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Abstract

The cost volume, capturing the similarity of possible cor-
respondences across two input images, is a key ingredient
in state-of-the-art optical flow approaches. When sampling
correspondences to build the cost volume, a large neighbor-
hood radius is required to deal with large displacements,
introducing a significant computational burden. To address
this, coarse-to-fine or recurrent processing of the cost vol-
ume is usually adopted, where correspondence sampling in
a local neighborhood with a small radius suffices. In this
paper, we propose an alternative by constructing cost vol-
umes with different dilation factors to capture small and
large displacements simultaneously. A U-Net with sikp con-
nections is employed to convert the dilated cost volumes
into interpolation weights between all possible captured
displacements to get the optical flow. Our proposed model
DCVNet only needs to process the cost volume once in a
simple feedforward manner and does not rely on the se-
quential processing strategy. DCVNet obtains comparable
accuracy to existing approaches and achieves real-time in-
ference (30 fps on a mid-end 1080ti GPU).

1. Introduction
Optical flow, as a dense matching problem, is about esti-

mating every single pixel’s displacement between two con-
secutive video frames, capturing the motion of brightness
patterns. It is a classical and long-studied problem in com-
puter vision, dating back to the early 1980s [8]. Optical
flow has applications in a wide range of other problems,
such as scene flow estimation [23], action recognition [25],
and video editing and synthesis [3].

Like many other computer vision problems, state-of-the-
art approaches for optical flow estimation are all based on
deep neural networks. In the beginning, however, deep neu-
ral networks for optical flow reported inferior results com-
pared to those of traditional well-engineered energy mini-
mization approaches [6]. To reduce the performance gap,
one approach stacked multiple networks to increase capac-
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Figure 1. Illustrations of our proposed model, DCVNet, com-
pared with two representative existing approaches. DCVNet is
an alternative to existing approaches, which does not need the se-
quential processing of the cost volume. The key idea is to construct
cost volumes with different dilation rates to capture small and large
displacement at the same time. It achieves real-time inference on a
mid-end 1080ti GPU (30 fps) and comparable accuracy to existing
approaches.

ity [12], resulting in significant accuracy improvements. In-
creasing the capacity of the network, however, led to huge
networks and slower inference. Starting from [24], more
and more classical principles derived from traditional opti-
cal flow estimation approaches were incorporated into neu-
ral network design, allowing deep neural networks to sur-
pass traditional approaches in accuracy. In particular, the
cost volume, which is a more discriminative representation
for optical flow compared to concatenated feature represen-
tations of two images, is now an essential component for
state-of-the-art approaches.

To build the cost volume, we need to sample pairs of lo-
cations between two input images in a neighborhood along
both horizontal and vertical directions to compute their sim-
ilarity (or cost). A big neighborhood is required to cap-
ture large displacements, but it leads to a very large cost
volume and a significant computational burden. Conse-
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quently, most existing models capture large displacements
in a sequential manner by using cost volumes with small
neighborhoods for computational efficiency. Specifically,
the coarse-to-fine strategy is widely adopted in state-of-the-
art advances [29, 11, 36, 32], where a pyramid based on the
feature hierarchy of deep Convolutional Neural Networks
(CNNs) is built. In each pyramid level, the optical flow es-
timation in the previous level is used to construct the cost
volume with the warping operation. Although a full-range
cost volume is constructed in the recent ground-breaking
work [30], a Recurrent Neural Network (RNN) is employed
to process only a partial cost volume with a small neigh-
borhood at each recurrence to capture large displacements
sequentially.

In this paper, we propose an alternative to these pre-
vailing approaches, which does not use the sequential es-
timation strategy to process the cost volume. Instead, cost
volumes with different dilation rates are constructed at the
same time. Even with a small search neighborhood, both
small and large displacements can be captured simultane-
ously. By concatenating such cost volumes together, a sim-
ple convolutional network (a U-Net) is then employed to
process the dilated cost volumes only once to obtain the
optical flow. Specifically, we estimate the interpolation
weights between all possible displacements captured in the
dilated cost volumes to get the optical flow. In addition to
computing the loss for the optical flow, we also design a loss
term to better supervise the interpolation weights, leading to
better accuracy.

Compared with other approaches, such as PWC-Net [29]
and RAFT [30], our approach is conceptually simpler, and
does not require sequential processing of the cost volumes,
as shown in Fig. 1. While obtaining comparable error
rates on standard benchmarks, our approach runs signif-
icantly faster at inference time, achieving 30 fps (frames
per second) for a Sintel-resolution image (with a size of
1024 × 436) on a mid-end 1080ti GPU. Our code as well
as the model weights will be made publicly available.

2. Related Work
In this section, we discuss previous optical flow meth-

ods. Due to space limits, we focus on neural network-based
approaches.

FlowNet, proposed in [6], has two variants, FlowNetS
and FlowNetC, both of which have an encoder-decoder
structure. FlowNetS simply concatenates the feature rep-
resentations of the two images obtained from the encoder
and lets the decoder learn how to compute optical flow. In
contrast, FlowNetC constructs a cost volume by computing
matching costs (or similarity) between two feature maps. To
improve the accuracy, especially for large displacements,
FlowNet2 [12] concatenates the FlowNetS and FlowNetC
variants in a cascade, where the optical flow estimation is

progressively refined. This is the first instance where a neu-
ral network reports better or on-par optical flow results with
classical engineered approaches.

Although FlowNet2 achieves good accuracy, it has 162M
parameters. The more compact SpyNet is proposed in [24].
It computes flow in a coarse-to-fine manner by using a pyra-
mid structure borrowed from classical approaches. PWC-
Net [29] extends the pyramid structure used in SpyNet. In
each pyramid level, a cost volume is built by warping the
second image’s feature map using the optical flow estima-
tion in the previous level. As a result, large displacements
can be captured in a sequential manner. A similar coarse-to-
fine strategy is used in other approaches. LiteFlowNet [11]
also uses a pyramid structure to estimate optical flow in a
cascade manner and proposes a flow regularization layer. In
the recent extension LiteFlowNet3 [10], an adaptive modu-
lation prior is added to the cost volume, and local flow con-
sistency is used to improve the final accuracy. HD3 [37]
converts optical flow estimation into discrete distribution
decomposition. SENSE [15] extends PWC-Net to solve
optical flow and stereo disparity at the same time with a
shared encoder. In [36], a separable 4D convolution is pro-
posed to process the cost volume, which is converted into
two successive 3D convolutions. In [32], 2D convolutions
are independently applied to each sampled displacement
in the cost volume for displacement-invariant cost learn-
ing (DICL). In [35], optical flow estimation is modeled as
a global matching problem by computing the similarities of
features, where iterative refinement shows improved accu-
racy.

Instead of using a feature hierarchy for coarse-to-fine es-
timation, an RNN is used in RAFT [30]. It builds a full-
range cost volume capturing the similarity between all pairs
of locations between two images. But at each recurrence
step, only a partial cost volume in a small neighborhood
is used to estimate an offset. This offset is used to move
the estimated optical flow (displacement) iteratively closer
to the optimum. In [16], sparse matches instead of a full
cost volume is used to reduce the memory consumption. In
a similar effort [34], 1D attention and correlation is used
so that the RAFT can be used for high-resolution images.
Zhang et al. propose to use a separable cost volume module
using non-local aggregation layers to reduce motion am-
biguity [38]. Kernel patch attention is used to better use
the local affinity to implicitly enfore the smoothness con-
stratint [21]. DIP [41] uses an new inverse propagation in-
spired by the classical PatchMatch algorithm to better es-
timate the cost volume. CRAFT proposes to replace the
dot-product correlations with transformer cross-frame at-
tention [27]. In [40], argmax is applied on the 4D cost
volume to efficiency compute the global matching to better
capture large displacement. In [2], deep equilibrium (DEQ)
flow estimators are proposed to replace the RNN.
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Such sequential estimation approaches are inherently
slow as optical flow estimation at each pyramid level or re-
currence step is dependent on the results in the previous one.
In contrast, Unlike these coarse-to-fine or recurrence-based
approaches, we build cost volumes with different dilation
factors to effectively capture small and large displacements
simultaneously. Consequently, our approach does not need
the sequential estimation strategy.

There are other approaches, whose efforts are comple-
mentary to ours. A set of improvements about model train-
ing protocols, including the data sampling process, model
regularization, and data augmentation, are presented in
ScopeFlow [4]. A learnable cost volume is proposed in [33],
which considers the effectiveness of different feature chan-
nels by assigning different weights to different channels.
Sun et al. propose to learn to generate training data to train
optical flow models [28]. Depth learned using a monocu-
lar depth estimation model is used to generate optical flow
with a virtual camera in [1]. Detail-preserving residual fea-
ture pyramid modules are proposed in, which retains impor-
tant details in the feature maps to better compute the cost
volume [19]. Self-supervised consistency loss are proposed
in [14] to improve an optical flow model’s accuracy.

Using dilations in cost volumes is not completely new.
FlowNetC [6] only uses a single dilation factor of 2, which
does not fully exploit the potential of using dilations to cap-
ture large displacements. In Devon [20], dilated cost vol-
umes are used as a replacement for the warping modules
in a sequential coarse-to-fine estimation model. By sharp
contrast to FlowNetC [6], we use multiple dilation factors
to better capture small and large displacements. Addition-
ally, unlike Devon [20], we use dilated cost volumes as an
alternative for the sequential estimation strategy to compute
optical flow. Moreover, our model achieves significantly
better accuracy than both FlowNetC [6] and Devon [20].

3. Dilated Cost Volume Networks
3.1. Dilated Cost Volumes

Given two input images I1 and I2 with height H and
width W , we extract their L2-normed feature representa-
tions xs

1 and xs
2 at stride s using a CNN, where s corre-

sponds to the spatial resolution downsample factor w.r.t. the
input images. To search for the correct correspondence for
a position p = (x, y) in xs

1, we need to compare its feature
vector with that of a candidate position q = (x+ u, y + v)
in xs

2, where u and v are the offsets of the pixel from p to q.
To measure the similarity between feature vectors at p and
q, we have

cs(u, v, x, y) = f (xs
1(x, y),x

s
2(x+ u, y + v)) , (1)

where f(·, ·) is a function measuring the similarity between
two feature vectors. Here we divide each of the vectors xs

1

(a) input images (b) dilation=1 (c) dilation=5
Figure 2. Illustration of using dilation to capture both small
and large displacements. (a) input two images where points A
and B move to A′ and B′, respectively. (b) two patches around
A in two images. (c) two patches around B in two images. Blue
dots in (b) and (c) correspond to candidate displacements when
constructing cost volumes. With a small search radius (2 in this
example), correct displacements (denoted by red and blue crosses,
respectively) can be captured using two different dilation factors.
Best viewed in color.

and xs
2 into C sub-vectors and compute the cosine similar-

ity between each pair of corresponding sub-vectors. The
output of f therefore has C dimensions. As we need to
sample in a local 2D neighborhood for all possible corre-
spondences, we have u ∈ [−k, k] and v ∈ [−k, k], where
k is the neighborhood radius. The full cost volume size is
thus C × U × V × H

s × W
s , where U = V = 2k + 1.

Due to the striding factor, such a cost volume cs cap-
tures candidate horizontal displacements1 across two input
images in the range of s ⊙ [−k, k], where ⊙ denotes the
elementwise multiplication between a scalar and a vector.
For simplicity, we use only the horizontal displacement for
illustration here (vertical displacement can be analyzed sim-
ilarly). To account for large displacements, which is critical
for accurate optical flow estimation, either a larger stride s
or neighborhood radius k can be used. Both of them are
problematic, however. A larger stride means more down-
sampling and loss of spatial resolution. A large neighbor-
hood radius, on the other hand, results in a large cost volume
and heavy computation.

Instead, we propose to use dilation factors to construct
cost volumes to deal with small and large displacement at
the same time. Specifically, we have

cs,d(ud, vd, x, y) = f
(
xs
1(x, y),x

s
2(x+ ud, y + vd)

)
,

where ud ∈ d⊙ [−k, k], vd ∈ d⊙ [−k, k]. (2)

Here d is a dilation factor. Now the search range of dis-
placement over two input images is sd ⊙ [−k, k]. In this

1In this paper, we use “displacement” to denote a pixel’s offset over
two input images and “correspondence” to refer to offsets over two feature
maps. So a displacement is the multiplication of a correspondence by the
stride of the feature map.
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Figure 3. Pipeline of DCVNet. Feature representations of two input images are obtained from the encoder, which are used to construct the
dilated cost volumes at different strides and dilation rates. A U-Net is employed to process the cost volumes to produce a set of interpolation
weights over the captured displacements in the cost volume to compute the optical flow.

Table 1. Displacements over input images captured using differ-
ent strides and dilation factors.
stride dilation

candidate horizontal displacements
(s) (d)

2 1 {-8, -6, -4, -2, 0, 2, 4, 6, 8}

8 1 {-32, -24, -16, 8, 0, 8, 16, 24, 32}
8 5 {-160, -120, -80, -40, 0, 40, 80, 120, 160}
8 9 {-288, -216, -144, -72, 0, 72, 144, 216, 288}
8 16 {-512, -384, -256, -128, 0, 128, 256, 384, 512}

way, we can capture large displacements by having a large
d while maintaining small k and s, which preserves both
computational efficiency and spatial resolution for the cost
volume. Fig. 2 illustrates how dilation helps capture both
small and large displacements with a small neighborhood
radius. Specifically, in this paper, we consider s = 8 and
d ∈ {1, 2, 3, 5, 9, 16}. As we can see in Table 1, a displace-
ment as large as 512 pixels can be captured using a dilation
factor d = 16, stride s = 8, and neighborhood radius k = 4.

As the dilation factors increase, the gap between candi-
date displacements also gets larger. To deal with this is-
sue, we also build a cost volume with s = 2 and d = 1
to capture small and fine displacement. We do spatial sam-
pling of 4 to make the spatial resolution compatible with
the cost volumes constructed over the stride of 8. Finally,
we concatenate all cost volumes over different strides and
dilation factors. Our final cost volume has a dimension of
C ′ × H

8 × W
8 , where C ′ = D × C × U × V and D is the

total number of dilation factors (D = 7 in our case).

3.2. Cost Volume Filtering for Optical Flow

So far, we have introduced our dilated cost volumes.
How can we translate such cost volumes into exact pixel-

d = 1 d = 2 d = 3 d = 5

d = 1 d = 2 d = 3 d = 5
Figure 4. Illustration of interpolation weights. For both points
A and B, in the right, we show the interpolation weights obtained
with and without the U-Net filtering on the top and bottom, respec-
tively. Each image represents U×V (9×9) interpolation weights.
The feature stride is 8 and different dilation factors are shown in
the bottom. We can see that for the point A, whose motion mag-
nitude is small, a small dilation factor is sufficient to capture the
correspondence. While for the point B, whose motion magnitude
is large, a large dilation factor is needed. (Color encoding: blue is
close to 0 and yellow is close to 1. Best viewed in color.)

wise displacements, i.e., optical flow? Instead of directly
regressing optical flow values, we do interpolation between
all possible displacements similar to [36, 32]. Specifically,
we have

f =
∑
i,s,d

ωi,s,dfi,s,d, (3)

where
∑

i,s,d ωi,s,d = 1 and ωi,s,d ≥ 0. fi,s,d =
(µi,s,d, νi,s,d) is a single 2D displacement at stride s with
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dilation d, where µi,s,d ∈ sd⊙[−k, k], νi,s,d ∈ sd⊙[−k, k].
At a particular stride, for each dilation factor, there are UV
such sampled displacements in a cost volume. To obtain
the interpolation weights, we use a U-Net taking our di-
lated cost volumes as input to estimate ωi,s,d, where a skip
connection from the cost volume to the output is added. A
softmax is performed on top of the U-Net’s output to en-
sure that the constraints on ωi,s,d are satisfied.

The architecture of our proposed dilated cost volume net-
work (DCVNet) is illustrated in Fig. 3. We use a feature
encoder similar to that used in [30], except we only use a
single residual block in the stride of 2, with Instance Nor-
malization [31] layers to extract features of input images to
construct the cost volume. We empirically found that hav-
ing another context encoder is not significantly helpful and
yet substantially increases the number of parameters. There
are no normalization layers for the rest of the DCVNet. We
use Leaky ReLUs with a slope of 0.1 for the entire network.
We use the same convex upsampling strategy used in [30]
to upsample estimated optical flow to the input’s resolution.
We provide more details of the network architecture in the
supplementary material.

3.3. Loss Function

Denote the estimated optical flow before and after the
upsampling as f̂ ′ and f̂ , respectively, and the ground-truth
as f . We use the L1 loss to supervise the network training.

Lf = α||f̂ ′ − f ′||1 + ||f̂ − f ||1, (4)

where f ′ is the downsampled ground truth of f , which has
the same resolution as f̂ ′. α is empirically set as 0.25.

At the same time, we found that adding extra constraints
to the interpolation weights ωi,s,d leads to better results.
Note there are many plausible solutions of ωi,s,d that yield
the same optical flow. To add constraints of the interpola-
tion weights for each pixel, we compute the bilinear inter-
polation weights over the four nearest displacement vectors
surrounding the ground-truth optical flow value. We use the
CrossEntropy loss between the estimated ω̂i,s,d and the
generated ground-truth ωi,s,d.

Lω = −
∑
i,s,d

ωi,s,d log ω̂i,s,d. (5)

The final loss is defined as

L = Lf + βLω, (6)

where β balances Lf and Lω . We empirically found that
it leads to better accuracy by annealing β using a cosine
schedule, where the initial value is 1 and the final value
is 0. We hypothesize that at the beginning of the train-
ing, adding the strong prior using the bilinear interpolation
weights to ωi,s,d helps the training but it becomes less ef-
fective as training goes on.

Table 2. Average EPE results on MPI Sintel optical flow
dataset. “-ft” means fine-tuning on the MPI Sintel training set.
The numbers in parentheses are results on the data the methods
have been fine-tuned on. They are not directly comparable and put
here for completeness. † indicates a model uses extra training data.

Methods Training Test Time #Para

Clean Final Clean Final (s) (M)

FlowNet2 [12] 2.02 3.14 3.96 6.02 0.12 162
PWC-Net [29] 2.55 3.93 - - 0.04 8.8
LiteFlowNet [11] 2.48 4.04 - - 0.07 5.4
LiteFlowNet2 2.24 3.78 - - 0.03 -
FlowNet3 [13] 2.08 3.94 3.61 6.03 0.07 117
HD3 [37] 3.84 8.77 - - 0.14 38.6
SENSE [15] 1.91 3.78 - - 0.04 8.3
VCN [36] 2.21 3.68 - - 0.26 6.2
MaskFlow [39] 2.25 3.61 - - - -
Devon [20] 2.45 3.72 - - 0.04 -
DICL [32] 1.94 3.77 - - 0.08 9.8
RAFT-small [30] 2.21 3.35 - - 0.05 1.0
RAFT [30] 1.43 2.71 - - 0.3 5.3
Ours 1.91 3.28 - - 0.03 7.9

FlowNetS-ft [6] (3.66) (4.44) 6.96 7.52 0.02 38.7
FlowNetC-ft [6] (3.50) (3.89) 6.85 8.51 0.03 39.1
SpyNet-ft [24] (3.17) (4.32) 6.64 8.36 0.16 1.2
FlowNet2-ft [12] (1.45) (2.01) 4.16 5.74 0.12 162
PWC-Net-ft [29] (1.70) (2.21) 3.86 5.13 0.04 8.8
LiteFlowNet-ft [11] (1.45) (1.78) 4.54 5.38 0.07 5.4
LiteFlowNet2-ft [9] (1.30) (1.62) 3.48 4.69 0.03 -
LiteFlowNet3-ft [10] (1.32) (1.76) 2.99 4.45 0.05 5.2
FlowNet3-ft [13] (1.47) (2.12) 4.35 5.67 0.07 117
HD3-ft [37] (1.87) (1.17) 4.79 4.67 0.14 38.6
SENSE-ft [15] (1.54) (2.05) 3.60 4.86 0.04 8.3
VCN-ft† [36] (1.66) (2.24) 2.81 4.40 0.26 6.2
MaskFlow-ft† [39] - - 2.52 4.17 - -
Devon-ft [20] (1.97) (2.67) 4.34 6.35 0.04 -
DICL-ft [32] (1.11) (1.60) 2.12 3.44 0.08 9.8
RAFT-ft† [30] (0.77) (1.27) 1.61 2.86 0.3 5.3
Ours-ft† (1.04) (1.37) 2.36 3.66 0.03 7.9

4. Experiments

4.1. Implementation Details

Pre-training. We train our model on the synthetic Scene-
Flow dataset [22] following [15], which consists of Fly-
ingThings3D, Driving, and Monkaa. We found using Fly-
ingChairs [6] and FlyingThings leads to worse results for
our model. Only optical flow annotations are used for train-
ing. Interestingly, such a pre-training results in worse re-
sults for RAFT (3.16 vs 2.71 in terms of average end-point-
error on the final pass of the MPI-Sintel training set [5]).

During training, we closely follow the setting used in
RAFT [30]. Specifically, we use extensive data augmenta-
tions including color jittering, random crops, random resiz-
ing, and random horizontal and vertical flips. The crop size
is 400 × 720. The DCVNet is trained for 800K iterations
with a batch size of 8 using the AdamW optimizer [17]. The
initial learning rate is 0.0002 and is updated following the
OneCycle learning rate schedule [26] with a linear anneal-
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Table 3. Results on the KITTI optical flow dataset. “-ft” means
fine-tuning on the KITTI training set and the numbers in the paren-
thesis are results on the data the methods have been fine-tuned on.

Methods
KITTI 2012 KITTI 2015

AEPE AEPE Fl-Noc AEPE Fl-all Fl-all
train test test train train test

FlowNet2 [12] 4.09 - - 10.06 30.37% -
PWC-Net [29] 4.14 - - 10.35 33.67% -
FlowNet3 [13] 3.69 - - 9.33 - -
HD3 [37] 4.65 - - 13.17 24.9% -
SENSE [15] 2.55 - - 6.23 23.29% -
VCN [36] - - - 8.36 25.1% -
MaskFlow [39] - - - - 23.1% -
Devon [20] 4.73 - - 10.65 - -
DICL [32] - - - 8.70 23.60% -
RAFT-small [30] - - - 7.51 26.91% -
RAFT [30] - - - 5.04 17.40% -
Ours 2.56 - - 4.83 23.68% -

SpyNet-ft [24] (4.13) 4.7 12.31% - - 35.07%
FlowNet2-ft [12] (1.28) 1.8 4.82% (2.30) (8.61%) 10.41 %
PWC-Net-ft [29] (1.45) 1.7 4.22% (2.16) (9.80%) 9.60%
LiteFlowNet-ft [11] (1.26) 1.7 - (2.16) (8.16%) 10.24 %
LiteFlowNet3-ft [11] (0.91) 1.3 2.51% (1.26) (3.82%) 7.34 %
FlowNet3-ft [13] (1.19) - 3.45% (1.79) - 8.60%
HD3-ft [37] (0.81) 1.4 2.26% (1.31) (4.10%) 6.55%
SENSE-ft [15] (1.18) 1.5 3.03% (2.05) (9.69%) 8.16%
VCN-ft [36] - - - (1.16) (4.10%) 6.30%
MaskFlow-ft [39] - - - - - 6.10%
Devon-ft [20] (1.29) 2.6 - (2.00) - 14.31%
DICL-ft [32] - - - (1.02) (3.60%) 6.31%
RAFT-ft [30] - - - (0.63) (1.50%) 5.10%
Ours-ft (0.94) 1.6 5.33% (1.22) (4.41%) 9.62%

ing strategy and a warmup factor of 0.05. We also perform
gradient norm clip with a value of 1.
Fine-tuning. For Sintel, we fine-tune the pre-trained model
using both final and clean passes. Following previous
works, we optionally use extra data from KITTI2015 [7]
and HD1K [18] for training. The model is trained for 400K
with a batch size of 8. The initial learning rate is set to be
0.000125 and updated following the same OneCycle sched-
uler as we use in the pre-training stage. For KITTI, we train
the model for 400K iterations with a batch size of 8. The
initial learning rate is 0.0001 and the OneCyle learning rate
scheduler is used. For both Sintel and KITTI, we perform
similar data augmentations used in the pre-training stage.
The crop sizes for Sintel and KITTI are 368 × 768 and
336× 944, respectively.

4.2. Main Results

Optical flow results. Quantitative results on the MPI Sintel
and KITTI benchmark datasets of different neural network-
based approaches are summarized in Table 2 and Table 3,
respectively. We can see that our approach compares fa-
vorably to other approaches before and after fine-tuning.
Specifically, on the more photo-realistic final pass with fac-
tors such as lighting condition changes, shadow effects, mo-

Table 4. Number of parameters, GPU memory consumption,
and inference speed of different optical flow models, measured
on Sintel.

PWC-Net VCN DICL RAFT Ours

#Para. (M) 9.37 6.23 9.78 5.26 7.87
#Mem. (GB) 1.11 2.33 2.78 1.37 1.16

Speed (fps) 25 3.8 12.5 3.3 30

tion blur, etc, our proposed model, DCVNet, achieves on-
par end-point-error (EPE) with state-of-the-art approaches
like DICL [32] and RAFT [30]. Particularly, our model out-
performs Devon [20], which uses dilated cost volumes as a
replacement of the warping module in a sequential cost-to-
fine optical flow model.

We show some visual results of estimated optical flow
from different approaches in Fig. 5. We can see that our
approach DCVNet can capture the motion of challenging
scenes, leading to visually appealing results akin to oth-
ers. Particularly, for the bamboo images, our approach pro-
duces sharper motion boundaries and smoother motion es-
timates in the background compared to both PWCNet [29]
and VCN [36]. We refer readers to the supplementary ma-
terials for more visual results.
Model size and memory. Our model achieves reasonable
model compactness and memory consumption, as shown in
Table 4, compared to other state-of-the-art approaches. For
GPU memory, our DCVNet needs 1.16GB, which is lower
than RAFT, DICL, and VCN.
Inference speed. Compared to existing approaches, our
DCVNet runs significantly faster, meeting the real-time in-
ference requirement. On a mid-end 1080ti GPU, our ap-
proach takes only 33ms to process two RGB images from
the Sintel dataset (with a resolution of 1024 × 436), run-
ning at 30 fps. We use a CUDA implementation for the cost
volume construction, which takes 10ms. Most of the time is
spent on the feature extraction part that takes 14ms. The de-
coder part to convert the cost volume to optical flow needs
9ms.

4.3. Ablation Studies

To validate the effectiveness of dilated cost volumes and
the loss term for the interpolation weights, we perform abla-
tion studies. We train the models on the SceneFlow dataset.
Effectiveness of dilation. We first investigate the effec-
tiveness of using dilation for the cost volume. We vary the
number of dilation rates from 7 to 1. To maintain the capa-
bility of capturing large displacement, we keep the largest
stride and dilation rate and gradually remove smaller ones.
We report error rate vs. number of dilation rates in Fig. 6.
We can clearly see that the error rates steadily decrease on
both MPI Sintel and KITTI 2015 datasets as number of dila-
tion increases. It validates our core idea of constructing cost
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(a) input images (b) PWCNet [29] (c) VCN [36] (d) RAFT [30] (e) our DCVNet
Figure 5. Visual comparison of optical flow estimations. From left to right: (a) input images, (b) PWCNet [29], (c) VCN [36], (d)
RAFT [30], and (e) our DCVNet. For each method, we show colorized optical flow and error maps (obtained from online servers). For the
error maps, white and red indicate large error while black and blue mean small error. Best viewed in color.
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Figure 6. Effectiveness of dilation for cost volumes. Top: EPE
vs. number of dilation rates on the final pass of the MPI Sintel
training set. Bottom: F1-all error rate vs. number of dilation rates
on the KITTI2015 training set.

volumes with dilations to deal with both small and large dis-
placements simultaneously.

Supervision of the interpolation weights. We investigate
the effectiveness of the loss term Lω . By setting β = 0,
we completely remove the supervision of the interpolation
weights. On the other hand, by setting β = 1, instead of
annealed version, we impose strong constraints to the inter-
polation weights. We can see from Table 5, none of them
works better than the annealed β.

Table 5. Effectiveness of the loss term Lω to supervise the inter-
polation weights.

Sintel-clean Sintel-final KTTI 2012 KITTI 2015

β=0 1.99 3.47 2.65 23.91%
β=1 1.91 3.32 2.61 24.13%

annealed β 1.91 3.28 2.56 23.68%

5. Conclusion
In this paper, we presented DCVNet, a dilated cost vol-

ume network for optical flow. Our core idea is to use differ-
ent dilation rates to construct cost volumes to capture both
small and large displacements at the same time with a small
neighborhood to retain model efficiency. By doing so, our
approach no longer relies on the sequential estimation strat-
egy for optical flow, leading to a fast optical flow model.
Our approach runs at 30fps on a mid-end 1080ti GPU and
achieves comparable accuracy to existing models on stan-
dard benchmarks.
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