –
Early Stopping – – – �

R
A

N
D

Initial Seeds/ Seed Sets �* �* � �
Mode Initialization – – – �
(Non-)Deterministic Comp. – – – �
Warm-/Cold Start � � – �

E
N

V Code Base – � – �
Hardware Difference – – – �

A
na

ly
ze

A
L

Query-Batch Size � – � �
Subset Sampling – – – �
Dataset Imbalance – – � �
# Samples per Class � – – �
Scalability � – � �
Overall Metric – – – �

Table 1: Overview of the community’s attempt to systematize evaluating active learning. Full black circles (�) mark considered
aspects, full gray circles (�) indicate that community knowledge has been incorporated, and empty circles (�) mean partial
analyses. The asterisk (*) marks contributions that have focused on ways of constructing initial sets rather than randomness.

2. Reliable Evaluation of Deep Active Learning

In order to reliably evaluate learning-based approaches,
we have to carefully prepare the experimental setup to con-
tain randomness. As a results of a multitude of different
influence factors, active learning is a particularly difficult
application in this regard. In the following, we present a
framework for limiting sources of randomness and demon-
strate their influence on detection performance.

We begin by outlining the five exemplary active learning
methods that we use for demonstrating the impact of our
framework’s design choices, before we present the metric
for showing statistical significance. In Section 2.1, we then
discuss measures to control the underlying machine learning
setup, before we propose specific actions for containing
randomness in Section 2.2. In Section 2.3, we additionally
stress the importance of fixing the hardware and software
environments across comparative evaluations.

Methods under test. We re-implement 7 AL methods
(BADGE [4], BALD [13], Core-Set [34], Entropy [35],
ISAL [24], LC [23], and LLOSS [42]) across uncertainty-
based, diversity-based, and combined strategies, and accom-
pany them with a simple random selection strategy. Table 2
summarizes their respective setups. All experiments are
conducted on the CIFAR-10 and CIFAR-100 dataset [20]
for which we follow the recommendations assembled in
Sections 2.1 to 2.3. Each experiment is repeated multiple
times and we randomly select 1,000 data points for the initial
set and retrieve 2,000 samples within a query batch, unless
otherwise specified. Fig. 1 provides a first glimpse at the per-
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Figure 1: Overall performance of AL methods on CIFAR-10.

formance of the five considered strategies. While the label
efficiency [5] is a useful metric, it is apparent that the trend
up to 5–10 k is not expressive. Moreover, we observe that
BALD, BADGE, Entropy, ISAL, LLOSS and LC arrive at
the maximum accuracy (the accuracy of a network trained on
the entire training dataset) at 20 k to 30 k labeled samples.
For a conclusive evaluation, thus, comparing performance
from zero to this converged point is crucial. Hence, in all
subsequent experiments, we display results from 0 to 25 k
labeled samples across different batches on the x-axis.

All experiments are conducted using NVIDIA A-100
GPUs, except for measurements performed to compare the
influence of different hardware and non-deterministic train-
ing which are run on NVIDIA RTX 3090 cards.

Significance tests. As a means to compare measurements
across different settings, we perform T = 3 trials with
different initial seeds, each at various labeling budgets.
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These are then statistically analyzed using two-tailed paired
t-tests [30, 31]. The results are visualized as pair-wise
penalty matrices (PPM) [3, 4] for which we do a pair-wise
comparison of two AL methods i and j after each batch. The
t-value is then calculated as t =

√
T µ̂
σ̂ with

µ̂ = 1
T

�T
k=1(a

(i)
k − a

(j)
k ) σ̂ =

�
1

T−1

�T
k=1(a

(j)
k − a

(j)
k − µ̂)

where {a(i)1 , . . . , a
(i)
T } and {a(j)1 , . . . , a

(j)
T } denote the accu-

racy for T trials of method i and j.
Considering a confidence level of 90%, we yield a t-value

interval of [−2.92, 2.92] where two methods i and j are con-
sidered as not significantly different. If the t-value is above
that interval (method i outperforms method j) or below it
(method j outperforms method i), we add a penalty score
of 1

n to the cell of the pair-wise penalty matrix at (i, j) or
(j, i), respectively. Here, n is the total number of measuring
points (the number of batches) over the increasing number
of labelled data for the current experiment. The higher the
value is in the resulting heat map, the stronger the method
at row i dominates the method associated with column j.
Consequently, the method corresponding to the column with
the lowest values performs best and the one with the highest
values the worst. In order to compose rankings, we use the
column-wise average marked as �. As an example (that
we discuss in more detail in Section 2.2), Fig. 2 shows a
pair-wise penalty matrix for different model initializations.

2.1. Controlling the Underlying Learning Setup

Recent research shows that the configuration of the under-
lying learning setup, that is the training settings of the target
model, has impact on evaluation results [5, 22]. While these
aspects are not our paper’s main focus, we briefly survey
crucial design choices to derive specific recommendations.

2.1.1 Backbone Architecture

In particular for task-ware active learning methods
(e.g., Core-Set or BADGE) the underlying learner has a
decisive impact as the features derived from it are used as
input for the sample selection process. Lang et al. [22] inves-
tigate the effect of the backbone architectures and compare
AL methods on CIFAR-10 learned with VGG16, ResNet18,
and DenseNet201. They conclude that (a) ResNet18 can
achieve the highest accuracy and that (b) using an architec-
ture incompatible with the dataset (e.g., DenseNet201 for
CIFAR-10) can reduce performance of active learning signif-
icantly. Additionally, it is of the utmost importance that the
community agrees upon a common definition of the individ-
ual backbones, so that, for instance, ResNet18 of a specific
evaluation is identical with the used ResNet18 of another
work. In Appendix B, we detail and summarize network
definitions across active learning research.

Recommendation. Use the backbone architecture with
the community-accepted definition that is best suited
for the dataset at hand and consistently use it across all
experiments. In the image classification domain, we
suggest using ResNet18 for CIFAR-10 and CIFAR-100.

2.1.2 Types of Optimizer

Compared to stochastic gradient descent (SGD) [43], adap-
tive optimizers such as Adam [16] and RMSProp [12] show
poor generalization despite faster convergence [40, 44].
Hence, the choice of optimizer can be crucial for assess-
ing the final performance. Beck et al. [5] and Lang et al.
[22] conduct experiments to investigate the effect of using
SGD and Adam optimizer, concluding that SGD results in
higher label efficiency with the same backbone and hyper-
parameters on the same dataset. The significance of this
is further underlined by the overview provided in Table 2,
showing a diverse use of optimizers.

Recommendation. Control the type of optimizer across
methods for comparative evaluations to ensure that the
yield performance difference stems from an active learn-
ing method itself. As SGD often generalizes better, we
encourage its use for deep active learning.

2.1.3 Learning Rate

In addition to a suitable backbone architecture (with a com-
munity accepted structure), the training’s hyperparameters
need to be selected carefully. For instance, the most suitable
learning rate depends on the dataset, optimizer, and not least
the backbone architecture itself. Lang et al. [22] shows that
for CIFAR-10 with SGD, a larger learning rate is beneficial,
while Munjal et al. [25] even suggest that instead of fixing
the hyperparameters upfront for all AL iterations, they may
be tuned at each step using AutoML. While we explicitly
acknowledge the importance of hyperparameter tuning, a
continuous adaptation is time-consuming.

Recommendation. Pragmatically fix the learning rate
to 0.1 for SGD on image datasets. While continuous
hyperparameter tuning can improve overall performance,
a fixed learning rate does not change the ranking of AL
methods from a comparative evaluation’s point of view.

2.1.4 Data Augmentation

While data augmentation is popular in deep learning as a
means to address overfitting, its significance for active learn-
ing is often neglected. Beck et al. [5] show that overall accu-
racy and label efficiency can be improved with data augmen-
tation. As an example, BADGE [4] achieves 10 percentage
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points higher accuracy towards the end of the active-learning
cycles compared to results without data augmentation, which
Lang et al. [22] have confirmed this finding. Beside the over-
all improvement of classification performance, they also
point out that data augmentation can affect the ranking of
active-learning methods if used inconsistently. In contrast to
adaptive hyper-parameter tuning, data augmentation can be
incorporated at comparably small training-time costs. Hence,
a widespread use can be accepted more easily in practice.

Recommendation. One may use data augmentation if
applied consistently across methods, such that it does
not affect the overall ranking. However, a commonly
accepted baseline is needed, e.g., random horizontal flip-
ping and random cropping for image classification.

2.1.5 Early Stopping

Yoo and Kweon [42] have identified 200 epochs as a practical
setting for training ResNet18 on CIFAR-10, when the model
is fully trained but not overfitting. While this setting is
widely used in the AL community [8, 15, 42], using early
stopping or a fixed number of epochs can have a impact on
the evaluation as we present in Appendix D.

2.2. Containing Randomness

Perhaps the most obvious influence factor on experimen-
tal design is randomness. While the need for controlling
randomness is non-controversial [4, 25], the multitude of
manifestations is difficult to oversee. A common way of han-
dling randomness in evaluations is to repeat each experiment
several times and report averaged results with their standard
deviation. However, if the fluctuation of a specific approach’s
performance is larger than the improvement over its contes-
tants, results are difficult to interpret. Munjal et al. [25] per-
form statistical analyses of AL results on a macro level for

parameter initialization and data augmentation (cf. Table 1),
and provide first valuable insights.

In this section, we extend upon this result and set out to
unravel different sources of randomness. We discuss differ-
ent aspects to the problem and analyze their influence on AL
performance using the example of BADGE [4], BALD [13],
Core-Set [34], Entropy [35], ISAL [24], LC [23], and
LLOSS [42]) and the random strategy.

2.2.1 Model and Method Initialization

In the absence of a suitable alternative, the learning setup
is most commonly bootstrapped with random initialization
or with an initialization scheme that involves randomness
to a certain extend. For active learning, we have multiple
such scenarios, for instance, for (a) initializing the backbone
model and (b) initializing the active-learning method itself.
Moreover, the learned model is commonly reinitialized after
new samples are queried for labeling (“cold starts”), increas-
ing the introduced randomness with every batch.

Key to controlling randomness is to update the back-
bone model as new samples are queried. Instead of learning
the model from scratch with new random initialization, the
model is initialized with the parameters from the previous
round (“warm starts”). Consequently, all remaining ran-
domness stems from the initialization in the first round of
active learning, which already stabilizes the comparative
measurements significantly. For reliable comparative eval-
uation, initialization is fed with fixed inputs over multiple
runs to average out the remaining randomness. This forms
a sequence of R tuples, (s1, . . . , sl), containing seeds for
initializing the individual factors for one specific run. As ac-
tive learning is runtime expensive, the number of repetitions
is usually relatively small in practice. It thus is crucial that
all methods under investigation receive the same tuple of
random seeds to establish consistency across experiments.
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Figure 2: Analysis of active learning performance for three different init sets.
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More specifically, we initialize T “init sets” using fixed
random seeds and use each of them to train models with
T different weights initialization, resulting in R = T × T
models and thus trials. Moreover, it is important to note
that different execution environments have different random
number generators to provide randomness. As an example,
we control init sets in our experiments by specifying seeds
through Python and weight initialization using PyTorch.

Recommendation. Refine model parameters across AL
batch (“warm starts”) to prevent exhaustive reinitial-
ization and feed initialization of the backbone model’s
weights and the “init sets” with fixed inputs over multi-
ple runs to average out the randomness. Moreover, use
identical seeds for all methods under investigation.

In order to reveal the influence of these three differ-
ent factors, we statistically analyze their impact on active
learning performance. We apply all recommendations from
Section 2.1 and Section 2.2 so far and actively learn on
CIFAR-10 and CIFAR-100 with eight different strategies.
Additionally, we ensure fully-deterministic computations to
further reduce potential side-effects. Recall, that we initialize
our experiments based on T×T tuples of initialization seeds,
{(I1,M1), . . . , (I1,MT ), (I2,M1), . . . (IT ,MT )}. The
various influences are then measured using paired t-tests
over different groupings of these tuples.

Influence of initialization sets (“init sets”). To determine
the influence of differently initialized init sets, we conduct
experiments as described above. We perform t-tests for
models that use the same init set seed, {(Ik, �)}, to determine
the best performing strategy represented as pair-wise penalty
matrices. Fig. 2 shows the result of three out of T such

groups (cf. previous page), with the accuracy for multiple
active learning strategies on the y-axis over an increasing
amount of labeled data on the x-axis at the top, and the
corresponding pair-wise penalty matrices at the bottom.

Using the first initial seed set (left), the column represent-
ing BADGE has the lowest average penalty-score (� 0.01),
that is, BADGE outperforms the other strategies, but is
closely followed by Entropy (� 0.02) and LC (� 0.02). For
the second (middle) and third seed (right), BADGE performs
similar to Entropy. Moreover, BALD (� 0.08) falls behind
ISAL (� 0.03) with the third seed while BALD beats ISAL
with other two seeds. The accuracy progressions also suggest
consistent observation. Interestingly, comparing with the
first and second seeds, the performance of LLOSS (� 0.19)
using the third seed significantly fluctuates. Similar analy-
sis on CIFAR-100 are presented in Appendix E. Thus, we
can conclude that seeds can change method rankings (espe-
cially for tight calls), which is consistent with qualitative
observations from Munjal et al. [25].

Influence of model initialization. Next, we perform
t-tests for models that use the same seeds for initializing the
model’s weights, {(�,Mk)}, to compare the performance of
active learning strategies. In Fig. 3, we show result of three
out of T performance progressions and the corresponding
pair-wise penalty matrices underneath it. For the first model
initialization (left) and the third model initialization (right),
Entropy (� 0.01) outperforms BADGE (� 0.04) slightly.
However, for the second seed (middle), BADGE (� 0.02)
clearly outperforms Entropy (� 0.06). For ISAL and LLOSS,
we observe that the penalties vary strongly across seeds, indi-
cating that this method is particularly prone to variance of the
model initialization. We yield similar results on CIFAR-100
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Figure 3: Analysis of active learning performance for three different model initialization.
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that we present in Appendix E. In summary, we observe that
(a) active learning strategies expose vastly different degrees
of change for varying seeds and (b) Entropy, BALD, and
BADGE seem more robust to varying initialization compared
to Core-Set, LLOSS and ISAL.

Influence of updating model weights (“warm starts”).
While we are the first to discuss the use of “warm starts”
for stabilizing active learning for evaluation purposes, the
fact that it yields different performance than repeated “cold
starts” has been investigated in prior work [5, 22]. In our
experiments that we report in Appendix C, we confirm this
in our setting as well.

2.2.2 Computation

In addition to randomness that is made explicit by setting
seed values as discussed in the previous section, also the
computation platforms themselves can be subject to random-
ness at their very core. For instance, CUDA’s convolution
operation is non-deterministic per default [45] and the devel-
oper has to explicitly request deterministic computation [28].

Usually, non-determinism of fundamental operations can
be easily compensated for by averaging over multiple runs.
For active learning, however, recent research yield rather
small improvements over related work. Consequently, the
stochastic variance of non-deterministic operations can in-
fluence these results, rendering the explicit use of determin-
istic computations necessary. Although this significantly
increases computation time, we perform all our prior and
subsequent experiments with deterministic computations to
avoid any interference.

Recommendation. Run experiments multiple times to
compensate for non-deterministic operations. If the re-
sulting variance is larger than the gained improvement,
use deterministic operations stringently.

Influence of non-deterministic training. Once more, we
run experiments with all eight active learning strategies, fol-
lowing our previous recommendations. For each strategy,
we run T trials, each consisting of one deterministic run and
three non-deterministic runs that we average. Both groups
are compared using pair-wise t-tests anchored at the seed
tuple, (Ik,Mk), defining the initialization for a single run.

Fig. 4 shows pair-wise penalty matrices for non-
deterministic training (left) and deterministic training (right).
In Appendix F, we additionally provide a visualization of
the progression of accuracy values. At first sight it is appar-
ent that the heatmap’s pattern differs unmistakably. While
BADGE (� 0.04) and Entropy (� 0.03) perform similarly
for non-deterministic computations, for the deterministic
setting, in turn, BADGE (� 0.26) significantly falls behind
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Figure 4: Analysis of (non-)deterministic computations.

Entropy (� 0.07) and BALD (� 0.12). Also LLOSS ele-
vates from � 0.38 to � 0.29, while Core-Set deteriorates
from � 0.41 to � 0.53, further underlining the relevance of
deterministic training.

2.3. Fixing the Execution Environment

The execution environment has a potentially defining in-
fluence on active learning beyond randomness, extending
towards software and hardware implementations. Often-
times, the true nature of the experimental setup only be-
comes apparent in the provided open-source implementation
of a particular approach (if available). Consequently, before
using any implementation all influence factors have to be
verified. For comparative evaluations, it is not sufficient
to reuse implementations. Instead it is necessary to adjust
source code to fix crucial parameters such as the underlying
backbone architecture, the optimizer, the learning rate, or
the use of data augmentation. At the same time, the specific
hardware (e.g., used GPU model) can have an impact on the
active-learning performance. Unfortunately, training results
are not guaranteed to be comparable for different GPUs,
even when using identical seeds and deterministic training.

Recommendation SW. Configure and verify in-
fluence parameter in active learning implementa-
tions thoroughly. To foster future research, we
provide implementations as part of our framework at:
https://intellisec.de/research/eval-al

Recommendation HW. Ensure that comparative eval-
uations are run on identical hardware. While it is not
necessary to execute all experiments on the same physi-
cal device, the GPU model, for instance, should be the
same. Do not mix hardware and list hardware details.

Influence of varying GPU models. All prior experiments
have been conducted on consistent platforms. For evaluating
the influence if this was not the case, we run T trials on two
types of GPUs (NVIDIA A-100 and NVIDIA RTX 3090)
with deterministic computations and compare results using
pair-wise t-tests anchored at the seed tuple, (Ik,Mk), as
proposed for prior experiments. The results are provided in
Fig. 5 as pair-wise penalty matrices.
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Again, we see that BADGE, in particular, is sub-
ject to change depending on this influence factor, ranked
third (� 0.08) closely behind LC (� 0.01) and En-
tropy (� 0.04) and before BALD (� 0.10),LLOSS (� 0.28)
Core-Set (� 0.53), and Random (� 0.67) for NVIDIA
A-100 GPUs. For NVIDIA RTX 3090 cards, in turn,
BADGE (� 0.26) falls behind BALD (� 0.12) obviously.
The results further underline the necessity for consistency of
experimental setups including hardware details.
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(b) NVIDIA RTX 3090

Figure 5: Analysis of different GPU models.

3. Analyzing Active Learning

Based on the evaluation framework that we describe in
the previous section, we can know analyze the impact of
different active learning settings. In particular, we consider
the query-batch size in Section 3.1, the usage of subset sam-
pling in Section 3.2, and different datasets in Section 3.3.
Additionally, in Section 3.4, we then perform an overall
comparative evaluation of five active learning strategies.

3.1. Query-Batch Size

The size of the batch of samples to be queried for labels
is central to active learning. We thus fix the experimental
setup as described in Section 2 and analyze the influence of
the query-batch size based on three settings: 1,000, 2,000,
and 4,000. We compute one pair-wise penalty matrix for
each size to compare active learning strategies and report the
results in Fig. 6. We observe that the ranking of AL methods
slightly varies with the different query batch sizes. For a
batch size of 1,000, BALD ranks first identically (� 0.03),
but is significantly outperformed by Entropy for batch sizes
of 2,000 and 4,000, with � 0.10 to � 0.04, and � 0.21 to
� 0.0, respectively. Also, BALD is even with LC at first,
but falls behind for larger batch sizes. In Appendix G , we
additionally provide the analysis on CIFAR-100.

Recommendation. Consider multiple query-batch sizes
in the evaluation. The choice of the sizes needs to be
appropriate for the total number of unlabeled samples.

3.2. Subset Sampling

As can be seen in Table 2, multiple active learning strate-
gies employ subset sampling in their evaluation [8, 15, 42].
The influence of sub-sampling on aparticular active learning
strategy, however, often is opaque and itremains unclear how
much sub-sampling contributes in comparison to the newly
proposed approach. Hence, we study this complementary
measure under our framework and report the results for pair-
wise comparisons of different active learning methods in
Fig. 7. Note that the random strategy, of course, is equiva-
lent with and without sub-sampling and is excluded here.
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(b) Sub-sampled

Figure 7: Analysis of different subsets. Performance full
and sub-sampled data is indicated as solid and dashed lines.

We can observe that sub-sampling has different influ-
ence on different strategies. For BALD and BADGE the
results with sub-sampling are worse than that without, while
for Core-Set the influence is (relatively) smaller, such that
it is able to shrink the gap to the other approaches. This
tendency is also visible in the accuracy progression where
all approaches but Core-Set and LLOSS show a significant
difference. While for the full dataset, BALD and LC are
on a par (� 0.03) and slightly better than Entropy (� 0.04),
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(c) 4,000 samples
Figure 6: Analysis of varying batch sizes.
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with sub-sampling LC (� 0.04) significantly outperforms
BALD (� 0.11). We also yield similar observations for
CIFAR-100 in Appendix H. Thus, using sub-sampling can
change the ranking of AL strategies. Interestingly,[42] men-
tions that sub-sampling might alleviate the overlapping of
selections for uncertainty-based methods. We observe that
this highly depends on type of dataset. For instance, on
CIFAR-100, LC and Entropy perform clearly better after
using sub-sampling, while on CIFAR-10, the observation is
the other way around.

Recommendation. Compare active learning strategies
without sub-sampling, unless one of the approaches uses
it as a fundamental building block. In this case a detailed
analysis of the influence of sub-sampling is necessary.

3.3. Datasets

Next, we investigate the relevance of evaluating AL meth-
ods on imbalanced datasets and large-scale datasets that have
a larger number of classes and/or more samples per class.

Imbalanced datasets. Most datasets that are commonly
used in active learning research have perfectly balanced
classes. However, for assessing the practicability of
active learning this cannot and must not be assumed.
Kim et al. [15] already show that the ranking of AL meth-
ods differs between balanced and imbalanced datasets. We
extend upon this observation in Appendix I.

Scalability to CIFAR-100 and TinyImageNet. We start
to investigate active learning performance on the CIFAR-100
dataset and, thus, with 10× more classes then in our ini-
tial evaluation. The pair-wise penalty matrix in Fig. 8a
shows that most of the time LC dominates the ranking for
CIFAR-10. On CIFAR-100, however, BALD (� 0.01) sur-
passes all other approaches clearly, including LC (Fig. 8b).
Core-Set (� 0.53) falls significantly behind Entropy (� 0.04)
on CIFAR-10, however, their performances are close to
each other on CIFAR-100. Moreover, the improvement over
Random is reduced on CIFAR-100 compared to CIFAR-10,
which is also corroborated by Beck et al. [5]. We also analyze
the performance on the large-scale dataset TinyImageNet in
Appendix J. We conclude that AL strategies have different
scalability to different types of datasets.
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(b) CIFAR-100

Figure 8: Analysis of different datasets.

Recommendation. Evaluate active learning strategies
on multiple benchmark datasets, that comprise balanced,
imbalanced, small-scale, and large-scale datasets to cover
most relevant cases in practice.

3.4. Comparative Analysis

Finally, we outline an overall comparative evaluation of
the five exemplary active learning strategies. We compare the
methods with pair-wise penalty matrices summarizing dif-
ferent query batch sizes, {1000, 2000, 4000}, and datasets,
{CIFAR-10,CIFAR-100}. All experiments are conducted
according to our framework and are analyzed across T = 3
trials with a confidence level of 90%.

Fig. 9 shows the corresponding pair-wise penalty matrix,
summing up all experiments. The last row shows the column-
wise average per active learning strategy that allows to con-
cisely derive a ranking. The lower the column-wise mean,
the better the method in comparison to the other methods.
Surprisingly, LC (� 0.34) and BADGE (� 0.34) dominates
the rankings, followed by BALD (� 0.44),ISAL (� 0.53),
Entropy (� 0.72), LLOSS (� 1.45) and Core-Set (� 2.18).
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Figure 9: PPM over all experiments

Recommendation. For a comprehensive analysis of
AL strategies, the overall comparative evaluation should
incorporate as many variables from Section 3 to yield a
summarized PPM that is as expressive as possible.

4. Conclusion
Recently, our community has identified critical shortcom-

ings in reproducing experimental results of active learning.
Despite having acknowledged the problem, so far, we have
been lacking a comprehensive framework for reliable evalu-
ation of novel approaches. In this paper, we fill this gap by
systematically fixing, containing, and interpreting sources of
randomness. We provide specific recommendations for the
research practitioner that help set up active learning experi-
ments. We thus provide urgently needed tools for compre-
hensive and reliable evaluation in this challenging domain.
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