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Abstract

Existing face restoration models have relied on general
assessment metrics that do not consider the characteristics
of facial regions. Recent works have therefore assessed
their methods using human studies, which is not scalable
and involves significant effort. This paper proposes a novel
face-centric metric based on an adversarial framework
where a generator simulates face restoration and a discrim-
inator assesses image quality. Specifically, our per-pixel
discriminator enables interpretable evaluation that cannot
be provided by traditional metrics. Moreover, our metric
emphasizes facial primary regions considering that even
minor changes to the eyes, nose, and mouth significantly af-
fect human cognition. Our face-oriented metric consistently
surpasses existing general or facial image quality assess-
ment metrics by impressive margins. We demonstrate the
generalizability of the proposed strategy in various archi-
tectural designs and challenging scenarios. Interestingly,
we find that our IFQA can lead to performance improve-
ment as an objective function. The code and models are
available at https://github.com/VCLLab/IFQA.

1. Introduction

Considerable efforts have been devoted to restoring fa-
cial images from degraded images [37, 53, 49]. Conven-
tional face restoration studies adopt full-reference metrics
widely used in general image restoration, e.g. PSNR [21],
SSIM [51], LPIPS [57], to evaluate the similarity be-
tween reference and restored images. Blind face restora-
tion (BFR) studies that can handle multiple unknown degra-
dations adopt no-reference metrics such as NIQE [39] and
BRISQUE [38]. However, because existing general metrics
do not consider facial characteristics, their judgments could
differ from human perceptions as shown in Figure 1.

Recent face restoration studies [48, 37, 53] have evalu-
ated their methods using human study rather than evalua-
tion metrics. However, human-oriented assessments widely
used in the face restoration field have fatal limitations: first,

w/ Reference w/o Reference
Reference Image A Image B Image A Image B

PSNR [21] ✔ N/A
SSIM [51] ✔ N/A
LPIPS [57] ✔ N/A
NIQE [39] ✔ ✔
BRISQUE [38] ✔ ✔
PI [1] ✔ ✔
FIQA [16, 15, 46, 40] ✔ ✔
IFQA (Ours) ✔ ✔
Human ✔ ✔

Human judgment: ✔ Full-Ref. IQA: ✔ No-Ref. IQA: ✔

Figure 1. Which of ‘Image A’ or ‘Image B’ is closer to
the given reference image or looks high-quality? General full-
reference metrics (e.g. PSNR/SSIM), no-reference metrics (e.g.
NIQE, BRISQUE, PI), and FIQA methods are inconsistent with
human judgment. LPIPS agrees with human judgment but can-
not be applied to the blind face restoration scenario. Our IFQA is
consistent with human judgment and can provide interpretability
maps where the brighter the area, the higher the quality.

they are unscalable, second, a number of assessors and their
(large) variances between each other and, third, cost of con-
ducting the assessment. The absence of appropriate face-
oriented metrics results in significant expense and time for
evaluation, which is becoming one of the major bottlenecks
for the emerging face restoration field. A question natu-
rally arises in this context is whether we need a face-specific
evaluation metric. Crucially, the face domain is different
from conventional object categories in ImageNet [43] or
COCO [34] because of its unique properties (e.g. geometry
and textures) and a variety of downstream tasks [22, 7, 35].
We argue that face images should be evaluated differently
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from general image domains in terms of image quality as-
sessment (IQA). The findings of early psychological stud-
ies [24, 10, 47], in which human brains use different areas
(i.e. fusiform face area) to recognize common objects and
faces, also support our claim.

This paper introduces a novel face-oriented metric called
interpretable face quality assessment (IFQA) based on an
adversarial network [11]. The generator, which is a plain
face restoration model, attempts to restore high-quality im-
ages from low-quality images. Sub-regions from high-
quality images provide ‘real’ supervision to the discrimina-
tor, whereas low-quality images and regions from restored
face images by the restoration model provide ‘fake’ super-
vision. Inspired by human face perception [47] in which
facial primary regions (e.g. eyes, nose, and mouth) have a
great effect on human face perception, we propose facial
primary regions swap (FPRS) that places a greater emphasis
on facial primary regions. Unlike existing mix-based aug-
mentations [8, 56, 54] that randomly extract local patches
from arbitrary positions, FPRS changes regions within a set
of the facial primary regions. Additionally, our U-shaped
architecture allows us to produce not only single image-
level quality scores but also interpretable per-pixel scores.
The proposed metric is related to face image quality assess-
ment (FIQA) [16]. In contrast to FIQA approaches mainly
rely on face recognition systems, our IFQA can be consid-
ered a more generalized face-oriented metric independent
of a specific high-level task.

We make it clear that our framework aims to realize un-
resolved face-oriented metrics despite numerous demands
raised by existing face restoration studies. In our evalua-
tions across various architectures and scenarios, our pro-
posed metric shows higher correlations with human cog-
nition than general IQA metrics and state-of-the-art FIQA
metrics. The contributions of this study are as follows:

• We propose a new dedicated framework for the face-
specific metric that considers the importance of the
face primary regions, such as eyes, nose, mouth.

• Our face-oriented metric matches human judgment
significantly more than existing general no-reference
and state-of-the-art FIQA metrics.

• Pixel-level evaluation scores enable interpretable im-
age quality analysis that cannot be provided by tradi-
tional single-score-based metrics.

2. Related Work
2.1. Face Image Restoration

A series of face image restoration methods have been
proposed for addressing certain types of facial image degra-
dation, such as low-resolution, noise, and blur [60, 55,

19, 59]. Although previous studies have shown promis-
ing results, they exhibit poor performance in real-world im-
ages with unknown and complex degradation. Some blind
face restoration (BFR) approaches have been proposed to
address this issue [33]. Prior BFR studies utilized face-
specific priors, such as facial component dictionaries [32],
facial parsing maps [4], high-quality guided images [33].
Among them, GAN inversion approaches based on Style-
GAN [26, 27] have shown promising results [37, 53, 49].
Despite significant advances in face restoration methodolo-
gies, evaluation metrics, which cannot reflect facial char-
acteristics, are borrowed from general image restoration.
Therefore, state-of-the-art studies have conducted costly
human studies to demonstrate the superiority [37, 53, 48]
of their models, which highly motivates this study.

2.2. General Image Quality Assessment

Image quality assessment (IQA) aims to measure the per-
ceptual quality of images and existing approaches can be
categorized into two groups: full-reference (FR-IQA) and
no-reference (NR-IQA). FR-IQA evaluates the statistical or
perceptual similarity between restored images and reference
images. PSNR [21] and SSIM [51] are widely used to eval-
uate face restoration models [20]. Perceptual metrics have
been introduced to alleviate the large semantic gap between
traditional FR-IQA and human cognition [57, 30, 9]. Al-
though the aforementioned metrics are reasonable choices
for measuring restoration results, they cannot be applied to
real-world scenarios without reference images.

A series of NR-IQA approaches—BRISQUE [38],
NIQE [39], and PI [1]—have been devised to measure the
naturalness of images in the blind image quality assess-
ment. Along with the successful application of NR-IQA
in natural scenes, there have been attempts to apply NR-
IQA to the BFR problem. However, numerous BFR stud-
ies [53, 48, 37] discovered that general NR-IQA metrics
have limitations for assessing restored facial images; and
therefore, they conduct human studies for evaluation. Con-
sequently, the absence of appropriate evaluation metrics for
face restoration requires substantial expenses and becomes
a major bottleneck in the face image restoration field. To
address this critical issue, we propose an evaluation metric
specifically designed to focus on facial primary regions.

2.3. Face Image Quality Assessment

Face image quality assessment (FIQA) supports face
recognition systems by deciding whether or not to dis-
card LQ face images as a preprocessing step. This pro-
cess builds stable and reliable face recognition systems in
real-world scenarios (e.g. surveillance cameras and out-
door scenes). Early FIQA studies exploited analytics-
based methods while recent FIQA studies have concen-
trated their efforts on a learning-based strategy that gen-
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Reference

Image A

Image B

Figure 2. Comparison of PSNR/SSIM and human assessment on
restored face images. PSNR/SSIM provides higher scores to ‘Im-
age A’ than ‘Image B’ while human subjects vote ‘Image B’ as
higher quality face images than ‘Image A’.

erates image quality scores directly from face recognition
models [16, 46, 40]. Although previous FIQA studies
have shown remarkable results compared with general no-
reference IQA [38, 39, 1], they solely focused on the face
recognition task. Crucially, FIQA aims to assess the qual-
ity of a face image from the point of view of its use in
face recognition tasks, involving objective functions derived
from face recognition. Unlike FIQA, our metric does not
focus on specific face-related tasks, and thus can be consid-
ered a more generalized face image evaluation assessment.

3. Proposed Metric
3.1. Pilot Study

In the preliminary experiments for the assessment of face
restoration results, we discovered that facial primary re-
gions play a critical role in human visual perception. Most
of the participants in the preliminary human study answered
that images from ‘Image B’ (third row) in Figure 2 are more
realistic than the ones shown in ‘Image A’ (second row).
However, PSNR and SSIM metrics score ‘Image A’ higher
than ‘Image B’. Notably, human visual perception is signif-
icantly affected by the overall structure and distortions in
facial primary regions such as the eyes and nose as shown
in the first and second columns.

3.2. Proposed Framework

Motivated by the observation in the pilot study, we intro-
duce an evaluation metric considering facial characteristics.
The overall framework is illustrated in Figure 3.
Generator for image restoration: The generator consist-
ing of a simple encoder-decoder architecture can be con-
sidered a plain face restoration model that outputs restored
face images. The generator is trained to restore LQ images
to 256 × 256 HQ images. During the training phase, we de-
liberately corrupt HQ images in the FFHQ dataset to make

input LQ images as the following BFR formulation:

ILQ = ((IHQ ⊗ k) ↓r + nσ)JPEGq
, (1)

where k is a kernel randomly selected between Gaussian
and motion-blur kernel. Factors of downsampling, Gaus-
sian noise, and JPEG compression are denoted as r, nσ and
q. Following previous BFR studies [32, 53, 49], the range
of each factor is set as r: [0.4, 0.9), nσ: [50, 250), q: [5, 50).
Discriminator for quality assessment: The discriminator
aims to evaluate the quality of query images trained in an
adversarial manner with the generator. We design our dis-
criminator to output per-pixel scores using U-Net-based ar-
chitecture [44] to enhance the generalization ability. This
architecture enables us to classify the regions from HQ im-
ages as ‘real’ while the regions from LQ or RF images as
‘fake’. Quality score as a single value (i.e. an image-level
score) can be obtained via aggregating pixel-level scores.
Notably, unlike traditional discriminators with adversarial
training, we provide ‘fake’ supervision to the generator’s
input (i.e. LQ images) as well as the generator’s output (i.e.
RF images). We only consider the face region in HQ im-
ages as ‘real’ labels instead of entire HQ images. This sim-
ple trick helps our metric to focus more on the face region
than the entire image. In the ablation study, we experimen-
tally show that the ‘real’ supervision setting using only the
face region has higher correlations with human judgment
than the global region. We exploit the off-the-shelf face seg-
mentation model [5] pre-trained on CelebAMask-HQ [31]
to obtain binary facial masks from the images.

Furthermore, we propose a novel augmentation tech-
nique called facial primary regions swap (FPRS) to reflect
facial characteristics to the proposed metric, as shown in
Figure 4. Firstly, we apply an off-the-shelf landmark de-
tector [2] to HQ images to obtain facial primary regions.
Unlike augmentation techniques such as original CutMix
for general purpose, we utilize RoIAlign [13] to crop the
primary region of facial components. Subsequently, the re-
gions extracted from the LQ or RF images are arbitrarily
swapped with the facial primary regions from the HQ im-
ages. Let ILQ/RF denote an LQ or RF image and IHQ de-
note an HQ image. Through FPRS operation, we can gen-
erate a new image pair to be used for discriminator training
as follows:

IHQ→LQ/RF = MFPRS ⊙ IHQ

+ (1−MFPRS)⊙ ILQ/RF

ILQ/RF→HQ = MFPRS ⊙ ILQ/RF

+ (1−MFPRS)⊙ IHQ,

(2)

where MFPRS ∈ {0, 1}H×W is a binary mask for ran-
domly selected facial primary regions. 1 is a binary mask
filled with ones. ⊙ indicates element-wise multiplication.
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Figure 3. IFQA framework outline. Given HQ images, we obtain LQ images via BFR formulation. The generator (G) mimics face
restoration models, while the discriminator (D) is used to evaluate image quality by determining high-quality regions as ‘real’ and low-
quality or restored regions as ‘fake’. Through its U-Net architecture, the discriminator is able to evaluate the image pixel-by-pixel. FPRS
allows the proposed metric to give more weight to facial primary regions that have a significant impact on human visual perception.

Objective function: The IFQA framework is trained by
least-square-based adversarial learning [36] between the
generator and discriminator. The generator is trained to fool
the discriminator, and the objective function for the genera-
tor is defined as follows:

Ladv,G = EIRF
[(DU (IRF )− 1))2], (3)

where DU (·) refers to U-Net-based discriminator that out-
puts per-pixel scores. Also, we adopt pixel loss to enforce
the generator to make IRF to be similar to the correspond-
ing HQ image. The pixel loss compares all of the pixel
values between the IRF and HQ images as follows:

Lpix = EIRF ,IHQ
[||IRF − IHQ||2]. (4)

To produce photo-realistic facial images, we leverage per-
ceptual loss [23] using the weights of the pre-trained VGG-
19 as follows:

Lvgg =
∑
i

||fi(IRF )− fi(IHQ)||1, (5)

where fi(·) is the i-th feature extracted from the pre-trained
VGG-19 network. Specifically, we use pooling layers in
five convolutional blocks for perceptual loss.

Meanwhile, the objective function of the discriminator is
defined as follows:

Ladv,D = EIHQ
[(DU (IHQ)−MFACE)

2]

+ EILQ,IRF
[DU (ILQ/RF )

2],
(6)

HQ CutMix [56] FPRS FPRS w/ F-Mask

LQ / RF Pixel-level Supervision
HQ: high-quality LQ: low-quality RF: restored face

Figure 4. Supervision for IFQA metric. Regions from high-
quality images provide ‘real’ labels (yellow), while regions from
low-quality or restored face images give ‘fake’ labels (purple). The
red box indicates the randomly selected swapped region.

where IHQ and MFACE are HQ images and facial binary
masks filled with 1s only for the face area, respectively.
ILQ/RF is LQ or RF images in which IRF = G(ILQ). The
full objective function can be summarized as follows:

min
G

max
D

Ladv + λ1Lpix + λ2Lvgg, (7)

where Ladv = Ladv,G +Ladv,D, and λ1 and λ2 are scaling
parameters. We set λ1 and λ2 as 50 and 5, respectively.
Assessment protocol: Once the IFQA framework is
trained, we only use the per-pixel discriminator for image
quality assessment. The pixel-level assessment score of
the discriminator enables us to perform an interpretable in-
depth analysis. Given an input image I , we can obtain an
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image-level quality score (QS) by simply averaging every
pixel-level score from the per-pixel discriminator as:

QS =
1

H ×W

H∑
i=1

W∑
j=1

DU
i,j(I) (8)

4. Experiments
4.1. Implementation Details

Datasets: Randomly selected 20,000 images from
FFHQ [26] were used for training the IFQA framework.
Meanwhile, we constructed three types of benchmark test
datasets. First, we construct a test set by combining
CelebA-HQ [25] and FFHQ images with high-quality im-
ages and considerable variations, widely used in face
restoration tasks. Given high-quality images of the test set,
we obtained low-resolution query images using the BFR
formulation Eq. 1. Second, considering real-world sce-
narios, we constructed a test set using in the wild face
(IWF) [53], which is widely used for BFR problems. No-
tably, the IWF dataset only provides low-quality images
without high-quality reference images. Third, CelebA-HQ,
FFHQ, and IWF were combined and used as a test set for
the ablation study to demonstrate the generalization ability
of the proposed metric.
Image restoration models: We used various image restora-
tion models including general image restoration models
(e.g. RCAN [58], DBPN [12]) and face restoration models
(e.g. HiFaceGAN [52], DFDNet [32], GPEN [53]) to eval-
uate the proposed metric quantitatively and qualitatively.

4.2. Quantitative Analysis

Human study protocol: For quantitative comparison with
the proposed IFQA metric and the existing IQA metrics,
we conducted a human study of ranking the realistic facial
images from given images. We carefully designed survey
questions and prepared face images to use to estimate hu-
man visual judgments. One sample consisted of six images,
including an LQ image and one image each restored from
RCAN, DBPN, DFDNet, HiFaceGAN, and GPEN. All 200
sample images were randomly selected from the FFHQ,
CelebA-HQ, and IWF datasets. The total number of images
for the human study was 1,200.

We asked participants to rank given samples from clos-
est to furthest to a realistic human face. We used Amazon
Mechanical Turk crowdsourcing [41] to gather participant’s
responses systematically. We also received responses from
researchers who are majors in various AI-related fields and
are not directly related to this study. We assigned 30 sub-
jects per sample, and the total number of responses across
all samples was 6,000. The final rank of each sample was
calculated by the weighted average rank. Figure 5 present
the box plot of our human study results.

Figure 5. Box plot of restoration models through human study.

IQA comparative analysis: Once human ranking re-
sponses were obtained for each sample, we measured Spear-
man’s rank order correlation coefficient (SRCC) [18] and
Kendall rank order correlation coefficients (KRCC) [28] for
quantitative analysis. These approaches are widely used
to measure the correlation between human judgments and
other metrics across various fields.
Aanalysis on FFHQ & CelebA-HQ: First, we performed
a comparative evaluation on FFHQ and CelebA-HQ with
the existing no-reference IQA (NR-IQA) metrics, includ-
ing state-of-the-art FIQA metrics. Table 1 shows that IFQA
has the highest correlations with human preferences in both
SRCC and KRCC metrics. Interestingly, NIQE, the widely
used NR-IQA metric, shows the lowest correlation. We
compared with the recent FIQA methods, which are spe-
cially designed for face recognition. IFQA is superior to
other FIQA metrics. Evidently, our face-oriented metric is
steadily more consistent with human judgment compared
with the existing NR-IQA metrics.

Although the proposed IFQA is an NR-IQA metric, we
conducted a comparative analysis with full-reference met-
rics (i.e. FR-IQA) to prove the general applicability of the
proposed metric. The traditional but widely used metrics,
PSNR [21] and SSIM [51], show values less than 0.2 in both
SRCC and KRCC. Perceptual metric, LPIPS [57], shows
0.6685 for SRCC and 0.5560 for KRCC, showing better
performance than the existing FR-IQA metrics. Crucially,
all FR-IQA metrics cannot be applied to practical scenar-
ios in the wild in which there is no reference image. The
proposed IFQA shows the highest correlations with the hu-
man perception among NR-IQA metrics and is comparable
to the state-of-the-art FR-IQA metric despite not requiring
any reference image.
Analysis on a real-world dataset: We measure the cor-
relation value using real-world face images [53] to prove
the generalization ability of the assessment. We exclude
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LQBlur LQDown↓ LQMix HiFaceGAN DFDNet DBPN RCAN GPEN Reference

Figure 6. Interpretable visualization of the proposed metric on various types of LQ images, HQ images (i.e., reference), and RF images
from the restoration models. The first and second rows show images from FFHQ and their corresponding interpretability maps, respectively.
The third and fourth rows present pairs from IWF that does not provide reference images. Brighter area indicates the higher quality.

Table 1. Comparative analysis on FFHQ and CelebA-HQ.

Metric Type SRCC ↑ KRCC ↑
NIQE [39]

NR-IQA
(General)

0.2668 0.2039
PI [1] 0.4125 0.3173
BRISQUE [38] 0.4405 0.3373
IFQA (Ours) 0.6400 0.5186
SER-FIQ [46]

NR-IQA (FIQA)

0.3554 0.2706
FaceQnet-V1 [15] 0.4560 0.3453
FaceQnet-V0 [16] 0.5491 0.434
SDD-FIQA [40] 0.5920 0.4840

Table 2. Comparative analysis on IWF.

Metric Type SRCC ↑ KRCC ↑
NIQE [39]

NR-IQA
(General)

0.5005 0.4053
PI [1] 0.6382 0.5320
BRISQUE [38] 0.6451 0.5573
IFQA (Ours) 0.6988 0.6013
SER-FIQ [46]

NR-IQA (FIQA)

0.1657 0.1386
FaceQnet-V1 [15] 0.2725 0.2106
FaceQnet-V0 [16] 0.4474 0.3813
SDD-FIQA [40] 0.5131 0.4120

the FR-IQA metrics and use NR-IQA and FIQA metrics
for comparison because real-world face images have no HQ
reference images. Table 2 shows that existing FIQA met-
rics show low correlation values except for the recently
proposed state-of-the-art SDD-FIQA. SDD-FIQA metric
shows a reasonable correlation value; general NR-IQA met-
rics have similar or higher values than FIQA metrics. Our

proposed metric shows the highest correlation with human
visual perception than general NR-IQA and FIQA metrics
on the real-world dataset.

4.3. Qualitative Analysis

Interpretability evaluation: To prove the effectiveness
and utilization of the interpretability of the proposed metric,
we generated a variety of LQ images (e.g. blur, downsam-
pling, and mix) from the HQ reference images based on the
BFR protocol [53, 49]. Subsequently, we restored images
by applying widely used general image restoration models
(e.g. RCAN, DBPN) and face restoration models (e.g. DFD-
Net, HiFaceGAN, GPEN) to the LQMix image, which is a
combination of various degradation factors.

The interpretability maps of IFQA are shown in Fig-
ure 6. HiFaceGAN produces plausible eyes, mouth, and
teeth arrangements, but it contains several artifacts in the
no-reference IWF dataset. DFDNet generates reasonable
facial structures but fails to restore the details compared
with other recent face restoration models. DBPN usually
incurs an unnatural shape of the facial primary regions or
facial contour, causing IFQA to attain low scores in those
regions. RCAN results in over-smoothed restored images,
which leads to an overall lower score than face restora-
tion model results. GPEN generates the most realistic fa-
cial details compared with other models, which results in
high scores in facial regions. We can confirm that the
overall results are consistent with the human judgment in
Figure 5. Even though our metric shows the highest con-
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Reference Image A Image B Image C

PSNR

SSIM

Ours

Figure 7. Comparison of the proposed metric with PSNR/SSIM
with respect to pixel-level score. Bright areas indicate higher sim-
ilarity to the reference image.

sistency with human judgment compared to other metrics,
there are still limitations. Since our metric is learning-based
on a synthetic dataset, inconsistent results could be pro-
duced on real-world data. Incorporating real-world perfor-
mance degradation into the learning process remains as a
future work.
Comparison with PSNR/SSIM: The proposed face-
oriented metric enables pixel-level visualization, whereas
general NR-IQA metrics cannot provide pixel-level scores.
Traditional FR-IQA metrics, such as PSNR and SSIM, can
provide pixel-level scores; however, the results are not in-
terpretable. We compare PSNR and SSIM maps with the
proposed IFQA in terms of pixel-level scores in Figure 7.
The map of PSNR is obtained by L2 distance between the
reference image and the restored images. For a clear quali-
tative comparison with IFQA, we reversed the distance map
of PSNR and SSIM. The brighter the area, the more similar
it is to the reference image. In the figure, for the severely
degraded ‘Image A’, IFQA attains an overall low score,
whereas PSNR and SSIM attain a sparse low score. For
‘Image B’, which is of low quality except for a tiny part of
the face, IFQA scores high in these undamaged regions.

4.4. In-depth Analysis

Ablation study for main modules: We present an abla-
tion study considering the following variants: (i) a baseline
model consisting of a learnable generator and an encoder-
based discriminator that outputs a single value, (ii) a model
that differs only in the discriminator from the first base-
line, which outputs the pixel-level score, (iii) a model with
original CutMix added to the second baseline model, (iv) a

Table 3. Ablation study of IFQA framework on FFHQ, CelebA-
HQ, and IWF datasets. We report the average correlation for the
entire test datasets.

Discriminator SRCC ↑ KRCC ↑
Baseline (single-output) 0.5885 0.4840
Baseline (per-pixel) 0.4674 0.3820
Baseline (per-pixel) + CutMix [56] 0.5437 0.4420
Baseline (per-pixel) + FPRS 0.6265 0.5213
Baseline (per-pixel) + FPRS + F-Mask 0.6694 0.5600
F-Mask: facial masks using a segmentation model

Table 4. Performance comparison with respect to generator models
on FFHQ, CelebA-HQ, and IWF.

Generator Task Parameters SRCC ↑ KRCC ↑
GPEN [53] FIR

pre-trained

0.4997 0.4166
DFDNet [32] FIR 0.5391 0.4366
DBPN [12] GIR 0.5582 0.4586
RCAN [58] GIR 0.5711 0.4680
RCAN GIR learnable 0.6454 0.5480
Plain model FIR learnable 0.6694 0.5600
FIR: face image restoration GIR: general image restoration

model with the proposed FPRS added to the second baseline
model, and (v) a model with the facial mask information
added to the fourth baseline model (i.e. our final model).

Table 3 reports the quantitative results on FFHQ,
CelebA-HQ, and IWF datasets. From the table, we can
see the following observations. Without the proposed mod-
ules, a single-output discriminator composed of only an en-
coder is more similar to human judgment than a per-pixel
discriminator. Although CutMix results in performance im-
provement, it is significantly inconsistent with human judg-
ment compared to our IFQA model with FPRS. Moreover,
adding face mask information to the baseline model results
in a metric that is even closer to human perception.

Generator change analysis: We hypothesize that a train-
able naive model as a generator is more suitable for learning
the discriminator than pre-trained general or face restoration
models. To prove this hypothesis, we compare our plain
model with the four conventional approaches. In Table 4,
our plain U-Net-based generator shows the highest corre-
lation with human perception, whereas cutting-edge GPEN
shows the lowest value.

Discriminator backbone analysis: Because the proposed
IFQA metric depends on the trainable discriminator, we
performed a comparison considering the following back-
bone architectures of the discriminator. Table 5 shows that
all the variants of our metric are superior to most of the ex-
isting IQA metrics and our VGG-19-based model produces
the best performance.
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Table 5. Performance comparison with respect to the backbone of
discriminators on FFHQ, CelebA-HQ, and IWF.

Discriminator Parameters SRCC ↑ KRCC ↑
U-Net [42]

learnable

0.6100 0.5006
U-Net + SFT [50] 0.6314 0.5253
ResNet-50 [14] 0.6311 0.5346
VGG-16 [45] 0.6365 0.5286
VGG-19 [45] 0.6694 0.5600

Reference Image A Image B Image C

Figure 8. IFQA results in more challenging scenarios. Brighter
area indicates the higher quality.

4.5. Further Use Case Analysis

IFQA under realistic conditions: We applied various
degradations to the images from VGGFace2 [3] to validate
the generalization ability of the proposed metric in more
challenging scenarios. In Figure 8, IFQA provides accept-
able results for most scenarios. Unlike the high-quality ref-
erence image, low-quality ‘Image A’ shows low pixel-level
scores in entire regions. Even Black or white box occlusion
as seen in (‘Image B’) and (‘Image C’) is not considered
as facial degradation factors, but interestingly, the proposed
metric shows reasonable results.
IFQA in face manipulation tasks: There are increasing
attempts to use face images to demonstrate the superior-
ity and effectiveness of the methodology in general image
generation or image-to-image translation tasks, e.g. Star-
GANv2 [6] and U-GAT-IT [29]. These tasks commonly use
conventional metrics such as FID [17] and LPIPS [57] to
evaluate results. Figure 9 shows the image-to-image transla-
tion results using StarGANv2 and their visualization maps.
Overall results especially for ‘Output C’ show the possibil-
ity that our metric designed to assess face restoration mod-
els can also be used to evaluate the results of various face-
related image generation tasks.
IFQA as objective function: To evaluate the generaliza-
tion ability of IFQA, we adopted it as an additional objec-
tive function in StarGAN v2, which is the state-of-the-art
method for face manipulation. The proposed IFQA met-
ric evaluates the per-pixel realness of generated images and
gives feedback to the generator during the training phase.

Reference Image A Image B Image C

Figure 9. IFQA results in face manipulation scenarios. Brighter
area indicates the higher quality.

Table 6. Quantitative StarGAN v2 performance comparison with
and without our metric as an additional objective function.

Method
FID↓

Latent-guided Reference-guided
StarGAN v2 w/o IFQA 14.6657 23.7138
StarGAN v2 w IFQA 13.8008 22.6457

As a result, the generator is not only trained to generate di-
verse styles of images but also trained to generate image
realness. Table 6 clearly shows that our IFQA strategies
enhance the performance of StarGAN v2 in terms of FID.

5. Conclusion

The face domain cannot be seen merely as a common
object category because of facial geometry, variety of ap-
plications, and psychological evidence. Nevertheless, exist-
ing face image restoration studies have used general IQA
metrics. The main finding of our study is tiny distortions
in facial primary regions have a significant impact on hu-
man perception. Considering this, our framework arbitrar-
ily swaps primary regions among low-quality, high-quality,
and restored images and utilizes them as supervision for the
discriminator. As a result, IFQA metric shows higher cor-
relations with human visual perception than traditional gen-
eral metrics across various architectures and scenarios.
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