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Abstract

Task incremental learning aims to enable a system to
maintain its performance on previously learned tasks while
learning new tasks, solving the problem of catastrophic
forgetting. One promising approach is to build an indi-
vidual network or sub-network for future tasks. However,
this leads to an ever-growing memory due to saving extra
weights for new tasks and how to address this issue has re-
mained an open problem in task incremental learning. In
this paper, we introduce a novel Neural Weight Search tech-
nique that designs a fixed search space where the optimal
combinations of frozen weights can be searched to build
new models for novel tasks in an end-to-end manner, result-
ing in a scalable and controllable memory growth. Exten-
sive experiments on two benchmarks, i.e., Split-CIFAR-100
and CUB-to-Sketches, show our method achieves state-of-
the-art performance with respect to both average inference
accuracy and total memory cost. 1

1. Introduction
The last decade has demonstrated the power of deep

learning approaches, achieving superior performance in
many machine vision tasks. However, modern machine
learning algorithms for robots assume that all the data is
available during the training phase. On the other hand, the
real world is highly varied, dynamic, and unpredictable. It
is infeasible to collect enough amount of data to represent
all the aspects of the real world. Therefore, robots must
learn from their interactions with the real world continu-
ously. Motivated by this, incremental learning (also known
as lifelong learning and continual learning) is an emerging
research area, which aims to design systems that can grad-
ually extend their acquired knowledge over time through
learning from the infinite stream of data [7,10,14,16,26,36].

Incremental learning remains a challenging open prob-

1Implementation: https://github.com/JianJiangKCL/NeuralWeightSearch

Figure 1: Envisioned one practical application of the task
incremental learning in real-world human-robot interaction
settings. To enable such practical applications, this paper
aims to address the problem of memory growth.

lem because it demands minimal performance loss for old
tasks and a minimal increase in model storage. In other
words, the models should be able to adapt to novel tasks
efficiently and effectively, while not significantly underper-
forming on the previously learned tasks, which is known as
the problem of catastrophic forgetting.

There is a significant body of work on incremental
learning [1, 23]. These methods can be divided into
two widely used categories based on the learning sce-
nario, namely, class-incremental learning (CIL) and task-
incremental learning (TIL). Generally, CIL methods build
on a single network model that needs to sequentially learn
a series of tasks. One advantage is that they do not require
the task id during inference, unlike TIL methods. How-
ever, the single shared model will inevitably cause degrada-
tion in performance for previously learned tasks. Moreover,
state-of-the-art CIL methods, namely, replay-based meth-
ods [16,17], require extra memory for saving exemplars per
task, e.g., typically a task has 5 classes and 20 images are
saved per class, which will lead to a significant increase in
memory as the number of tasks becomes larger.

TIL methods, on the other hand, learn a separate model
for each new task, inherently addressing the problem of for-
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getting. One downside is that task id is needed during in-
ference. A solution to this is illustrated in Figure 1, where
a robot can interactively query its user to determine the task
id in both training and inference, which brings about prac-
tical applications in human-robot interaction [21]. How-
ever, building an individual network or sub-network for new
tasks leads to an ever-growing memory due to saving extra
weights and how to address this issue lies at the heart of TIL
research, especially, considering the limitations of robotics
platforms, i.e., space constraints.

Due to its relevance to human-robot interaction, in this
paper, we focus on task incremental learning setting, with
the goal of alleviating the memory growth problem as a
robot encounters new tasks sequentially. To this end, a line
of research has focused on dynamically expanding the net-
work for task incremental learning by creating a new model
or a subnetwork to learn new information while allowing
old models to maintain their performance. Among these
methods, Progressive Neural Network (PNN) [29] freezes
the previously learned models and continuously adds new
models for new tasks. One downside of PNN is that it re-
sults in substantial growth of parameters with the increasing
number of tasks. Recent works [19, 20, 35] have focused
on learning task-specific kernel masks to transfer and adapt
the backbone model to a certain task. PiggyBack [19] aims
to learn binary element-wise kernel masks for new tasks.
Though, there are two main limitations to this approach.
First, binary values might limit the representation capabil-
ity. Second, the fixed backbone hampers the learning of new
tasks. PackNet [20] aims to solve this problem by freeing
up some of the existing weights, which are unused by pre-
vious tasks, for learning new tasks. However, the backbone
model of PackNet can also run out of learnable weights and
might become a ‘fixed’ backbone eventually. To address
this issue, Compacting, Picking, and Growing (CPG) [8],
grows and prunes the backbone of PiggyBack for incremen-
tal learning, which however has a tideous iterative training
process and may lead to a significant increase in the storage
required for saving models. Taken together, scalable task
incremental learning has remained an open problem, partic-
ularly, how to utilise previously learned knowledge for new
tasks and grow the models in a controllable manner.

This work approaches this open problem by tapping into
a scalable technique, called Neural Weight Search (NWS),
which significantly alleviates the memory growth problem
while achieving state-of-the-art performance. Differently
from the existing methods [19, 20, 35], where a backbone
model is used, NWS discards the backbone but maintains
frozen layer-wise pools of grouped weights. For each new
task, it builds a new model by searching the pools for the op-
timal combinations of grouped weights. This search is effi-
ciently conducted with the help of a set of temporary kernel
weights that are not used for processing inputs and are dis-

carded after the training. Figure 2 illustrates the workflow
of our proposed approach.

In summary, our main contributions are as follows: (i)
We propose a new problem setting named Neural Weight
Search (NWS). Analogously to Neural Architecture Search
(NAS), NWS automatically searches pretrained weights to
build a network. (ii) The backbone-free design is novel in
task incremental learning. Unlike the conventional kernel
mask-based methods, where the backbone model is fixed or
partially fixed, our method discards the backbone but main-
tains layer-wise pools of kernel weights, allowing more rep-
resentation capacity. (iii) NWS enables the re-utilization of
weights when building models and achieves scalable perfor-
mance. Compared to the state-of-the-art method [35], our
memory gain can reach up to 82% (including the memory
required for saving the pools) and achieves better average
accuracy by a margin of 1.9% on two existing benchmarks.

2. Related Work
There is a significant body of work on incremental learn-

ing, which can be divided into three broad categories,
namely, regularization-based (e.g., [11, 36]), architecture-
based (e.g., [8,19,20,24,25,35]), and replay-based (e.g., [3,
9, 10, 15, 17, 18, 27]). Our proposed approach is at the in-
tersection of two categories, namely, regularization-based,
and architecture-based methods. As mentioned before,
there are two widely used settings in incremental learning,
namely, class-incremental learning (CIL) [3,9,10,15,17,18,
27], task-incremental learning (TIL) [8, 19, 20, 35]. In this
work, we focus on the task incremental learning setting.

TIL approaches are generally architecture-based meth-
ods (also known as parameter-isolation methods). These
methods learn an individual model or a partially original
model (e.g., shared low-level layers and individual high-
level layers) for each task. Overall, these methods suffer
from an uncontrollable growth of the memory when new
models are saved. For example, Rusu et al. proposed Pro-
gressive Neural Network (PNN) [29] to continuously ex-
pand the network by generating a new network for each
task while fixing the previously learned networks, which
resulted in an uncontrolled growth in parameters and hence
poor scalability.

Recent methods like Piggyback [19], PackNet [20],
CPG [8], and KSM [35] have aimed to alleviate this prob-
lem by introducing learnable masks with a single backbone
model. The weights of a new model are generated by mul-
tiplying the masks with corresponding weights in the back-
bone model. PiggyBack [19] fixes the backbone network
and learns binary element-wise masks for kernels. First,
real-valued masks are generated, which have the size same
as kernels. Then a predefined threshold is applied to obtain
binary masks. Such masks, namely ‘hard masks’, also re-
sult in poor scalability as kernels that can be learned for new
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Figure 2: The illustration of the Neural Weight Search algorithm. In both training and inference, only searched kernel weights
are used to process inputs. The temporary kernel weights can be regarded as a scaffold for building a neural network model,
which can be discarded after training.

tasks are constrained by the fixed backbone model. Pack-
Net [20], building upon PiggyBack, uses a strategy to prune
weights that are not used by old tasks, allowing to free up
those parameters for learning future tasks. However, Pack-
Net does not add more kernels and it reaches a bottleneck
when no more parameters are left to be released. The abil-
ity of incremental learning is the same as PiggyBack, when
it runs out of learnable weights. Hence, PackNet advances
PiggyBack but it is still not scalable in the long term.

Inspired by the aforementioned methods, CPG [8] adopts
the structure of Piggyback but it enables adaption of the net-
work by iteratively introducing more kernels for new com-
ing tasks and pruning the learned model. The iterative ex-
panding and pruning operations continue until the model
reaches a pre-defined inference performance for a task. For
example, the pre-defined performance can be defined as the
inference accuracy of a set of baseline models individually
fine-tuned for the corresponding task. However, CPG has
two main limitations. First, prior knowledge about base-
line performance is not usually available beforehand. Sec-
ond, it has a tedious and demanding iterative training pro-
cess. A recent method called KSM [35] uses the setting
the same as Piggyback but utilises soft kernel-wise masks
that combine binary and real values instead of using binary
element-wise kernel masks. Compared to Piggyback, soft
kernel-wise masks enhance the incremental learning abil-

ity, allowing kernels to adapt to different tasks using richer
representations. KSM reaches the state-of-the-art perfor-
mance on the Split-CIFAR-100 [13] benchmark and CUB-
to-Sketches benchmark [2,5,12,22,30,34]. However, KSM
also relies on a fixed backbone model that limits the learn-
ing of representations. Unlike the aforementioned kernel-
mask-based methods, where the backbone model is fixed or
partially fixed, our method discards the use of the backbone.
We maintain frozen pretrained kernel weights that are saved
in the form of layer-wise pools and these weights can be ef-
ficiently reused in various combinations and orderings for
different tasks, maximising the plasticity and significantly
reducing memory growth.

3. Problem Definition

3.1. Task Incremental Learning (TIL)

In a general TIL setting, there are T incremental phases
where tth phase introduces a new vt-way classification
task with training data xt and labels yt, where yt ∈
{0, 1, 2, ..., vt − 1}. For each task, we aim to learn an in-
dividual model ft parameterized by learnanble weights θt

with the objective, argminθt L(ft(xt),yt), where L is a
classification loss. During the inference, each task-specific
model ft is evaluated on the corresponding test data set
xtest
t and ytest

t .
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3.2. Neural Weight Search

To address the limitations of existing approaches (see
Section 2), we define a new problem setting named Neu-
ral Weight Search (NWS) for TIL. Instead of relying on a
fixed or partially fixed backbone and learning a mask for
each new task, NWS aims to build a new model by search-
ing for an optimal combination of weights from fixed and
stored weights pretrained on a large-scale image dataset.
These weights can be reused (without updating the values of
weights) for any upcoming new task. Treating each weight
scalar as an element to search for would lead to signifi-
cantly large search space. In practice, we search for grouped
weights and a group of weights can either be a convolution
kernel, a filter or even a layer. Briefly, we first design a fixed
search space of indexed grouped neural weights. Then, we
search for an optimal combination of grouped weights in the
search space to build a new model for a new task, where the
same grouped weights can be shared within the same task
as well as across different tasks.

As illustrated in Figure 2, for each layer l, we hold
a search space of nl indexed groups of weights Ml =
{m1,m2, ...,mnl}, which is called a “layer-wise pool” or
simply a “pool” in our formulation. Let’s consider that we
need to learn dl groups of weights for this layer, denoted by
Wl = {w1,w2, ...,wdl}. NWS builds this layer by search-
ing for an optimal combination (comb) of weights Kl =
{k1,k2, ...,kdl} where ki ∈ Ml. Note that the search
processes of different layers are conducted simultaneously
with the objective argmincomb L(fK(x),y). Because new
models are formed with indexed grouped weights, if there
are a number of models, NWS can greatly reduce mem-
ory cost by saving their combination indices as well as the
search space. In this paper, we group weights in the form
of convolution kernels, e.g., for a convolution kernel with
size 3 × 3, 9 weight values are grouped together. We have
demonstrated the effectiveness of our approach with vary-
ing convolutional network architectures.

To the best of our knowledge, neural weight search as in-
troduced in this paper has not been explored before. NWS
is completely different from both ‘kernel search’ in mixed-
integer linear programming and ‘kernel search optimiza-
tion’ used in kernel methods like SVM. NWS is analogous
to Neural Architecture Search (NAS). NAS designs a search
space of model components beforehand and obtains an op-
timal model architecture by evaluating the combinations of
these components. NWS designs a search space for neural
weights and automatically searches for an optimal combi-
nation of weights to build a network.

4. Proposed Method

Our proposed method has two main components,
namely, Neural Weight Search (NWS) algorithm (Sec-

tion 4.1), and design of the search space (Section 4.2).

4.1. NWS Algorithm

As mentioned in Section 3.2, we divide weights into
groups such that each group represents a convolution ker-
nel. We define a convolution kernel as a k × k matrix in
the float domain. To build a convolution layer l, we search
a layer-wise pool for an optimal combination of kernels,
Kl ∈ Rdl×k×k, where dl = dlin ∗ dlout and dlin, dlout are
the number of input channels and output channels respec-
tively. A layer-wise pool Ml ∈ Rnl×k×k is learned and
fixed during the pretraining stage, where nl is the number
of kernels in the pool (see Section 4.2). The kernels in the
pool are indexed by a non-negative integer number ranging
from 0 to nl − 1, so the pool Ml is a lookup table that can
return corresponding kernels by giving indices. Since the
kernels in the pool are indexed, Kl can be saved as a vector
Cl (whose values are non-negative integers), Cl ∈ Ndl

, and
Cl can be easily mapped to the float domain Kl by doing
lookup operations in Ml. Please see Figure 2.

One straightforward way to search the layer-wise pools
is using brute force search based on classification perfor-
mance. However, per layer, the number of possible com-
binations of kernels to be searched for is (nl)d

l

and dl is
a constant given a model. Consequently, it is not feasible
to try every possible combination using brute force search
as the search space is extremely large. Hence, we intro-
duce an efficient, end-to-end searching algorithm for find-
ing the optimal combination of kernels for making up layers
and a model as follows. We utilise an auxiliary component
that is a sequence of learnable temporary kernel weights
Wl ∈ Rdl×k×k with the same size of Kl. A layer needs
to be filled with kernels selected from the pool and Wl can
be regarded as placeholders. Each temporary kernel is re-
placed by a kernel in the pool based on a similarity metric
such as L2 distance. Kernel weights selected from the pool
form the model and are used to process inputs, resulting in
classification loss. Temporary kernels are then updated by
the classification loss and the similarity metric loss. We re-
peat this process over multiple iterations to update the tem-
porary kernels such that an optimal set of Kl can be found
from the pool given a new task. Temporary kernel weights
can be initialised using the weights mapped from kernel in-
dices of a previous task.

To wrap up, we search the pools for the optimal com-
bination of kernels for each layer in the model simultane-
ously. The formed layers then process the input in forward
propagation. However, in backpropagation, the gradients of
Kl induced by the classification loss are used to update the
temporary kernel weights Wl, and the kernel weights in the
pool remain fixed. As given in Eq. 1, searching the weights
of a kernel is the nearest neighbour search problem, where
k and w are the selected kernel and the temporary kernel,

1393



respectively:

ki = NWS(w;M), where i = argmin
i
∥w − ki∥2 . (1)

Since NWS is a non-differential operation, passing the
gradients of selected kernels to temporary kernels is not
straightforward and we use Straight-Through Estimation
(STE) for this purpose. The loss can be then defined as

LNWS(x, y,W,M)) =−
V∑
j

δy=j log(pj(x))

+ ∥sg[NWS(W;M)]−W∥22,
(2)

where the first term in Eq. 2 is a softmax cross-entropy loss,
δy=j is an indicator function, and pj(x) denotes the predic-
tion logits of the jth class (V classes in total). The second
term in Eq. 2 is a similarity loss (mean squared error is used
in practice). Stop-gradient, sg[.], is an operation that pre-
vents gradients to propagate to its argument. As shown in
Figure 2, gradients of the two aforementioned losses propa-
gate back to the temporary kernels: (1) the direct gradients
of the similarity loss; and (2) the indirect STE gradients of
the classification loss.

There are a couple of points to note. For each layer, we
use a separate pool. Our investigation has shown that a sin-
gle shared pool for all layers performs worse than layer-
wise pools. Because during the training or inference tem-
porary kernels are not directly used for the forward propa-
gation, they are never stored and can be discarded after the
model is built. The whole training and inference process is
presented in Algorithm 1.

4.2. Design of Search Space

There could be many ways to design layer-wise search
spaces (pools). One straightforward way is pretraining a
model and using all kernel weights as the search space.
However, in this case, as the size of this search space is
proportional to the number of input and output channels of
a layer, large numbers can bring about significant search
costs. To tackle this, we propose a novel knowledge distilla-
tion strategy that can distil from a network a compact search
space with a predefined pool size. Constructing the pools
can be achieved by minimising the following loss function:

min
W,M

LKP(x,y,W,M) = min
W
LNWS + βmin

M
LWD, (3)

where theLNWS is the weight search loss for updating tem-
porary kernels used in Section 4.1. We define the weight
distillation (WD) loss as follows:

LWD = ∥sg[W]− NWS(W;M)∥22. (4)

Algorithm 1: Task Incremental Learning with
Neural Weight Search

Require:
C0 ▷ kernel indices of the pretrained model
M ▷ pretrained pools
NWS ▷ neural weight search function that takes
temporary kernels as inputs
E ▷ embedding function that encodes input kernels
into corresponding non-negative integers via a pool
D ▷ lookup operation that returns corresponding
kernels given indices via a pool (lookup table)

1 for task t = 1; t <= N do
2 get task-specific data xt, yt

3 Wt←D(Ct−1; M )
4 for layer l = 1; l <= L do
5 Kl

t, difflt← NWS(Wl
t;M

l )
6 Ldiff ←Ldiff + difflt
7 if l = 1 then
8 ol

t← f(xt;K
l
t )

9 else
10 ol

t← f(ol−1
t ;Kl

t)

11 Lce ←minWtL(oLt , yt)
12 Wt← UPDATE(Wt; Lce,Ldiff) ▷ update

temporary kernels based on Eq. 2
13 Ct← E (Wt; M ) ▷ save model as indices
14 Kt←D (Ct; M) ▷ During inference, map

indices back to kernel weights by indexing in
pools

15 Excute INFERENCE(xt;Kt)

In Eq. 3, the first term optimises the temporary weights to
find the optimal selection of kernel weights in the pool. The
second term, i.e., weight distillation loss allows the selected
kernel weights (that are trainable in this stage) from the
pools to be updated, bringing them closer to corresponding
temporary weights. A coefficient β is used to control the
speed for updating the pools. The construction of the layer-
wise pools (weight embedding space) is analogous to that
of the feature embedding space discussed in VQ-VAE [33],
which is trivial to implement. The pretraining and distilla-
tion are conducted simultaneously in a large-scale dataset
like ImageNet [28] to ensure the generalization.

Once pretraining is completed, for each layer, the kernel
weights in pools are frozen and temporary weights are dis-
carded. The resulting pools can then be utilized for building
novel models and learning new tasks as discussed in Sec-
tion 4.1.

4.3. Implementation Details

Our NWS algorithm is a model-agnostic learning
method, and it is implemented by simply replacing the
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convolution layers (including short-cut layers) with NWS-
incorporated convolution layers. An NWS-incorporated
convolution layer has temporary kernels (which are dis-
carded after searching) and a pool. Our investigation has
shown that the optimal number of kernels for each pool is
nl = 512 (see App. 3 for details). To evaluate our ap-
proach, we present results with different architectures in-
cluding ResNet-18, ResNet-34 [6], MobileNetV2 [31], and
VGG [32]. For instance, for ResNet-18 [6], we replace the
last fully connected layer with a convolution layer (kernel
size of 1 × 1). The kernel size (k × k) for the remaining
layers is set based on the default parameters of ResNet-18.

The overall loss function in Eq. 3 is used to construct
layer-wise pools by pretraining the model such as ResNet-
18 on a large-scale image dataset, i.e., ImageNet [28],
where we randomly initialise the kernels in the pools as well
as temporary kernels. Then, during the incremental learn-
ing, layers of a new model are built simultaneously with the
NWS loss (Eq. 2) in an end-to-end manner.

5. Experiments
5.1. Benchmarks

Following the previous works [20, 35], we evaluate our
proposed methods on two existing TIL benchmarks: Split-
CIFAR-100, and CUB-to-Sketches. The Split-CIFAR-100
benchmark contains 20 tasks, where each is a 5-way clas-
sification task with an image size of 32 × 32. The split is
done in a way that the 5 classes in a task have the same su-
perclass [13]. The CUB-to-Sketches benchmark contains 5
datasets, each treated as a task, including CUB-200 [34],
Cars-196 [12], Flowers-102 [22], WikiArt-195 [30], and
Sketches-250 [5]. Here, for instance, CUB-200 means the
CUB dataset has 200 classes, and so on, and for these
datasets, the images are resized to 224× 224.

5.2. Evaluation Metric

We report task-wise accuracy by evaluating each task in-
dividually with the corresponding task-wise model. We also
use average accuracy over all tasks, which is defined as:
A = 1

T

∑T
i=1 Ai, where T is the total number of tasks.

Following [8, 20, 35] total memory cost is reported which
includes the backbone model and introduced masks as well
as statistics (means and variances) of batch normalizations
per task for baselines or includes the shared layer-wise ker-
nel pools and individual kernel indices as well as statistics
of batch normalizations per task for our method.

5.3. Baselines

We compare our algorithm with the following baseline
methods: (1) Finetune. It finetunes a pretrained model
for each task separately. It theoretically provides the up-
per bound of accuracy and uncontrollable memory growth.

(2) KSM [35]. It fixes the pretrained backbone model and
learns soft kernel-wise masks for each task. (3) Pack-
Net [20]. It learns binary kernel-wise masks for each
task and updates the pretrained model. After each task
is learned, it frees up a fixed ratio of model weights and
only released weights are learnable for the next task. (4)
AQD [4]. It quantises weights as well as features when
finetuning the pretrained model in an element-wise manner
for each task individually.

5.4. Experimental Setup

For a fair comparison, we use the same backbone model
architecture (i.e., ResNet-18 [6]) and the same common hy-
perparameters for baselines and our method. For method-
specific hyperparameters, default values are chosen in their
original implementation (See App. 5 for details). We run
each experiment with 3 different seeds and report the aver-
age results.
Pretraining. For all baselines, we used an initial ResNet-18
pretrained on ImageNet [28] (from Pytorch model zoo). For
NWS, we pretrain our pools on ImageNet for 160 epochs.
Each layer-wise pool has 512 kernels. Both kernels in the
pools and temporary kernels are randomly initialised during
the pretraining. To learn the task t, our method initialises
the temporary weights from the previous task t−1 by look-
ing up the indices for real-valued kernels.
Hyperparameters. Following [8, 35], all models are
trained with a stochastic gradient descent (SGD) optimizer
with 0.9 momentum and 1e−5 weight decay in 100 epochs.
In the case of Split-CIFAR-100, the initial learning rate is
set to 0.01. In the case of CUB-to-Sketches, the initial
learning rate is set to 0.001. The learning rate is divided
by 10 after 50 epochs and 80 epochs. For NWS, we empiri-
cally set β to 0.5 (0.1) in Eq. 3 for Split-CIFAR-100 (CUB-
to-Sketches). We report further results conducted with dif-
ferent hyperparameters in App. 3.

Table 1: Comparison of methods described in Section 5.3 in
terms of average classification accuracy and total memory
cost on Split-CIFAR-100.

Method Avg Acc (%) Memory (MB)
Finetune 71.3 892.0
KSM [35] 71.5 192.5
PackNet [20] 67.1 55.2
AQD [4] 69.9 52.7
Ours 73.4 33.9

5.5. Experimental Results

In terms of accuracy, Figure 3 compares task-wise in-
ference accuracy on Split-CIFAR-100, where our method
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Figure 3: Comparison of methods described in Section 5.3 in terms of task-wise accuracy on Split-CIFAR-100.
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Table 2: Comparison of methods described in Section 5.3 in terms of task-wise accuracy on CUB-to-Sketches benchmark.

Method
Task-wise Accuracy (%)

Memory (MB)Task1 Task2 Task3 Task4 Task5
Avg

CUB Cars Flowers WikiArt Sketch

Finetune 77.4 84.1 94.5 74.2 76.9 81.4 223.0
KSM [35] 65.9 79.7 93.5 66.2 73.9 75.8 76.9
PackNet [20] 78.4 82.4 90.7 69.0 75.3 79.1 56.0
AQD [4] 43.0 51.8 63.4 60.5 69.7 57.7 13.7
Ours 77.0 87.8 93.0 73.9 75.1 81.3 9.9

outperforms all the methods in 8 tasks out of 20, includ-
ing the Finetune. PackNet performs similarly to KSM from
task 2 to 4; but for the latter tasks, its performance is worse
than other baselines, supporting the phenomenon that learn-
able weights run out after a certain point. AQD performs
slightly worse than KSM and Finetune; because network
quantisation techniques limit the learning of rich represen-
tations. Looking at Table 1, our method outperforms KSM
by a margin of 1.9% in terms of average accuracy. Fur-
ther results on CUB-to-Sketches are presented in Table 2.
PackNet achieves slightly better results than KSM, except
for WikiArt. This might be due to the that the number
of tasks in CUB-to-Sketches is much smaller than Split-
CIFAR-100 (5 vs. 20). AQD performs much worse than

others. We conjecture that it is because CUB-to-Sketches
has higher resolution images as compared to Split-CIFAR-
100 (2242 vs. 322). Excluding Finetune which is memory-
unfriendly, overall, our method achieves the best average
accuracy. It performs better than other methods for the
tasks, Cars and WikiArt, and is on par with the best per-
forming baselines for the CUB (−1.4%), Flowers (−0.5%)
and Sketch (−0.2%).

In terms of memory, a similar trend can be observed for
both Split-CIFAR-100 and CUB-to-Sketches. Looking at
the Tables 1 and 2, as compared to Finetune, PackNet, KSM
and AQD, our method respectively saves up to 96%, 39%
82%, 35% on Split-CIFAR-100 benchmark and 95%, 82%,
87%, 28% memory on CUB-to-Sketches benchmark.
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In terms of running time during the inference, all mod-
els excluding AQD are approximately the same. NWS can
map saved kernel indices of a model to the weights of the
model with negligible time thanks to the lookup operation.
Taken together, our proposed method achieves competitive
performance on two TIL benchmarks and demonstrates an
unattainable memory saving as compared to the baselines 2

5.6. Different Model Architectures

To demonstrate our approach can be generalised, we
test NWS algorithm with another 3 different architectures:
Resnet-34 [6], MobileNet-V2 [31], VGG-16 [32]. We com-
pare NWS-incorporated models with baselines in Table 3.
The baselines finetune a corresponding pretrained model
(pretrained on ImageNet) for each task separately. Please
refer to App. 4 for pretraining and training setups. Results
show that our NWS is compatible with modern deep neu-
ral networks and NWS-incorporated networks can offer a
large memory reduction with competitive inference accu-
racy. Note that NWS-VGG16 achieves a higher compres-
sion rate (97.5%) than that of NWS-MobileNetV2 (81%).
It is because 1 × 1 kernels are extensively used in Mo-
bileNetV2 and from the model compression perspective for
a 1 × 1 kernel NWS only compresses 1 float value into 1
integer value.

Table 3: Comparison of different architectures on Split-
CIFAR-100.

Method Avg Acc (%) Memory (MB)
Finetune-Res34 77.0 1,628.0
Finetune-VGG16 75.6 1,124.0
Finetune-MobilnetV2 75.7 272.0
NWS-Res34 74.8 59.6
NWS-VGG16 74.8 28.0
NWS-MobileNetV2 71.5 52.6

5.7. Analysis of Selected Kernels

In this section, we provide further insight into how ker-
nels are used for different layers. For this purpose, we in-
troduce two new concepts, namely, layer-wise kernel uti-
lization ratio and layer sparsity.

We define the layer-wise kernel utilization ratio (KUR)
as KUR = U l/nl, where U l is the number of unique se-
lected kernels for the layer l and nl is the number of kernels
in the pool (512 kernels in our case). We compute KUR
on the CUB-to-Sketches benchmark. The ResNet-18 has a

2We also compared with CPG [8]. However, our investigation showed
that if ResNet-18 is used as the backbone on Split-CIFAR100, CPG be-
comes sensitive to predefined thresholds that are used to control the train-
ing and tends to fail or grow too much, which led to poor performance for
this method and therefore it was excluded for fairness.

total of 21 layers (including short-cut layers). Figure 4-(a)
shows the layer 1 and 8 utilise a smaller number of unique
kernels from the corresponding layer-wise pool. For layer
1 (the first layer), very low utilization ratios are observed.
A larger utilization ratio indicates most of the kernels in the
pool are selected. Kernels in the first layers capture coarse
common local features (e.g., line, curve, and dot), whereas
kernels in the following layers extract fine-grained special-
ized global features (e.g., ear, eye, and head). Therefore,
we conjecture that diversity (large KUR) is necessary for
kernels in the subsequent layers to ensure specialisation as
compared to the first layers.

We also investigate the layer sparsity. Intuitively, the
more a kernel is reused in a layer, the more important it
is. A kernel selected a few times is less important in con-
trast; therefore, setting its weight values to zero may hardly
hamper the performance, which can be used as a means for
network sparsification. We denote the selection times of a
unique index as hl

u and an adaptive layer-wise threshold as√
dl where dl is the number of required kernels to build the

layer. We formulate the layer sparsity as follows:

LSl =

U l∑
u=1

hl
u

dl
s.t. hl

u <
√
dl. (5)

Another heatmap is used to visualise the layer-wise sparsity
for the CUB-to-Sketches benchmark. As shown in Figure 4
(b), we observe higher levels of layer sparsity in the latter
tasks (i.e., tasks 4 and 5). It might be that the tasks are
learned in a sequential manner (temporary kernels of the
current task are initialised with the reconstructed kernel in-
dices of the previous model) and sparsity might have been
inherited.

6. Conclusion
In this paper, we propose a novel method called Neu-

ral Weight Search for task incremental learning. Our al-
gorithm learns new models by searching grouped weights
saved in layer-wise pools and saves learned models in the
form of indices, which significantly reduces the memory
cost. NWS is an out-of-the-box mechanism that can be eas-
ily integrated with modern deep learning methods. Our ex-
periments show NWS achieves state-of-the-art performance
on the Split-CIFAR-100 and CUB-to-Sketches benchmarks
in terms of both accuracy and memory.
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